Example 1:

Rat pulls a 50 kg wagon with a force of 60 N. The handle of the wagon makes an angle of 36.87° with the horizontal direction of the wagon.

- a.) How much work is done if she pulls the wagon 30 m and there is no friction?
- b.) If the wagon is initially at rest, what is its speed after being pulled for 30 m?

Work and Energy

Example 2:

A single force $F_x(x) = (-2x + 10)$ N is applied to an object with a mass of 2.0 kg, where x is in meters. As the particle moves along the x-axis from x = 1.0 m to x = 2.0 m, calculate

- a.) the work done by the force.
- the change in kinetic energy of the particle b.)
- the kinetic energy of the particle at x = 2.0 m, if its speed at x = 1.0 m is 2.0 m/s.
- the speed of the particle when x = 2.0 m.

Work and Energy

$$m = 2.0 \text{ kg}, F_x(x) = (-2x + 10) \text{ N}, x_1 = 1.0 \text{ m}, x_2 = 2.0 \text{ m}, W_F = 7.0 \text{ J}$$

b.)
$$\Delta K = ?$$

$$W_{net} = \Delta K$$

$$\Delta K = W_F = 7.0 \text{ J}$$

c.)
$$v_1 = 2.0 \frac{\text{m}}{\text{m}}$$
 @ $x_1 = 1.0 \text{ m}$, $K_2 = 0.0 \text{ m}$

c.)
$$v_1 = 2.0 \frac{\text{m}}{\text{s}}$$
 @ $x_1 = 1.0 \text{ m}$, $K_2 = ?$

$$\Delta K = K_2 - K_1$$

$$K_2 = K_1 + \Delta K = \frac{1}{2} m v_1^2 + \Delta K$$

$$K_2 = \frac{1}{2} (2.0 \text{ kg}) \left(2.0 \frac{\text{m}}{\text{s}} \right)^2 + 7.0 \text{ J}$$

$$K_2 = 11.0 \text{ J}$$

$$K_2 = 11.0 \text{ J}$$

d.)
$$v_2 = ?$$
 $K_2 = \frac{1}{2}mv_2^2$

$$v_2 = \sqrt{\frac{2K_2}{m}} = \sqrt{\frac{2(11 \text{ J})}{2.0 \text{ kg}}}$$

$$v_2 = 3.3 \frac{\text{m}}{\text{s}}$$

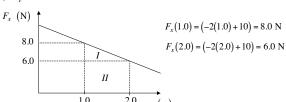
Example 1:

a.)
$$W_F = ?$$
 $W_F = Fd\cos\phi_F$ $W_F = (60 \text{ N})(30 \text{ m})\cos(36.87^\circ)$ $W_F = 1440 \text{ J}$

$$W_F = 1440 \text{ J}$$

b.)
$$v_2 = ?$$
 $W_{net} = \Delta K = K_2 - K_1$

$$W_F = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$
$$v_1 = 0$$


$$v_2 = \sqrt{\frac{2W_F}{m}} = \sqrt{\frac{2(1440 \text{ J})}{50 \text{ kg}}}$$

$$v_2 = 7.6 \frac{\text{m}}{\text{s}}$$

Example 2:

$$m = 2.0 \text{ kg}, F_x(x) = (-2x + 10) \text{ N}, x_1 = 1.0 \text{ m}, x_2 = 2.0 \text{ m}$$

a.) $W_F = ?$

$$W_F = Area_I + Area_{II}$$

$$W_F = \frac{1}{2} (1.0 \text{ m})(2.0 \text{ N}) + (1.0 \text{ m})(6.0 \text{ N})$$

$$W_E = 7.0 \text{ J}$$

Example 3:

An elevator lifts a 1000 kg load upward a distance of 50 m at a constant velocity.

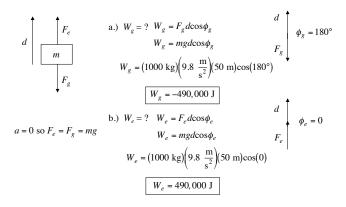
- What is the work done on the load by gravity?
- What is the work done on the load by the elevator?

Work and Energy

Example 4:

How much energy is needed to accelerate a 3000 kg truck from 10 m/s to 30 m/s?

Work and Energy


Example 5:

A 1.0 kg ball is tossed straight up with an initial speed of 25 m/s. What is the maximum height of the ball?

> Work and Energy 11

Example 3:

$$m = 1000 \text{ kg}, d = 50 \text{ m}, \text{ and } a = 0$$

ample 4:

$$m = 3000 \text{ kg}, v_1 = 10 \frac{\text{m}}{\text{s}}, \text{ and } v_2 = 30 \frac{\text{m}}{\text{s}}, W = ?$$

$$W_{net} = \Delta K = K_2 - K_1$$

$$W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$

$$W = \frac{1}{2} (3000 \text{ kg}) \left(30 \frac{\text{m}}{\text{s}} \right)^2 - \frac{1}{2} (3000 \text{ kg}) \left(10 \frac{\text{m}}{\text{s}} \right)^2$$

$$W = 1.2 \times 10^6 \text{ J}$$

ample 5:
$$m = 1.0 \text{ kg}, v_1 = 25 \frac{\text{m}}{\text{s}}, v_2 = 0, y_2 = ?$$

$$v_2 = 0$$

$$v_2 = 0$$

$$v_1 \uparrow$$

$$v_1 \uparrow$$

$$v_1 = 0$$

$$K_1 + b \downarrow + b \downarrow_{other} = K_2 + U_2$$

$$v_1 = 0$$

$$v_2 = 0$$

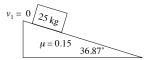
$$K_1 = U_{g_2}$$

$$\frac{1}{2} m v_1^2 = m g y_2$$

$$v_2 = \frac{v_1^2}{2g} = \frac{\left(25 \frac{\text{m}}{\text{s}}\right)^2}{2\left(9.8 \frac{\text{m}}{\text{s}^2}\right)}$$

$$v_2 = 31.9 \text{ m}$$

Example 6:


A cannonball is fired with a speed of 100 m/s at an angle of 53.13°. What is the maximum height of the cannonball?

Work and Energy 13

Example 7:

A 15 kg box is sliding up a frictionless 30° incline. If the box has an initial speed of 4.0 m/s, how far does it slide along the direction of the incline?

Work and Energy 15

Example 8:

A 25 kg box is released from rest on a rough inclined surface as shown in the figure above. After sliding 2.0 m down the incline find

- a.) the kinetic energy of the box.
- b.) the velocity of the box.
- c.) the work done by gravity on the box.

Work and Energy 17

Example 6: $v_{1} = 100 \frac{m}{s}, \ \theta_{1} = 53.13^{\circ}, \ v_{2} = v_{x}, \ y_{2} = ?$ $v_{2} = v_{x}$ $y_{1} = 0$ $K_{1} + b_{1} + b_{other} = K_{2} + U_{2}$ $y_{1} = 0$ $K_{1} = K_{2} + U_{g_{2}}$ $\frac{1}{2} mv_{1}^{2} = \frac{1}{2} mv_{x}^{2} + mgy_{2}$ $\frac{1}{2} mv_{1}^{2} = \frac{1}{2} m(v_{1} cos \theta_{1})^{2} + mgy_{2}$

$$y_2 = \frac{v_1^2 - (v_1 \cos \theta_1)^2}{2g} = \frac{\left(100 \frac{\text{m}}{\text{s}}\right)^2 - \left(100 \frac{\text{m}}{\text{s}} \cos(53.13^\circ)\right)^2}{2\left(9.8 \frac{\text{m}}{\text{s}^2}\right)}$$

$$y_2 = 326 \text{ m}$$

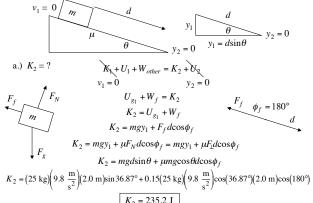
Example 7:
$$m = 15 \text{ kg}, v_1 = 4.0 \frac{\text{m}}{\text{s}}, \ \theta = 30^{\circ}, \mu = 0, \ d = ?$$

$$v_2 = 0 \qquad v_1 = 4.0 \frac{\text{m}}{\text{s}}$$

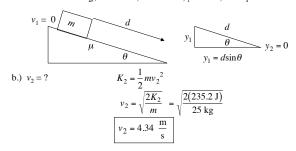
$$y_1 = 0 \qquad y_2 = d \sin \theta \qquad y_1 = 0$$

$$K_1 + U_1 + W_{objer} = K_2 + U_2$$

$$y_1 = 0 \qquad v_2 = 0$$


$$K_1 = U_{g_2}$$

$$\frac{1}{2} m v_1^2 = m g d \sin \theta$$


$$d = \frac{v_1^2}{2g \sin \theta} = \frac{\left(4.0 \frac{\text{m}}{\text{s}}\right)^2}{2\left(9.8 \frac{\text{m}}{\text{s}^2}\right) \sin(30^{\circ})}$$

$$d = 1.63 \text{ m}$$

Example 8:
$$m = 25 \text{ kg}, d = 2.0 \text{ m}, \theta = 36.87^{\circ}, \mu = 0.15, \text{ and } v_1 = 0$$

Example 8: $m = 25 \text{ kg}, d = 2.0 \text{ m}, \theta = 36.87^{\circ}, \mu = 0.15, \text{ and } v_1 = 0$

c.)
$$W_g = ?$$
 $W_g = F_g d \cos \phi_g$ $W_g = mg d \cos \phi_g$ $W_g = mg d \cos \phi_g$ $W_g = g \cos \phi_g$ $W_g = g \cos \phi_g$ $W_g = g \cos \phi_g$ $W_g = (25 \text{ kg}) \left(9.8 \text{ m} \text{ s}^2\right) (2.0 \text{ m}) \cos(53.13^\circ)$ $W_g = 294 \text{ J}$

Example 9:

Larry climbs a 10.0 m tree at a constant speed in 8.0 s. If Larry has a mass of 7.0 kg, what is his power output?

Work and Energy

21

Example 9: (Alternative solution)

$$m = 7.0 \text{ kg}, d = 10.0 \text{ m}, a = 0, \Delta t = 8.0 \text{ s}, P_L = ?$$

$$y_2 = 10.0 \text{ m}$$

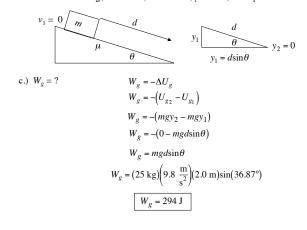
$$d$$

$$y_1 = 0$$

$$P_L = \frac{W_L}{\Delta t}$$

$$W_L = -W_g$$

$$W_g = -\Delta U_g = -\left(U_{g_2} - U_{g_1}\right)$$


$$W_g = -\left(mgy_2 - mgy_1\right) = -\left((7.0 \text{ kg})\left(9.8 \text{ m}\frac{\text{m}}{\text{s}^2}\right)(10.0 \text{ m}) - 0\right) = -686 \text{ J}$$

$$W_L = -W_g = 686 \text{ J}$$

$$P_L = \frac{W_L}{\Delta t} = \frac{686 \text{ J}}{8.0 \text{ s}}$$

$$P_L = 86 \text{ W}$$

Example 8: $m = 25 \text{ kg}, d = 2.0 \text{ m}, \theta = 36.87^{\circ}, \mu = 0.15, \text{ and } v_1 = 0$

Example 9:

$$m = 7.0 \text{ kg}, d = 10.0 \text{ m}, a = 0, \Delta t = 8.0 \text{ s}, P_L = ?$$

$$a = 0 \text{ so } F_L = F_g = mg$$

$$\int_{-\infty}^{\infty} d \int_{F_L}^{\infty} F_L$$

$$\int_{F_g}^{\infty} F_g$$

$$P_L = \frac{W_L}{\Delta t}$$

$$W_L = F_L d\cos\phi_L = mgd\cos\phi_L$$

$$P_L = \frac{mgd\cos\phi_L}{\Delta t} = \frac{(7.0 \text{ kg})(9.8 \text{ m}\frac{\text{m}}{\text{s}^2})(10.0 \text{ m})\cos(0)}{8.0 \text{ s}}$$

$$P_L = 86 \text{ W}$$

Example 9: (Alternative solution)

$$m = 7.0 \text{ kg}, d = 10.0 \text{ m}, a = 0, \Delta t = 8.0 \text{ s}, P_L = ?$$

$$a = 0 \text{ so } F_L = F_g = mg$$

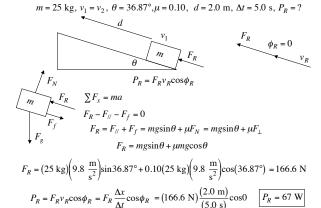
$$m$$

$$V_L$$

$$V_L = 0$$

$$V_L = F_L v_L \cos \phi_L = mg \frac{\Delta y}{\Delta t} \cos \phi_L$$

$$P_L = (7.0 \text{ kg}) \left(9.8 \frac{\text{m}}{\text{s}^2}\right) \frac{(10.0 \text{ m})}{(8.0 \text{ s})} \cos 0$$

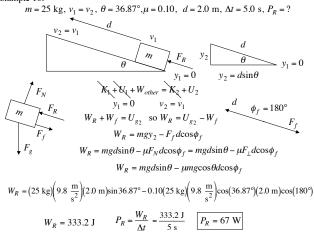

$$P_L = 86 \text{ W}$$

Example 10:

Rat pushes a 25 kg crate up a 36.87° incline at a constant velocity. The coefficient of kinetic friction between the crate and the inclined surface is 0.10. If she pushes the crate a distance of 2.0 m along the incline in 5.0 s, what is Rat's power output?

Work and Energy 25

Example 10: (Alternative solution)



Example 11:

$$k = 600 \frac{N}{m}$$
, $x = 0.02 \text{ m}$

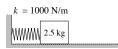
a.)
$$F = ?$$
 $F = kx$
$$F = \left(600 \frac{N}{m}\right)(0.02 \text{ m})$$

$$F = 12 \text{ N}$$
 b.) $U_e = ?$
$$U_e = \frac{1}{2}kx^2$$

$$U_e = \frac{1}{2}\left(600 \frac{N}{m}\right)(0.02 \text{ m})^2$$

$$U_e = 0.12 \text{ J}$$

Example 10:


Example 11:

A spring has a spring constant of 600 N/m.

- a.) What force is needed to stretch the spring 2.0 cm?
- b.) How much energy is stored in the spring?

Work and Energy 28

Work and Energy 30

Example 12:

A 2.5 kg block pushed against a spring with a spring constant of 1000 N/m, and the spring is compressed 5.0 cm and then released. The surface is flat and frictionless.

- a.) What is the speed when the spring is still compressed 2.5 cm?
- b.) What is the speed of the block when it leaves the spring?

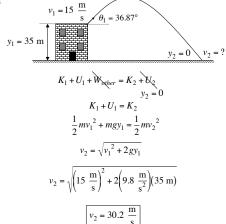
Work and Energy 31

$$m = 2.5 \text{ kg}, x_1 = 0.05 \text{ m}, v_1 = 0, k = 1000 \frac{\text{N}}{\text{m}}$$

b.) $x_2 = 0, v_2 = ?$

$$K_1 + U_1 + W_{objer} = K_2 + U_2$$

$$v_1 = 0$$


$$U_{e_1} = K_2$$

$$\frac{1}{2}kx_1^2 = \frac{1}{2}mv_2^2$$

$$v_2 = \sqrt{\frac{kx_1^2}{m}} = \sqrt{\frac{\left(1000 \frac{N}{m}\right)(0.05 \text{ m})^2}{2.5 \text{ kg}}}$$


$$v_2 = 1.0 \frac{m}{s}$$

Example 13:

Example 12:
$$m = 2.5 \text{ kg}, x_1 = 0.05 \text{ m}, v_1 = 0, k = 1000 \frac{\text{N}}{\text{m}}$$

a.) $x_2 = 0.025 \text{ m}, v_2 = ?$

$$v_2 = \sqrt{\frac{k(x_1^2 - x_2^2)}{m}} = \sqrt{\frac{\left(1000 \frac{\text{N}}{\text{m}}\right)\left((0.05 \text{ m})^2 - (0.025 \text{ m})^2\right)}{2.5 \text{ kg}}}$$

$$v_2 = 0.87 \frac{\text{m}}{\text{s}}$$

Example 13:

Larry kicks a soccer ball with a speed of 15 m/s and angle of 36.87° above the horizontal from a building that is 35 m tall. What is the speed of the ball just before it hits the ground?

Work and Energy 34