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south of Paris, on March 21, 1768. His fame is based on his mathematical theory
of heat conduction, a theory involving expansions of arbitrary functions in certain
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earlier, they bear his name because of his major contributions. Fourier series are
now fundamental tools in science, and this book is an introduction to their theory
and applications.
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of the Ecole Polytechnique. He died at the age of 62 on May 16, 1830.



CONTENTS

1

Preface

Fourier Series

Piecewise Continuous Functions 2
Fourier Cosine Series 4

Examples 6

Fourier Sine Series 9

Examples 10

Fourier Series 14

Examples 16

Adaptations to Other Intervals 20

Convergence of Fourier Series

One-Sided Derivatives 25

A Property of Fourier Coefficients 28
Two Lemmas 31

A Fourier Theorem 35

A Related Fourier Theorem 38
Examples 39

Convergence on Other Intervals 43
A Lemma 47

Absolute and Uniform Convergence of Fourier Series

The Gibbs Phenomenon 51
Differentiation of Fourier Series 54

Integration of Fourier Series 55

XV

25



3

4

CONTENTS

Partial Differential Equations of Physics

Linear Boundary Value Problems 60
One-Dimensional Heat Equation 62

Related Equations 65

Laplacian in Cylindrical and Spherical Coordinates 67
Derivations 70

Boundary Conditions 73

Duhamel’s Principle 75

A Vibrating String 80

Vibrations of Bars and Membranes 83

General Solution of a Wave Equation 87

Types of Equations and Boundary Conditions 92

The Fourier Method

Linear Operators 95

Principle of Superposition 97
Examples 99

Eigenvalues and Eigenfunctions 102
A Temperature Problem 104

A Vibrating String Problem 107

Historical Development 111

Boundary Value Problems

A Slab with Faces at Prescribed Temperatures 114
Related Temperature Problems 118

Temperatures in a Sphere 122

A Slab with Internally Generated Heat 125

Steady Temperatures in Rectangular Coordinates 131
Steady Temperatures in Cylindrical Coordinates 136
A String with Prescribed Initial Conditions 140
Resonance 146

An Elastic Bar 149

Double Fourier Series 152

Periodic Boundary Conditions 155

xi

60

95

113



Xii

6

CONTENTS

Fourier Integrals and Applications

The Fourier Integral Formula 161

Dirichlet’s Integral 163

Two Lemmas 165

A Fourier Integral Theorem 169

The Cosine and Sine Integrals 173

Some Eigenvalue Problems on Unbounded Intervals 174
More on Superposition of Solutions 177

Steady Temperatures in a Semi-Infinite Strip 179
Temperatures in a Semi-Infinite Solid 182

Temperatures in an Unlimited Medium 187

Orthonormal Sets

Inner Products and Orthonormal Sets 189
Examples 191

Generalized Fourier Series 195

Examples 196

Best Approximation in the Mean 200

Bessel’s Inequality and Parseval’s Equation 203

Applications to Fourier Series 205

Sturm-Liouville Problems and Applications

Regular Sturm-Liouville Problems 210

Modifications 212

Orthogonal Eigenfunctions and Real Eigenvalues 213
Real-Valued Eigenfunctions 218

Nonnegative Eigenvalues 220

Methods of Solution 221

Examples of Eigenfunction Expansions 227

A Temperature Problem in Rectangular Coordinates 234
Steady Temperatures 238

Other Coordinates 242

A Modification of the Method 245

Another Modification 249

A Vertically Hung Elastic Bar 252

161

189

210



9

CONTENTS

Bessel Functions and Applications

The Gamma Function 261

Bessel Functions J,(x) 263

Solutions Whenv =0,1,2,... 266

Recurrence Relations 273

Bessel’s Integral Form 277

Some Consequences of the Integral Forms 279
The Zeros of J,(x) 283

Zeros of Related Functions 286

Orthogonal Sets of Bessel Functions 288

Proof of the Theorems 290

Two Lemmas 295

Fourier-Bessel Series 298

Examples 300

Temperatures in a Long Cylinder 305

A Temperature Problem in Shrunken Fittings 312
Internally Generated Heat 314

Temperatures in a Long Cylindrical Wedge 319

Vibration of a Circular Membrane 321

10 Legendre Polynomials and Applications

11

Solutions of Legendre’s Equation 326
Legendre Polynomials 328

Rodrigues’ Formula 333

Laplace’s Integral Form 336

Some Consequences of the Integral Form 338
Orthogonality of Legendre Polynomials 341
Normalized Legendre Polynomials 343
Legendre Series 345

The Eigenfunctions P,(cos8) 350

Dirichlet Problems in Spherical Regions 352
Steady Temperatures in a Hemisphere 356

Verification of Solutions and Uniqueness

Abel’s Test for Uniform Convergence 362
Verification of Solution of Temperature Problem 365
Uniqueness of Solutions of the Heat Equation 368

xiii

260

326

362



Xiv

CONTENTS

Verification of Solution of Vibrating String Problem 372

Uniqueness of Solutions of the Wave Equation 374

Appendixes

Bibliography 377
Some Fourier Series Expansions 381
Solutions of Some Regular Sturm-Liouville Problems 383

Some Fourier-Bessel Series Expansions 387

Index

377

389



PREFACE

This is an introductory treatment of Fourier series and their applications to bound-
ary value problems in partial differential equations of engineering and physics. It
is designed for students who have completed a first course in ordinary differential
equations. In order that the book be accessible to as great a variety of readers as
possible, there are footnotes to texts which give proofs of the more delicate re-
sults in advanced calculus that are occasionally needed. The physical applications,
explained in some detail, are kept on a fairly elementary level.

The first objective of the book is to introduce the concept of orthonormal
sets of functions and representations of arbitrary functions by series of functions
from such sets. Representations of functions by Fourier series, involving sine and
cosine functions, are given special attention. Fourier integral representations and
expansions in series of Bessel functions and Legendre polynomials are also treated.

The second objective is a clear presentation of the classical method of sepa-
ration of variables used in solving boundary value problems with the aid of those
representations. In the final chapter, some attention is given to the verification of
solutions and to their uniqueness, since the method cannot be presented properly
without such considerations.

This book is a revision of its seventh edition, the first two of which were
written by Professor Churchill alone. While improvements appearing in earlier
revisions have been retained here, the entire book has been thoroughly rewritten.
Some of the changes in this edition are mentioned below.

The regular Sturm-Liouville problems leading to Fourier cosine and sine
series are treated by themselves in a separate section, and the same is true of
the singular problems leading to Fourier cosine and sine integrals. It seemed that
there were too many distractions when the solutions of those eigenvalue problems
were obtained in the sections devoted mainly to illustrations of the method of
separation of variables. A number of topics have been brought out of the problem
sets and presented in their own sections, because of their special interest and
importance. Examples of this are the Gibbs’ phenomenon and the Poisson integral
formula, together with the Sturm-Liouville problem involving periodic boundary
conditions needed to obtain that formula. Another example is the derivation of a
reduction formula to be used in evaluating integrals appearing in the coefficients
of various Fourier-Bessel series.

Many other changes in this edition were suggested by readers who have
spoken or written to me. Duhamel’s principle, for instance, is discussed more

XV



XVi  PREFACE

thoroughly, and there are more physical problems using it later on. The chapter
on Bessel functions now begins with a separate section on the gamma function
in order to make the presentation of Bessel functions more efficient. Also, the
Fourier-Bessel series found in this book are now listed in an appendix. While
notation can vary from author to author, I have chosen to follow the classic text
by Bartle that is listed in the Bibliography by changing to his notation for one-
sided derivatives but keeping our notation in defining one-sided limits. Finally, it
should be mentioned that problem sets appear even more frequently than in the
last edition, in order to focus more directly on the material just introduced.

A Student’s Solutions Manual (ISBN:978-007-745415-9; MHID 007-745415-4)
is available. It contains solutions to selected problems throughout the book.

This and earlier editions have benefited from the continued interest of
friends, including current and former students. The late Ralph P. Boas, Jr.,
furnished the reference to Kronecker’s extension of the method of integration by
parts, and the derivation of the laplacian in cylindrical and spherical coordinates
was suggested by a note of R. P. Agnew’s in the American Mathematical Monthly,
vol. 60, 1953. Finally, the most important source of support and encouragement
was the staff at McGraw-Hill and my wife, Jacqueline Read Brown.

James Ward Brown



CHAPTER

FOURIER SERIES

This book is concerned with two general topics:

(i) one is the representation of a given function by an infinite series involving a
prescribed set of functions;

(if) theotherisamethod of solving boundary value problems in partial differential
equations, with emphasis on equations that are prominent in physics and
engineering.

Representations by series are encountered in solving such boundary value
problems. The theories of those representations can be presented independently.
They have such attractive features as the extension of concepts of geometry, vector
analysis, and algebra into the field of mathematical analysis. Their mathematical
precision is also pleasing. But they gain in unity and interest when presented in
connection with boundary value problems.

The set of functions that make up the terms in the series representation is
determined by the boundary value problem. Representations by Fourier series,
which are certain types of series of sine and cosine functions, are associated with
a large and important class of boundary value problems. We shall give special
attention to the theory and application of Fourier series and their generalizations.
But we shall also consider various related representations, concentrating on those
involving so-called Fourier integrals and what are known as Fourier-Bessel and
Legendre series.

In this chapter, we begin our discussion of Fourier series. Once the con-
vergence of such series has been established (Chap. 2) and a variety of partial
differential equations have been derived (Chap. 3), we shall see (Chaps. 4 and 5)
how such series are used in what is often referred to as the Fourier method for
solving boundary value problems.



2 FOURIER SERIES CHAP. 1

The first section here is devoted to a description of a class of functions that
is central to the theory of Fourier series.

1. PIECEWISE CONTINUOUS FUNCTIONS

If the values f(x) of a function f approach some finite number as x approaches
xo from the right, the right-hand limit of f is said to exist at xy and is denoted by
f(xo+). Thus

lim fx) = flxo+).

x>x(

The left-hand limit is similarly defined, so that
lim f(x) = f(xo-).

.\’<XO
EXAMPLE 1. Let the function f be defined for all nonzero x by means of
the equations (see Fig. 1)

) = —X when x < 0,
foo = x+1 when x > 0.

Observe that the usual limit as x tends to zero does not exist. But

lim f(x) = f(0+) =1

x>0

and
lim f(x) = f(0-) =0,
x<0
J)
1
OT x
FIGURE 1
Let a function f be continuous at all points of a bounded open interval
a < x < b except possibly for a finite set of points x1, x,, ..., x,_1, where

a<x<Xp<---<X,_1<b.

If we write xp = a and x, = b, then f is continuous on each of the n open
subintervals

(1) Xo <X <X, X]<X<X2 ..., Xp1<2X<Xp
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It is not necessarily continuous, or even defined, at their endpoints. But if in
each of those subintervals, f has finite limits as x approaches the endpoints from
the interior, f is said to be piecewise continuous on the interval a < x < b. More
precisely, the one-sided limits

(@) feiH) = lm f@) and fee-)=lim f@) k=120
X > X1 X < Xk
are required to exist.

Note that if the limiting values from the interior of a subinterval are assigned
to f at the endpoints, then f is continuous on the closed subinterval. Since any
function that is continuous on a closed bounded interval is bounded, it follows that
f is bounded on the entire interval a < x < b. That is, there exists a nonnegative
number M such that | f(x)| < M for all points x (a < x < b) at which f is defined.

EXAMPLE 2. Consider the function f that has the values

X when 0 < x <1,
fx)y=<-1 when 1 <x < 2,
1 when 2 < x < 3,

and f(3) = 0. (See Fig. 2.) Although f is discontinuous at the points x = 1
and x = 2 in the interval 0 < x < 3, it is nevertheless piecewise continuous on
that interval. This is because the one-sided limits from the interior exist at the
endpoints of each of the three open subintervals on which f is continuous. Note,
for instance, that the right-hand limit at x = Ois f(0 +) = 0 and that the left-hand
limitatx =1is f(1—-) =1.

)

l - ?_(?
| | |
| | |
| | |
! ! .

0 I 12 3 x
| |
I |
I |
“1F —
FIGURE 2

A function is piecewise continuous on an interval a < x < bif it is continuous
on the closed interval a < x < b. Continuity on the open interval a < x < b does
not, however, imply piecewise continuity there, as Example 3 illustrates.

EXAMPLE 3. The function f(x) = 1/x is continuous on the interval
0 < x < 1, but it is not piecewise continuous there since f(0 +) fails to exist.



4 FOURIER SERIES CHAP. 1

When a function f is piecewise continuous on an interval a < x < b, the
integral of f(x) from x = a to x = b always exists. It is the sum of the integrals of
f(x) over the open subintervals (1) on which f is continuous:

b X1 X b
(3) / f(x)dx:/ f(x)dx+/ f(x)dx+~~+/ fx)dx.

x| Xn—1

The first integral on the right exists since it is defined as the integral over the inter-
vala < x < x; of the continuous function whose values are f(x) whena < x < x;
and whose values at the endpoints x =a and x = x; are f(a +) and f(x; —), respec-
tively. The remaining integrals on the right in equation (3) are similarly defined
and therefore exist.

EXAMPLE 4. If f is the function in Example 2 and Fig. 2, then

3 1 2 3 1 1
/ f(x)dx:/ xdx+/ (—1)dx—|—/ ldx==-—-1+1=-.
0 0 1 2 2 2

Observe that the value of the integral of f(x) over each subinterval is unaffected
by the values of f at the endpoints. The function is, in fact, not even defined at
x=0and x =2.

If two functions f; and f, are each piecewise continuous on an interval
a < x < b, then there is a finite subdivision of the interval such that both functions
are continuous on each closed subinterval when the functions are given their
limiting values from the interior at the endpoints. Hence linear combinations
c1 f1 + ¢2 f2 and products f; f, have that continuity on each subinterval and are
themselves piecewise continuous on the interval a < x < b. The integrals

b b
/ [c1 i) + 2 fo(x)] dx and / filx) fo(x) dx

must then exist.

We refer to the class of all piecewise continuous functions defined on an
interval a < x < b as a function space and denote it by C,(a, b). It is analogous
to three-dimensional space, where linear combinations of vectors are well defined
vectors in that space. The analogy will be developed further in Chap. 7.

In this book we shall restrict our attention to functions that are piecewise
continuous on bounded intervals; and the notion of piecewise continuity clearly
applies regardless of whether the interval is open or closed.

2. FOURIER COSINE SERIES

Let f be any function in C,(0, 7) and assume for the moment that f(x) has a
Fourier cosine series representation

(1) f(x):l;—o—i—Zancosnx 0 <x <m),
n=1

whereaganda, (n = 1,2, ...) are constants. To find these constants, we also assume
that series (1) and any related series that arises can be integrated term by term.
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The constant ay is easily found by integrating each side of equation (1) from
0 to 7 and writing

b4 ao b4 S b4
(x)dx = —/ dx + a,,/ cosnxdx,
/0 ! 2 Jo ; 0

or

™ ag ad sinnx ™
x)dx = —[x] + a .

[ o= 21 Zl[ |

Inasmuch as sinnz = 0 when # is an integer, this shows that

2 T
2 ay=— / f(x)dx.
T Jo

To finda, (n = 1,2, ...), we write equation (1) as

ao it
f(x)z;—kz:amcosmx 0 <x<m),

m=1

with a new index of summation, and then multiply each side by cos nx, where n is
any fixed positive integer. Integration of the resulting equation from 0 to = yields

b4 b4 o b4
/ f(x)cosnxdx = %0 / cosnx dx + Z am/ COS mx COS nx dx.
0 0 0

m=1

But
T
/ cosnxdx =0
0

and (Problem 8, Sec. 5)

/” 0 when m # n,
COS mx cosnx dx =
0 /2 when m = n.
Hence
/ f(x)cosnxdx:anz,
0 2
or
2 T
3) a, = —/ f(x)cosnxdx n=12..).
T Jo

Note that expression (2) for ag can be included with expression (3) when the
integer n is allowed to run from n = 0, rather than from n = 1. This is the reason
that ag/2 was used instead of gy in series (1). Note, too, that ay/2 is the mean, or
average, value of f(x) over the interval 0 < x < x.

Because we cannot be certain at this time that representation (1) is actually
valid for a specific f, we write

4 f(x)w%—i—Zancosnx 0 <x<m),

n=1
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where the tilde symbol ~ merely denotes correspondence. Observe that corre-
spondence (4), with coefficients (2) and (3), can be written more compactly as

(5) f(x) ~ l/n f(s)ds + %Zcosnx /ﬂ f(s)cosns ds,
T Jo nn:l 0

where s is used for the variable of integration in order to distinguish it from the
free variable x.

The fact that f is piecewise continuous on the interval 0 < x < 7 ensures
the existence of the integrals in expressions (2) and (3) for the coefficients in a
cosine series. We shall, in Chap. 2, establish further conditions on f under which
series (4) converges to f(x) when 0 < x < 7, in which case correspondence (4)
becomes an equality.

A Fourier cosine series that represents a function f(x) on the closed interval
0 < x < & also represents a function outside that interval, as described just below.

(i) If series (4) converges to f(x) for all x in the interval 0 < x < =, it also
converges to the even periodic extension, with period 2r, of f on the entire x
axis. That is, it converges to a function F(x) having the properties

Fx) = f(x) when 0 <x <m
and
F(—x) = F(x), F(x+2n) = F(x) for all x.

The reason for this is that each term in series (4) is itself even and periodic with
period 2r. The graph of the extension y = F(x) is obtained by reflecting the
graph of y = f(x) in the y axis, to give a graph for the interval -7 < x <,
and then repeating that graph on the intervals 7 <x <3w, 37 <x <5, etc,
as well as on the intervals —37 < x < —7m, —57 < x < —3m, etc.

(it) It follows from the observations in (i) that if one is given a function f that is
both even and periodic with period 27, then the cosine series corresponding
to f(x) on the interval 0 < x < & represents f(x) for all x when that series
converges to it on the interval 0 < x < m. Clearly, a cosine series cannot
represent a function f(x) for all x if f(x) is not both even and periodic with
period 2.

3. EXAMPLES

Examples 1 and 2 here illustrate the material in Sec. 2.

EXAMPLE 1. Let us find the coefficients in the Fourier cosine series
correspondence

(1) f(x)'vaz—o—i—Zancosnx O<x<m)

n=1
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when f(x) = x (0 < x < ). Itis easy to see that

2 T
aoz—/ xdx =m;
0

T

and, using integration by parts, we find that

2 T 2 . T 1 T
anz—/xcosnxdxz—{[xsmnx} ——/ sinnde} (n=12,..).
T Jo b/ n o nJo

Since

sinng =0 and cosnm = (—1)"

when 7 is an integer, this reduces to

_2 -l

n =

=1,2,...).

- o (n )

Note that ay needed to be found separately in order to avoid division by zero.
For the function f(x) here, correspondence (1) evidently becomes

2 N (=D —1
(2) xwg—l—gz%cosnx 0 <x<m).

Since (—1)" — 1 = 0 when 7 is even, series (2) can be written more efficiently
by summing only the terms that occur when 7 is odd. This is accomplished by
replacing n by 2n — 1 wherever it appears after the summation symbol and noting
that (—1)**~1 = —1. The result is

B i i cos(2n — 1)x
b4

on 1)y O <x<m).

)

NI';l

n=1

Conditions in Chap. 2 will ensure that correspondence (3) is actually an
equality when 0 < x < z. The even periodic extension to which the series con-
verges is shown in Fig. 3, which tells us that

o0
T 4 cos(2n — 1)x
4 x| == — — (—m <x <m).
) 2 7 Z 2n —1)2 -
n=1
y
/ N T \
N d AN N N
N ’ N AN s
N N N
! v/ ! N ! Nos !
-37 -7 (0] T 37 X

FIGURE 3
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EXAMPLE 2. In this example, we shall find the Fourier cosine series for
the function f(x) = sinx on the interval 0 < x < &. The trigonometric identity

2sinAcosB = sin(A+ B) + sin(A— B)
enables us to write

2 T
a, = — sin x cos nx dx
T Jo

= l/ [sin(1 + n)x + sin(l — n)x] dx n=0,1,2,..)).
T Jo

Hence, when n # 1,

a, =

L[ cos(l+mx cos(l —n)x ”_g 1+ (D"
1+n 1-n |,

T 7 1-n2 "’

and when n = 1, the coefficient is

1 [7 2x1"
a; = —/ sin2x dx = {—COS x] =0.
T Jo 2 0

The desired cosine series correspondence is, then,
1 "
5) smx~— —Z + ) COS nx 0 <x <m).

Note that 1 + (—1)" = 0 when n is odd (compare with Example 1). To sum the
terms occurring when n is even, we replace n by 2n in this correspondence, observe
that 1 + (—1)%" = 2, and write

2 4 i cos 2nx

(6) sinx ~ — — — 5 0 <x <m).
=14n -1

g

The function sin x will, in fact, satisfy conditions in Chap. 2 ensuring that the
correspondence here is an equality for each value of x in the interval 0 <x <.
Thus, at each point on the x axis, the series converges to the even periodic exten-
sion, with period 2r, of sinx (0 < x < 7). That extension, shown in Fig. 4, is the
function y = |sin x|.

FIGURE 4
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4. FOURIER SINE SERIES

We assume here that when fisin C,(0, ), there is a Fourier sine series represen-
tation

(1) fx) = an sin nx 0 <x <m),
n=1

where the coefficients b, (n = 1, 2, . ..) are constants. The b, can be found in a way
similar to that used in Sec. 2 to find the coefficients in a cosine series. This time we
write

f(x):mesinmx O<x<m
m=1

and multiply each side by sin nx, where n is any fixed positive integer. Assuming
that term-by-term integration is valid, we find that

(2) / f(x)sinnx dx = Z bm/ sin mx sin nx dx.
0 ot 0

Then, because (Problem 9, Sec. 5)

/” ) . 0 when m # n,
sinmx sinnx dx =
0 /2 when m =n,

equation (2) reduces to

/ f(x)sinnxdx = b, z.
0 2

That is,
A }

3) b, = —/ f(x)sinnx dx (n=1,2,...).
7 Jo

Inasmuch as we have only assumed the validity of representation (1), we use
the tilde symbol ~, as we did in Sec. 2, to denote correspondence:

4) f(x) ~ansinnx 0 <x<m).
n=1
Expression (3) can, of course, be used to put this correspondence in the form
2 — g
5 (x) ~ — sin nx/ (s) sinns ds.
() fo)~ = ; | f

The piecewise continuity of f ensures the existence of integrals (3). Further
conditions that are given in Chap. 2 will also ensure that correspondence (4) is, in
fact, an equality when 0 < x < 7.

The following remarks, similar to ones in Sec. 2 regarding the convergence
of cosine series, can be made here.

({) Suppose that f is defined on the open interval 0 < x < 7 and that series (4)
converges to f(x) there. Since series (4) clearly converges to zero when x = 0
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and when x = m, it converges to f(x) for all x in the closed interval 0 < x < &
if f is assigned the values f(0) = 0 and f(x) = 0. It then converges to the
odd periodic extension, with period 2w, of f for all values of x. This time, the
extension is the function F(x) defined by means of the equations

Fx) = f(x) when 0 <x <m
and
F(—x) = —F(x), F(x +2n) = F(x) for all x.

The extension F is odd and periodic with period 27 since each term in series
(4) has those properties. The graph of y = F(x) is symmetric with respect to
the origin and can be obtained by first reflecting the graph of y = f(x) in the
y axis, then reflecting the result in the x axis, and finally repeating the graph
found for the interval —7 < x < 7 every 2z units along the entire x axis.

(if) A Fourier sine series on the interval 0 < x < 7 can also be used to represent
a given function that is defined for all x and is both odd and periodic with
period 2m, provided that the representation is valid when 0 < x < 7.

5. EXAMPLES
We now illustrate some methods for finding Fourier sine series.

EXAMPLE 1. For the sine series corresponding to the function f(x) = x
on the interval 0 < x < & (Fig. 5), we refer to expression (3), Sec. 4, and use
integration by parts to write

2 [T 2 Tl 7 —1)nt
bn=—/ xsinnxdx:—{[—xcosnx} +—/ cosnxdx}:Z( )
T Jo T n 0 n.Jo n

n=1,2,...).
Thus
(1) 2 i (- sin © )
X ~ nx <Xx <m).
n=1 n

FIGURE 5
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Our theory will show that this series converges to f(x) when 0 < x < 7.
Hence it converges to the odd periodic function y = F(x) thatis graphed in Fig. 5.
The fact that the series converges to zero when x = 0, £, £37, £57, ... is in
agreement with the theory in Chap. 2, which will tell us that it must converge to
the mean value of the one-sided limits (Sec. 1) of F(x) at each of those points.

In the evaluation of integrals representing Fourier coefficients, it is some-
times necessary to apply integration by parts more than once. We now give an
example in which this can be accomplished by means of a single formula due
to L. Kronecker (1823-1891). We preface the example with a statement of that
formula.

Let p(x) be a polynomial of degree m, and suppose that f(x) is continuous.
Then, except for an arbitrary additive constant,

(2) / p(x) f(x)dx =pF| — pF+p'Fy— -+ (=1)"p" Fpp1

where p is successively differentiated until it becomes zero, where F; denotes an
indefinite integral of f, where F; is an indefinite integral of Fj, etc., and where
alternating signs are affixed to the terms. Note that the differentiation of p begins
with the second term, whereas the integration of f begins with the first term. The
formula, which is readily verified (Problem 7) by differentiating its right-hand
side to obtain p(x) f(x), could even have been used to evaluate the integral in
Example 1, where only one integration by parts was needed.

EXAMPLE 2. To illustrate the advantage of formula (2) when successive
integration by parts is required, let us find the Fourier sine series for the function
f(x) = x° on the interval 0 < x < . With the aid of that formula, we may write

2 s
b, = —/ x> sinnx dx
T Jo

_2 [(x3)<_cosnx> G (_sin;zx) N (6x)<cos3nx> _ (6)<Sinfx>r
T n n n n 0

n+1 (m[)z -6

=2(-1 n=1,2,...).

Hence

3 ad [ (nm)? — 6
3 X ~2 )" ————sinnx 0<x<m).
(3) > D 5 ( )
n=1
As was the case in Example 1, the series converges to the given function
on the interval 0 < x < 7. Since x? is an odd function whose value is zero when
x = 0, this series represents x> on the larger interval -7 < x < 7 too.

TKronecker actually treated the problem more extensively in papers that originally appeared in the
Berlin Sitzungsberichte (1885, 1889).
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We conclude this section by pointing out a computational aid that is useful
in finding the coefficients b, (n = 1,2, ...) in the Fourier sine series for a linear
combination ¢ fi(x) + ¢; f>2(x) of two functions fi(x) and f,(x) whose sine series
are already known. Namely, since the expression

b, = %/ [c1 fi(x) + ¢ fo(x)] sinnx dx
0

can be written
2 (7 ) 2 (7 )
b, =c {—/ fi(x) sinnx dx} + ¢ {—/ fo(x) sinnx dx},
T Jo T Jo

itis clear that each b, is simply the same linear combination of the nth coefficients
in the sine series for the individual functions fi(x) and f;(x). Such an observation
applies as well in finding coefficients in cosine and other types of series encoun-
tered in this and later chapters.

EXAMPLE 3. Inview of the sine series for x and x> found in Examples 1 and
2, respectively, the coefficients b, in the sine series corresponding to the function

3

f(x):x(nz—xz):nzx—x O<x<m

are

_1yn+1 2 _ _1yn+1
b,,:nz{Z( 1,2 ]— [2(—1)"“(””’)13 6}:12( D) n=1,2..).

P
Thus
5 ) & (- n+1 )
4) x(mr® —x )~1ZZ > sinnx O <x<m).
n=1
PROBLEMS

For each of the functions f in Problems 1 through 3, find (a) the Fourier cosine series;
(b) the Fourier sine series on the interval 0 < x < 7.

1. f(x)=1 O <x<m).

1) 2n —1
Answers: (a) 1; (b) Z — 0 e = Z Sm(z ; 1 =
niw n-=

n=1

2. fx)=m—x (0<x<7t)

Answers: (a) Z cos(2n - 12 x; (b) ZZ sin nx.

3. fx)=x? (0<x<rr)

Answers: (a) — —|— Z

ad n+1 _ n
(b) 27 Z[ — 1 ) ]sinnx.

(nm)3
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4. Find the Fourier cosine series on the interval 0 < x < 7 that corresponds to the function
f defined by means of the equations

1 when 0<ux < z,
fox) = 7 2
0 when ) <X <.
Suggestion: Note that
2 /2
an:—/ cosnx dx n=0,1,2,..)
T Jo
and that
2n—1
sin% = sin nw cos % — cosnm sin% = (="t n=12...).

' 1 7 (=1)n+t
Answer: 7 + - 2_1: 1 cos(2n — 1)x.

5. By referring to the sine series for x in Example 1, Sec. 5, and the one found for x? in
Problem 3(b) above, show that

o0

8 sin(2n — 1)x
x(n—x)~;£ W (0<X<7T).
6. Show that
4 °° 2
s T ,(m) - —6
X N?—i—SE (-1 Tcosnx 0 <x <m).

n=1

Given that this correspondence is actually an equality when 0 < x < m, sketch the
function represented by the series for all x.

7. Verify Kronecker’s formula (2), Sec. 5, by differentiating its right-hand side and using
the product rule to obtain

(PF + PF) = (PE+ PR+ (P'F+ p'F) — -+ (=1 (p" Fpyy + PV Fpa),

which telescopes to pf.
8. Use the trigonometric identity

2cos A cos B =cos(A— B) +cos(A+ B)
to show that

i 0 when m # n,
COS mMXx cos nx dx =
0 /2 when m = n,

where m and n are positive integers.
9. Use the trigonometric identity

2sinAsinB = cos(A— B) — cos(A+ B)
to show that

/” . . _Jo when m # n,
sin mx sin nx dx =
o /2 when m = n,

where m and n are positive integers.
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10. With the aid of the integration formula obtained in Problem 9, find the Fourier sine
series corresponding to the function f(x) = sinx on the interval 0 < x < 7.
Answer: sin x.

6. FOURIER SERIES

Consider a function f in C,(—m, ) and write

1) f(x) = gx) + h(x),
where
) gx) = W and h(x) = ]C()C)—ff(—x)

The function g(x) is evidently even, and A(x) is odd. That is,
g-x)=gx) and  h(-x) = —h(x)

for each point x in the interval —m < x < 7 at which these functions are defined.
According to Secs. 2 and 4,

3) g(x) ~ %—}—;ancosnx 0 <x <m),
where
2 T
4 a, = — / g(x)cosnxdx n=0,1,2,..)),
T Jo
and
(5) h(x) ~ an sin nx 0 <x <m),
n=1
where
2 [T .
(6) b, = —/ h(x)sinnx dx n=1,2,..).
T Jo

When correspondence (3) is an equality that is valid for 0 < x <, it is also
an equality on the interval —w < x < 0 since each side of the correspondence is
an even function. A similar remark applies to correspondence (5) since each side
there is an odd function. Because f(x) is the sum of g(x) and h(x), this suggests
that the correspondence

@) fx) ~ % + Z (a, cosnx + b, sinnx) (-7 <x<m)

n=1

may be an equality under certain circumstances.
In view of the first of equations (2), expression (4) for the coefficients a, can
be written

a, = l [/n f(x)cosnxdx—i—/n f(—=s)cosnsds| .
T [Jo 0
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By making the substitution x = —s in the second of these two integrals, we find
that

T 0
a, = % [/ f(x)cosnxdx+/ fx) cosnxdx}
0 -

or
1 T

(8) anz—/ f(x) cosnx dx n=0,1,2,..)).
T[ —7T

Likewise, the second of equations (2) enables us to write expression (6) for the b,
as

b, = l {/ﬂ f(x)sinnxdx—/n f(—s)sinnsds} ;
T 0 0

and the substitution x = —s in the second integral here leads to

b4 0
b, = % {/ f(x)sinnx dx +/ fx) sinnxdx] .
0 -7
Thus
9) b,Z:%/n f(x)sinnx dx n=12..).

Correspondence (7), when combined with expressions (8) and (9) for the
constants a,, and b,,, becomes

1 b4
fO) ~ = f(s)ds

2 J_,
1 S b4 b4

+— Z [cos nx f(s)cosns ds + sinnx / f(s)sinns ds} .
T n=1 - -

The trigonometric identity
cos(A— B) = cosA cosB+sinAsin B

then enables us to write this correspondence in the form
1 [ 1 & [

(10) f) ~ — / fls)ds + — Z f(s) cosn(s — x) ds.
2 J_, m =

Note that the term

1 TT
7 /_n f(s)ds

here, which is the same as the term a /2 in series (7), is the mean, or average, value
of f(x) over the interval —7 < x < 7.

The form (10) of correspondence (7) will be the starting point of the proof
in Sec. 12 of a theorem ensuring the convergence of such a series to f(x) on the
interval -7 < x < 7.

Series (7), with coefficients (8) and (9), is the Fourier series corresponding
to f(x) on the interval —m < x < 7. Suppose that the series converges to f(x)
when —7 < x < m. Then, in view of the periodicity of its terms, it converges to a
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function y = F(x) that coincides with y = f(x) on —7 < x < & and whose graph
there is repeated every 27 units along the x axis. The function F is, therefore, the
periodic extension, with period 2w, of f.1If, on the other hand, f is a given periodic
function, with period 27, series (7) represents f(x) everywhere when it converges
to f(x) on the interval —7 < x < 7.

Finally, we note below how the Fourier series (7) is actually a Fourier cosine
or sine series when f(x) is even or odd, respectively.

(i) f(x) is even: f(—x) = f(x)

If the given function f in C,(—m, 7) is even on the interval —w < x < m, then
f(—=x) cos(—nx) = f(x)cosnx n=0,1,2,..)
and
f(—=x)sin(—nx) = — f(x) sinnx n=1,2,..)

when —7 < x < 7; and we see that f(x) cosnx and f(x) sin nx are even and odd,
respectively. Because the graph of y = f(x) cosnx is symmetric with respect to
the y axis and the graph of y = f(x) sin nx is symmetric with respect to the origin,
it follows that expressions (8) and (9) reduce to

2 ¥
an:—/ f(x)cosnx dx n=0,1,2,..)
T Jo

and b, =0(n =1, 2,...). Series (7) thus becomes a Fourier cosine series (Sec. 2)
for f(x) on the interval 0 < x < 7.

(i9) f(x) is odd: f(—x) = — f(x)

If fis a function in C,(—m, ) that is odd on the interval —7 < x < 7, then
f(—=x) cos(—nx) = — f(x) cosnx n=0,1,2,..))
and
f(=x)sin(—nx) = f(x)sinnx n=12..)

when —7m < x < 7. So the products f(x) cos nx and f(x) sin nx are odd and even,
respectively. That is, the graph of y = f(x) cos nx is symmetric with respect to the
origin and the graph of y = f(x)sin nx is symmetric with respect to the y axis.
Consequently, expressions (8) and (9) reduce toa, =0 (n=0,1,2,...) and

2 T
b, = — / f(x)sinnx dx n=1,2,..)).
T Jo

Hence series (7) is the same as the Fourier sine series (Sec. 4) for f(x) on
O<x<m.

7. EXAMPLES

We include here some examples of Fourier series on the interval —n < x <«
that illustrate points made in Sec. 6.
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EXAMPLE 1. Let us find the Fourier series corresponding to the function
f(x) that is defined on the fundamental interval —7 < x < 7 as follows:

(1)

Flx) = 0 when —7 <x <0,
- when 0<x <.

The graph of y = f(x) is indicated by the bold line segments in Fig. 6 that are
solid.

y
P
/O /O
// //
s ° s ’
7 // //
R O T Ty p—— O = = —
=2 - 0 T 27 37 47 x

FIGURE 6

According to expression (8), Sec. 6,

1 0 T 1 b4
an:—(/ Ocosnxdx+/ xcosnxdx) :—/ xcosnxdx
T _x 0 T Jo

n=0,1,2,...).

By applying integration by parts, or Kronecker’s method (Sec. 5), one can show
that

(=" -1
"
when n = 1,2,.... In order to avoid division by zero, we must evaluate the

integral for ay separately:
1 (7 bid
ag = - /0 xdx = 5

Expression (9), Sec. 6, tells us that

1 0 - 1 T —1ntt
bn:_</ Osinnxdx+/ xsinnxdx) :—/ xsinnx dx = =1
T \J_x 0 T Jo h

for all positive integers n = 1, 2, ... . Hence, on the interval —7 < x < 7,

(2) fx) ~ —+Z [( D" - snx+(

1 n+1

sin nx} .

This series will be shown (Sec. 14) to converge to f(x) on the fundamental
interval, as well as to the periodic extension F(x) that is indicated in Fig. 6, where
the graph of y = F(x) is sketched. As in Example 1, Sec. 5, the series must
converge to the mean value of the one-sided limits of the periodic extension at
each of the discontinuities x = 4w, 37, £57, ... . Here those mean values are
all /2.
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EXAMPLE 2. Since the function
filx) = |x| (—m <x<m)
is even and since |x| = x when 0 < x <, the Fourier series for fi(x)on —7 <x<mw
is the same as the Fourier cosine series (2), Sec. 3, for x:

2 (1) -1
3) fi(x) = |x| N%—l—gz%cosnx (—m <x <m).

[See also equation (4) in Sec. 3.] On the other hand, the function
Hhx)=x (—7 <x <)

is odd, and so its Fourier series on —7 < x < 7 is the Fourier sine series (1) in
Sec. 5:

4) fz<x)—x~2z

-1 n+1

sin nx (—m <x <m).

Note how the sum of series (3) and (4) provides us with the Fourier series
corresponding to this function:

Fx) = fik)+ folx)  Ix[+x [0 when —7m <x <0,
Y= 2 ~ 2 T lx when O<x<um.
That is,
T [ED -1 =Dt
fx) ~ 1 —i—; {7 cos nx + Sin nx (—m <x <m).

This is, of course, the correspondence just found in Example 1.

EXAMPLE 3. The function f(x) = |sinx|(—m < x < ) is even. Hence the
Fourier series corresponding to f(x) on the interval —7 < x < 7 is actually the
cosine series for the function

f(x) = |sinx| =sinx 0 <x <m).
That series has already been found in Example 2, Sec. 3; and, by referring to

correspondence (6) there, we see that

5) sinx| 2 4§:cos2nx (e <x )
~——— — —T <X <)
b1 — 4n?2 — 1

PROBLEMS

Find the Fourier series on the interval —7 < x < 7 that corresponds to each of the func-
tions in Problems 1 through 6.

) =m/2 when —7 < x <0,
1. f(x)—{ /2 when 0<x <.

2n—1
Answer: ZZ sm(nn 1 )x.
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2. f(x) is the function whose graph consists of the two bold line segments shown in
Fig. 7.

_1\n —1 n+l
Answer: —+22{ —( )cosnx+( )

)2 po sinnx|.
y
(0,2) (7,2)
|
|
|
!
(—m, 0) o (m, 0) X

FIGURE 7

3. f(x) =x+%x2(—rr <X <).

Suggestion: Use the series for x in Example 2, Sec. 7, and the one for x? in
Problem 3(a), Sec. 5.

s
Answer: +Z( 1" (cosnx mznx).

4. f(x)=e™ (—m <x <7'r) where a # 0.
Suggestion: Use Euler’s formula e’ = cos6 + i sinf, where i = +/—1, to write

1 [ ,
a, +ib, = —/ fx)e"™ dx n=1,2,..).
T J x

After evaluating this single integral, equate real parts and then imaginary parts.
sinhar  2sinham = (—1)"
i Zomher 5 0

a’+n?
n=1

Answer:

(a cosnx — nsinnx).
amw T

5. f(x) =coshax (—m < x < m), wherea # 0.
Suggestion: Use the series found in Problem 4.

inh
Answer: anl +2a Z cosnx]

6. f(x) =cosax (—m <x <m), where a#0,+1,4+2,....
Suggestion: With the aid of Euler’s formula, stated in the suggestion with
Problem 4, write

eiax + e—iax
2

Then use the series already obtained in that earlier problem.

2asinar | 1 > (1)
A L — | — E —_ .
nswer. - [ + cos nx

cosax =

2a? n? —a?

n=

For a justification of Euler’s formula and background on complex variable methods, see the authors’
book (2009), which is listed in the Bibliography.
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7. Find the Fourier series on the interval —7 < x < 7 for the function f defined by means
of the equations

0 when —7 <x <0,
flx) =

sin x when O<x<m.

Then, given that the series converges to f(x) when —7 < x < &, describe graphically
the function that is represented for all x (—oo < x < 00).
Suggestion: To find the series, write the function in the form
| sin x| + sinx

f(x)=—2 (-7 <x <m).

Then use the results in Example 3, Sec. 7, and Problem 10, Sec. 5.
Answer: ! + 1 sin x 2 cos2nx
T 2 i 4n2 —1°

8. ADAPTATIONS TO OTHER INTERVALS

Let f denote a piecewise continuous function of x on an interval —c¢ < x < ¢ of
the x axis, and define the related function

(1) s) = (Z) (-7 <5 <)

of s. The Fourier series corresponding to this new function on the interval
—1m <s <7 is, according to Sec. 6,

cs a4 ~— .
2) f(;) 5 + Zl(an cosns + b, sinns) (—m <s <m)
where
1 ¥
3) a,,:—/ f(g)cosnsds n=0,1,2,..)
7). \m
and
1 ¥
(4) by = —/ f(ﬁ)sinns ds n=1,2,...).
7). \m

The function (1) is evidently also piecewise continuous, and we anticipate that
correspondence (2) will become an equality when certain further conditions are
imposed on f. Thus if we put

§ = —
C

in correspondence (2) and its conditions of validity, we arrive at the series

ay  ~— nmx . N7X
(5) flx) ~ 7+;(0n0057+bn51n7) (—c<x <o)
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The same substitution in expressions (3) and (4), moreover, enables us to write

1 C

(6) a,,:—/ £y cos T ax n=0,1,2,..)
cJ_ . c

and

(7) by = 1/ £ sin 7 gy n=12.).
cJ_. c

Series (5) is a Fourier series on the fundamental interval —¢ < x < ¢ and
becomes series (7) in Sec. 6 when ¢ = 7. Conditions on f ensuring that corre-
spondence (5) is, in fact, an equality at points where f is continuous will be given
in Chap. 2. Note that if the series does converge to f(x) when —c < x < c, the
graph of y = f(x) is repeated every 2c units along the x axis.

Arguments similar to those used above lead to Fourier cosine and sine series
on0<x<c

(8) f(x)~2—0+§;ancos? 0 <x <o),
where

9) anz%/ocf(x)cos?dx n=0,1,2,..),
and

(10) fx) ~ ibn sin ? 0 <x <o),

n=1
where
(11) by = %/0 £(x) sin ? dx n=1,2,..).

The convergence of series (8) and (10) is also treated in Chap. 2.

The following examples illustrate how Fourier series on intervals —c < x <,
as well as cosine and sine series on 0 < x < ¢, can be obtained from known series
on—7 <x <mwand0 < x < 7. Since we do not yet have theorems ensuring the
convergence of Fourier series to the functions in question, we shall continue to use
the tilde symbol ~ to denote mere correspondence and not necessarily equality.
Also, anticipating that the correspondences obtained will actually be equalities,
we shall continue to include conditions of validity.

EXAMPLE 1. Itis a simple matter to obtain the correspondence

2 4t (-1 nx
(12) Xz"’?—i-? TCOST (0<X<C)
n=1

from [Problem 3(a), Sec. 5]

INEA
(13) X 3 +4 5 COoSnx 0 <x<m).
n
n=1
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We let x be any number in the interval 0 < x < ¢ and note how it follows that

0<— <m.
c

Hence it is legitimate to replace x by 7x /c in correspondence (13) and its condition
of validity:

712x2 = (- 1)" mrx X
(14) > 2 <O << JT).

Then, multiplying each side by ¢?/7? and multiplying through the new condition
of validity by ¢/, we arrive at correspondence (12).

Expression (9) could, of course, have been used to find the desired coeffi-
cients if correspondence (13) had not been available.

EXAMPLE?2. Letusfind the Fourierseries fore®ontheinterval -1 < x < 1
using the known correspondence (Problem 4, Sec. 7)

(15) e

sinhar  2sinhamr & (=D .
~ + Z 2(acosnx—nsmnx) (—m <x <m),
T

am — a’+n
where a # 0. Since
-7 <mwx<m when —-1<x<l,

we can replace x by x in correspondence (15) and write

wnx  Sinham  2sinham S (—=1)" ,
et ~ + (acosntx —nsinnwx),
T 2

am al+n

n=1

which is valid when —1 < x < 1. Finally, by setting a = 1/7, we have the desired
result:

(=D"

yp—; (cosnmx —nmsinnrx) (=1 <x <1).

(16) e* ~smh1+251nh121

As was the case with the series that was found in Example 1, this series could
have been obtained using integral expressions that we have (Sec. 8) for the needed
coefficients.

PROBLEMS

1. (a) Use the Fourier sine series in Example 1, Sec. 5, for
fx)=x O<x<m

to show that

_1)n+1

sin nmx O<x<1.

=
14
Qo
WK
3
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(b) Obtain the correspondence in part () by using expression (11), Sec. 8, for the
coefficients in a Fourier sine serieson 0 < x < c.

. Show how it follows from the expansions obtained in Problem 1 and Example 1 in

Sec. 8 that

1 2 2 1
x(1+x) ~ §+;Zl(—1)" (Ecosnnx—ﬁsinnnx> O<x<1).
. Use the Fourier sine series found in Problem 3(b), Sec. 5, for
f) =x? 0O<x<mn)
to obtain the correspondence
P e K G VI et G Vi B
X ~2c2[ p -2 ) s1n7 O<x<o).

n=1

. (a) Use the Fourier sine series correspondence found in Example 3, Sec. 5, for the
function

fx) = x(@? —x?) O<x<m)

to establish the correspondence

12 & (=1t
2 ~ —
x(1—x%) = E p sin nmx O<x<1).

n=1
(b) Replace x by 1 — x on each side of the correspondence in part (a) to show that

o)

12 sin nx
x(x—l)(x—Z)NFZ p OD<x<1).

n=1

. Show how it follows from the Fourier sine series obtained for

fx) =x(T —x) 0<x<m)
in Problem 5, Sec. 5, that
32¢% & 1 . 2n—1mx
x(2¢c —x) ~ 5 Z; on 17 sin % 0 < x < 20).

. Use the method in Example 2, Sec. 8, to show that

sinh ¢ . = 1" nmx . X
&~ . +251nth%(ccos%—nnsm%) (—c<x<o).

n=1

. By starting with the Fourier cosine series correspondence obtained for the function
fx)=m—x O<x<m)

in Problem 2(a), Sec. 5, show that

c 2¢ & 1 (4n — 2)mx c
Z_XNFZI(zn—l)ZCOS c <O<x<§)'
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8. Use expression (11), Sec. 8, for the coefficients in a Fourier sine serieson 0 < x < c to
obtain the correspondence

8 o0
cosnxw;;‘mzn—_lsinbmx O<x<1).

Suggestion: To evaluate the integrals that arise, recall the trigonometric identity
2sinA cos B = sin(A+ B) + sin(A— B).

9. Show that in Sec. 8 the Fourier series (5), with coefficients (6) and (7), can be written
in the compact form

1 [ 1o [€ nmw
Z/4 f(s)ds + E;/c f(s)cos[T(s —x)}ds.

(See Sec. 6, where this form was obtained when ¢ = 7.)



CHAPTER

2

CONVERGENCE
OF FOURIER
SERIES

In this chapter, we shall establish conditions on a function f(x), defined on the in-
terval - < x < m, that ensure a valid Fourier series representation. Correspond-
ing results for Fourier cosine and sine series representations will follow readily. It
will be a simple matter to extend the theory to Fourier series on arbitrary intervals
—c < x < ¢, as well as to Fourier cosine and sine series on intervals 0 < x < c.
Some further aspects of the theory of convergence of Fourier series will be touched
on later in the chapter.

9. ONE-SIDED DERIVATIVES

In developing sufficient conditions on a function f such that its Fourier series
on the interval —m < x < 7 converges to f(x) there, we need to generalize the
concept of the derivative

(1) f/(xo) = lim f(x) - f(X())
X=X X —X)
of f at a point x = xy.
Suppose that the right-hand limit f(xy+) exists at xy (see Sec. 1). The right-
hand derivative of f at xj is defined as follows:

@ flx) = lim L0 = f@0H)

X=X X — X
X>X0

provided that the limit here exists. Note that although f(xy) need not exist, f(xo+)
must existif f7 (xo) does. When the ordinary, or two-sided, derivative f’(xo) exists,
[ is continuous at xo and f (xo) = f’(xo).

25
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Similarly, if f(xo —) exists, the left-hand derivative of f at x is given by the
equation

®) f (xp) = lim M

X—>X) —_
X<Xp X = Xo

when this limit exists; and if f'(xg) exists, ' (x9) = f’(xo).

EXAMPLE 1. Let f denote the continuous function defined by means of
the equations

x2 when x <0,
sin x when x > 0.

f = {

With the aid of I'Hopital’s rule, we see that
oy e Sinx
f+(0) = )l{l_I)l‘(l) [ 1;
x>0
furthermore,
2
f (0) = lim — = lim x = 0.
x—>0 X x—0
x<0 x<0
Since these one-sided derivatives have different values, the ordinary derivative
f(0) cannot exist.

The ordinary derivative f’(xp) can fail to exist even when f(xp) is defined
and f7 (xo) and f’ (xp) have a common value.

EXAMPLE 2. If f is the step function

0 when x <0,
f(x):{l when x > 0,

then f1(0) = f”(0) = 0. But the derivative f"(0) does not exist since f is not
continuous at x = 0.

As is the case with ordinary derivatives, the mere continuity of f at a point
xo does not ensure the existence of either one-sided derivative there.

EXAMPLE 3. The function f(x) = \/x (x > 0) hasnoright-hand derivative
at the point x = 0, although it is continuous there.

A number of properties of ordinary derivatives remain valid for one-sided
derivatives. Suppose, for instance, that the right-hand derivatives of two functions
f and g exist at a point xy. Let us find the right-hand derivative of the product

(fe)(x) = f(x)g(x)
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at xp. Since the difference quotient

(foO) — (f)xo+) _ f)gx) — fxo H)gxo +)

X — X X — X

can be written

gx) —glxo +) n f@) — fxo+) 2t +),

X — Xy X — X9

fx)
it follows that

(/&) (x0) = f(x0 +)g. (x0) + f1(x0)g(x0 +).

Likewise, if f’ (x0) and g’ (xp) exist, the left-hand derivative of the product
(fg)(x) exists at xg.

Finally, we turn to a property of one-sided derivatives that is particularly
important in the theory of convergence of Fourier series. It concerns the subspace
C;J (a, b) of C,(a, b) consisting of all piecewise continuous functions f on an inter-
vala < x < bwhose derivatives f’ are also piecewise continuous on that interval.
Such a function is said to be piecewise smooth because, over the subintervals on
which both f and f’ are continuous, any tangents to the graph of y = f(x) that
turn do so continuously.

Theorem. If a function f is piecewise smooth on an interval a < x < b, then
at each point x in the closed interval a < x < b the one-sided derivatives of f, from
the interior at the endpoints, exist and are the same as the corresponding one-sided
limits of f":

4) fi(xo) = f'(xo+), fL(xo0) = f'(x0 ).

To prove this, we assume for the moment that f and f’ are actually con-
tinuous on the interval a < x < b and that the one-sided limits of f and f’ from
the interior exist at the endpoints x = a and x = b. If xq is a point in that open
interval, f’(xo) exists. Hence f} (xo) and f” (xo) exist, and both are equal to f"(xo).
Because [’ is continuous at xp, then, equations (4) hold.

The following argument shows how it is also true that f} (a) exists and is
equal to f’(a +). If we let s denote any number in the interval @ < x < b and
define f(a) to be f(a+), then f is continuous on the closed intervala < x < s
(Fig. 8). Since f’ exists in the open interval @ < x < s, the mean value theorem

S)

A —_———
Yo —

[y

o

FIGURE 8
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for derivatives applies. That is, there is a number ¢, where a < ¢ < s, such that

f@s)— fla+)

s —a

©) = f(o).
This is shown geometrically in Fig. 8, where the slopes of the secant line S and
the tangent line T are the same. Letting s, and therefore c, tend to a in equa-
tion (5), we see that since f’(a +) exists, the limit of f’(c) exists and has that value.
Consequently, the limit of the difference quotient on the left in equation (5) exists,
its value being f} (a). Thus f} (a) = f'(a+). Similarly, f” (b) = f'(b-).

Now any piecewise smooth function f is continuous, along with its derivative
f’, on a finite number of subintervals at whose endpoints the one-sided limits of
f and f’ from the interior exist. If the results of the two preceding paragraphs are
applied to each of those subintervals, the theorem is established.

Example 4 illustrates the distinction between one-sided derivatives and one-
sided limits of derivatives.

EXAMPLE 4. Consider the function f whose values are

_ [ x*sin(1/x) when x # 0,
f(x)—{o when x = 0.

Since 0 < |x?sin(1/x)| < x> when x # 0, both one-sided limits £(0+) and f(0—)
exist and have value zero. Moreover, since 0 < |x sin(1/x)| < |x| when x # 0,

, . 1 S s 1y
f10) = )1(1_1)1(1] (xsm ;) =0 and = )1(1_1)1}) (xsm ;) =0.

x>0 x<0
But, from the expression

f'(x) =2xsin1 —cosl (x #£0),
x X
we see that the one-sided limits f'(0+) and f'(0 —) do not exist.
Note that although its one-sided derivatives exist everywhere, the function
f is not piecewise smooth on any bounded interval containing the origin. Hence
the above theorem is not applicable to this function on such an interval.

10. A PROPERTY OF FOURIER
COEFFICIENTS

In treating the convergence of Fourier series, we shall find it useful to know that
for a function fin C,(0, m), the coefficients a, and b, in the cosine and sine series
on 0 < x < & always tend to zero as n tends to infinity.

To show that the coefficients

(1) a, = %/n f(x)cosnx dx n=0,1,2,..)
T Jo
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in a cosine series have this property, let s y(x) denote the partial sum consisting of
the first N+ 1 (N > 1) terms in such a series:

N
a
2) sn(x) = 30 + Zan cos nx.

n=1

Then, by squaring the integrand, we have

G) [ s = svwpar= [ LrwPds -2y
where
Iy = /On f(x)sy(x)dx and Jy= /07T [sN(x)]2 dx.
We need to evaluate these last two integrals. In order to evaluate Iy, we start

by multiplying through equation (2) by f(x) and then integrating each side of the
result from O to =:

T T N T
4) / f(x) sy(x)dx = [12—0 / f(x)dx + Z an / f(x)cosnxdx.
0 0 1 0
The left-hand side here is Iy, and we know from expression (1) that

/ f(x)cosnxdx:%an n=0,1,2,...,N).
0

Hence equation (4) tells us that

N 2 N
_ apg T g _ T [ ay 2
(5) IN—?'an-i—ng_lan'iﬂn—5(74—”5_161”) .

As for the integral Jy, we multiply through equation (2) by sy(x) and then
integrate from 0 to x:

T ¥ N o
(6) / [sv(0)]? dx = [12—0 /sN(x) dx + Zun /SN(X) cosnx dx.
0 0 1 0
Also, integration from 0 to = on each side of equation (2) reveals that
s a T N o T
(7 /sN(x)dxz—O/ dx+2an/cosnxdx=—ao.
0 2 Jo = o 2
Using m as the index of summation in expression (2) and multiplying through the
result by cos nx, where n has one of the valuesn =1,2, ..., N, we have
4 N
sy (X) cosnx = — cos nx + Z @, COS MX COS NX.
2
m=1
Thus

TT T N T
(8) /SN(X) cosnxdx = [12—0/ cosnxdx+2am/ COS mx cos nx dx;
0 0

0 m=1
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and since (see Sec. 2)

/” 0 when m # n,
cosmx cosnx dx =
0 /2 when m = n,

equation (8) reduces to

9) / sy(x)cosnxdx = %an n=1,2,...,N).
0

By substituting expressions (7) and (9) into the right-hand side of equation (6) and
recalling that the integral on the left-hand side of that equation is Jy, we arrive at

N 2 N
_@ 7 S L o
(10) Jy = > 2a0+n§=;an 2an—2<2 —i-;an).
It now follows from equations (3), (5), and (10) that

b4 T 2 N
[ e —seobdx= [ [rwpar- %(%“ + Za%)
0 0 n=1

Since the value of the integral on the left here is nonnegative, we thus arrive at
Bessel’s inequality for the coefficients (1):

a2
(11) —"+Za <—/ [f0)] dx (N=1,2,...).
The desired result,
(12) lim a, =0,

is an easy consequence of Bessel’s inequality (11), as the following argument
shows. We observe that the right-hand side of the inequality is independent of
the positive integer N; and as N increases on the left-hand side, the sums of the
squares there form a sequence that is bounded and nondecreasing. Since such
a sequence must converge and since this particular sequence is the sequence of
the partial sums of the series whose terms are a; 2/2 and a (n =1,2,...), that
series must converge. Limit (12) then follows from the fact that the nth term of a
convergent series always tends to zero as n tends to infinity.

A similar procedure can be used (Problem 3, Sec. 11) to show that the
coefficients

2 T
(13) b, = —/ f(x)sinnx dx n=1,2,..)
T Jo
in the Fourier sine series for f on 0 < x < = satisfy the Bessel inequality
(14) Z b, < / [f (N=1,2,..)
and that
(15) lim b, = 0.

n—00
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Finally, we recall from Sec. 6 that the coefficients a,, and b, in the Fourier
series involving both cosines and sines for a piecewise continuous function f in
C,(—m, ) are the same as the coefficients in the Fourier cosine and sine series,
respectively, for certain related functions on 0 < x < 7. Hence those coefficients
themselves tend to zero as n tends to infinity. (See also Problem 5, Sec. 11.)

11. TWO LEMMAS

We preface our theorems on the convergence of Fourier series with two lemmas, or
preliminary theorems. The first is a special case of what is known as the Riemann-
Lebesgue lemma. That lemma appears later on in Chap. 6 (Sec. 52), where it is
needed in full generality.

Lemma 1. If a function G(u) is piecewise continuous on the interval
0 <u<m, then

1) Jim [ G sin(g + Nu) du =0,

where N denotes positive integers.

Our proof starts with the trigonometric identity
sin(A + B) = sin A cos B+ cos A sin B,
which tells us that
sin(g + Nu) =sin g cos Nu + cos g sin Nu.

Assuming that G(u) is piecewise continuous, we are able to write

(2) /0 G(u)sin(;+Nu) du = %(aN+bN),
where
2 (7 .u
ay = — / [G(u) sin —} cos Nudu
T Jo 2
and

2 T
by = — / {G(u) cos E] sin Nu du.
T Jo 2

Now the ay are coefficients in a Fourier cosine series on the interval 0 < u < 7,
and the by are coefficients in a Fourier sine series on that interval. Thus, by limits
(12) and (15) in Sec. 10,

3) lim ay =0 and lim by = 0.

N—o0 N—o0

With limits (3), we need only let N tend to infinity in equation (2) to see that
Lemma 1 is true.
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Our second lemma involves the Dirichlet kernel
1 X
4) Dn(u) = 5 + Z cos nu,
n=1
where N is any positive integer. Note that Dy(u) is continuous, even, and periodic

with period 27. The Dirichlet kernel plays a central role in our theory, and two
other properties will be useful:

5) K/HDNw>m¢:3?
0 2
sin(E + Nu)
(6) Dy = —2 2 (u # 0, £27, +d7, . .).
2sin 7

Property (5) is obvious upon integrating each side of equation (4). Expression (6)
can be derived with the aid of a certain trigonometric identity (Problem 6).

Lemma?2. Supposethata function g(u) is piecewise continuous on the interval
0 < u < 7 and that the right-hand derivative g’ (0) exists. Then

) lml/§Wﬂmmmu=zg®+L
N— oo 0 2

where Dy(u) is the Dirichlet kernel (4).

To prove this, we write

®) | st s du= iy -+ .
where

) Iy= /On[g(u) — 80 +)]Dn(u) du
and

(10) W= /O”g(O +)Dy(u) du.

In view of expression (6) for Dy(u), integral (9) can be put in the form

_ [Tgw) —gO+) . (u
Iy = /0 —y s1n(§ + Nu)du.

2sin —
sin 5
Thus
T ) u
(11) INz/O G(u)sm(z—i—Nu)du,
where the function
gu) —g0+)
(12) Gu) = >——73—
2sin —

2
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is a quotient of two functions that are piecewise continuous on the interval
0 < u < m. Even though the denominator vanishes at the point u = 0, one
can show that G(u) is itself piecewise continuous on 0 < u < 7 by establishing the
existence of the right-hand limit G(0 +). This is done by referring to expression
(12) and writing

G(0+) = G(u)=lim gu) —g0+) ou — lim gu) —g0+) - u |
e ) B R I~ R = R

These last two limits exist, and so G(0 +) exists. The first of those limits is, of course,
the right-hand derivative g/, (0); and an application of I'Hopital’s rule reveals that

lim = lim 7 = L.
u—0 : u—0
u>0 2 sin 5 u=0 COS 5

We have now established that G(u) is piecewise continuous on the interval
0 < x < m. According to Lemma 1, then, the limit of the right-hand side of
equation (11) is zero as N tends to infinity. That is,

With property (5) of the Dirichlet kernel, one can see from expression (10)
for Jy that

T
T
Iv=50+) [ Dywdu=7 g0+,
0
Hence
. b g
(14) dim Ty =3 g0 +).
The desired result (7) now follows from equation (8) together with limits

(13) and (14).

PROBLEMS
1. With the aid of I’'Hopital’s rule, find f(0 +) and f; (0) when

et —1

f) =

Answers: f(0+) =1, f1(0)=1/2.
2. Show that the function defined by means of the equations

Fo) = {x sin(1/x) when x # 0,

0 when x =0

(x #0).

is continuous at x = 0 but that neither f7(0) nor f’(0) exists. This provides another
illustration (see Example 3, Sec. 9) of the fact that the continuity of a function f at
a point x; is not a sufficient condition for the existence of one-sided derivatives of f
at xg.

3. By following the steps used in Sec. 10 to find Bessel’s inequality for the coefficients
a, in the Fourier cosine series on 0 < x < & for a function f in C,(0, ), derive the
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Bessel inequality

NE

bﬁS%/ [f0))Pd (N=1,2,...)

Il
_

1

for the coefficients b, in the sine series on 0 < x < = for f. Then use this result to show
that

lim b, = 0.

n—o00

. In Chap. 1 (Sec. 6) we expressed a function f(x) in C,(—m, ) as a sum

fx) =g +hx)
where

gx) = M and h(x) = M

2 2
We then saw that the coefficients a,, and b, in the Fourier series

o0
% + Z (a,, cosnx + b, sin nx)

n=1

for f(x) on —m < x < 7 are the same as the coefficients in the Fourier cosine and sine
series for g(x) and A(x), respectively,on 0 < x < 7.

(a) By referring to the Bessel inequalities (11) and (14) in Sec. 10, write

N

2
%-{-Za <—/ g(x) (N=1,2,..)

and

sz / [h()]? dx (N=1,2,...).

Then point out how it follows that

e 1 i i
70+§_;(aﬁ+bﬁ)§;{/o [f(x)]"’dxjt/0 [f(—s)]zds} (N=1,2,...).

(b) By making the substitution x = —s in the last integral in part (a), obtain the Bessel

inequality
a()+z a —|—b2 <—/ [f))dx (N=1,2,..)).
. Show how it follows from the Bessel inequality in Problem 4(b) that
lim a, =0 and lim b, =0,

where a, and b, are the coefficients in the Fourier series

o0
% + Z (a, cosnx + b, sinnx)

n=1

for a piecewise continuous function in C,, (=, ).
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6. Derive the expression

sin(Z + Nu)
7}
2sin —
sm2

Dy(u) = (u+#0, 27, +4x,...)

for the Dirichlet kernel (Sec. 11)

Dnw) =

N =

N
+ E cosnu
n=1

by writing
A= u and B=nu
2
in the trigonometric identity
2sinAcosB = sin(A+ B) + sin(A— B)

and then summing each side of the resulting equation fromn =1ton = N.

Suggestion: Note that

12. A FOURIER THEOREM

A theorem that gives conditions under which a Fourier series

o0
(1) 2—0 + Z(an cos nx + by, sin nx),

n=1

with coefficients

(2) anzi/ﬂ f(x) cosnx dx n=0,1,2,..)
and
(3) bn:%/n f(x)sinnx dx n=1,2,...),

converges to f(x) is called a Fourier theorem. Such a theorem will now be estab-
lished. A related one that is especially useful appears in Sec. 13, and both theorems
are illustrated in Sec. 14.

Theorem. Suppose that

(i) f is piecewise continuous on the interval —mw < x < 7;
(ii)  f is periodic, with period 27, on the entire x axis;
(iii) x(—00 < x < 00) is a point at which the one-sided derivatives [ (x) and
f’(x) both exist.
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The Fourier series (1), with coefficients (2) and (3), then converges to the mean
value

(4)

of the one-sided limits of f at x.

faeH)+ fx-)
2

Note that if f is actually continuous at x, the quotient (4) becomes f(x).
Hence

a .
fx) = 5 + Z(un cosnx + b, sinnx)

n=1

at such a point.
The fact that f is piecewise continuous on —x < x < ensures that integrals

(2) and (3) always exist; and we begin our proof of the theorem by writing series
(1) as (see Sec. 6)

1 T 1 o0 b4
Z/ﬂf(s)ds—i—;; ﬂf(s)cosn(s—x)ds,

with those coefficients incorporated into it. Then, if Sy(x) denotes the partial sum
consisting of the sum of the first N+ 1 (N > 1) terms of the series,

1" 1L 7
(5) Sy(x) = —/ f(s)ds + — Z/ f(s)cosn(s — x) ds.
27 J_» S
Using the Dirichlet kernel (Sec. 11)
.
Dy(u) = 7 + ;cos nu,

we can put equation (5) in the form

1 T
Sv = / £(5) D(s — x)ds.

The periodicity of the integrand here allows us to change the interval of inte-
gration to any interval of length 27 without altering the value of the integral
(see Problem 9, Sec. 14). Thus

X+

1
(6) Sn(x) = = f($)Dn(s —x) ds,

X—T
where the point x is at the center of the interval we have chosen. It now follows
from equation (6) that

1
(7) SN(X) =

— [In(x) + JN()],
7

where

X+
(8) In(x) = / £(s)Dy(s — x) ds
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and
©) M) = / £(5) (s — x)ds.

If we replace the variable of integration s in integral (8) by the new variable
u = s — x, that integral becomes

(10) In(x) = / f(x + u)Dy(u) du.
0

Since f is piecewise continuous on the fundamental interval —7 < x < and also
periodic, it is piecewise continuous on any bounded interval of the x axis. So, for
a fixed value of x, the function g(u) = f(x + u) in expression (10) is piecewise
continuous on any bounded interval of the u axis and, in particular, on the interval
0 <u <. Recall now that the right-hand derivative f (x) exists. After observing
that

g(0+) = lim gw) = lim f(x+w) = lim f(v) = f(x+).

u>0 u>0 v>x

one can show that the right-hand derivative of g at u = 0 exists:

b . 8@)—gO0+) o f(x+uw) — flx+)
8+) = ng) u—0 o ilgé) u
— lim M = fL(x).
e v—X
According to Lemma 2 in Sec. 11, then,
. T T
(11) Aim Iy(x) = 5 g(0+) = S f(x +).

If, on the other hand, we make the substitution # = x — s in integral (9) and
use the fact that Dy(u) is an even function of u, we find that

(12) Jv(x) = /0 f(x —u)Dy(u) du.

This time, we recall that the left-hand derivative f’ (x) exists; and we note that
the function g(u) = f(x — u) in expression (12) is piecewise continuous on the
interval 0 < u < 7. Furthermore,

g(0+) = lim g(x) = lim f(x —w) = lim f() = f(x-)

u>0 u>0 v<x

and

¢ (0) = fim 89V =80 _ o fr—w - fxo)

u—0 u—20 u—0 u
u>0 u>0

N (O L i N
v
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So once again by Lemma 2 in Sec. 11,
. i b4
(13) Am ) = 2 g(0+) = 5 f(x-).

Finally, we may conclude from equation (7) and limits (11) and (13) that

fim Sy = JED I

and the theorem is proved.

13. A RELATED FOURIER THEOREM

The Fourier theorem in Sec. 12 is readily adapted to functions that are piecewise
smooth on the fundamental interval —7 < x < 7. We recall from Sec. 9 that f is
piecewise smooth if both f and f’ are piecewise continuous.

Theorem. Suppose that

(@) f is piecewise smooth on the interval — < x < 7,
(i) Fis the periodic extension, with period 27, of f.

Then, at each point x(—oo < x < 00), the Fourier series for fon —m < x < w
converges to the mean value

Fx+)+ Fx-)
2
of the one-sided limits F(x +) and F(x —).

The proof relies on the theorem in Sec. 9, which tells us that when f is
piecewise smooth on —7 < x < 7, its one-sided derivatives, from the interior at
the endpoints x = + 7, exist everywhere in the closed interval —mw <x <. Hence,
because F is the periodic extension of f, with period 2, its one-sided derivatives
exist at each point x (—oo < x< 00). According to the theorem in Sec. 12, then, the
Fourier series for f on —7 <x <m converges everywhere to the mean value of
the one-sided limits of F, and the theorem here is established.

It should be emphasized that the conditions in this theorem, as well as the
ones in the theorem in Sec. 12, are only sufficient, and there is no claim that
they are necessary conditions. More general conditions are given in a number of
the references listed in the Bibliography. Indeed, there are functions that even
become unbounded at certain points but nevertheless have valid Fourier series
representations.’

The theorem here will be adequate for most of the applications in this book,
where the functions are generally piecewise smooth. We note that if f and F
denote the functions in the theorem, then

Fx+)= f(x+) and Fx—)= f(x-) when —7 < x < 7.

TSee, for instance, the book by Tolstov (1976, pp. 91-94), which is listed in the Bibliography.
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Consequently, when —n < x < m, the theorem tells us that the Fourier series for
f on the interval —7 < x < 7 converges to the number

() f(er)wZLf(x—),

which becomes f(x) if x is a point of continuity of f.
At the endpoints x = £, however, the series converges to

@) f(=m +)2+ f(r -

To see this, consider first the point x = . Since
Fr+)= f(—n+) and Fr—)= f(m—),
as is evident from Fig. 9, the quotient
Fx+)+ F(x-)

2
in our theorem becomes the quotient (2) when x = 7. Because of the periodicity
of the series, it also converges to the quotient (2) when x = —x.
F(x)
/.f(X)
~-—"">o ~~"">o — o ~-~"T>
I -~ I / I -~ I
T // T 0 T // T // X
*377/ - ™, 37T/
d d d

FIGURE 9

14. EXAMPLES

The following examples illustrate how the Fourier theorems in the last two sections
can be used.

EXAMPLE 1. In Example 1, Sec. 7, we obtained the Fourier series

(1) —+Z[( 1)n_lcosnx—i—(

-1 n+1

sin nx

on the interval —7 < x < 7 for the function f defined by means of the equations

Fx) = 0 when — 7 < x <0,
- when O0<x <.

Since

Flx) = 0 when — 7 <x <0,
- when O<x<m,

f is clearly piecewise smooth on the fundamental interval —7 < x < 7.
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Hence we may use the theorem in Sec. 13. In view of the continuity of f
when —m < x < m,the series converges to f(x) at each point in that open interval.
Since

f(=nr+)=0 and f(m—-)=mr,

it converges to 7 /2 at the endpoints x = . The series, in fact, converges to 7 /2
at each of the points x = 7, +37, +57, ..., as indicated in Fig. 6 (Sec. 7), where
the sum of the series for all x is described graphically.

In particular, since series (1) converges to 7/2 when x = 7, we have the
identity

T e (=D"—1 P
ol 2 -t ==
4*% —— D=,

which can be written

S 17
~@en-12 8°

This illustrates how Fourier series can sometimes be used to find the sums of
convergent series encountered in calculus. Setting x = 0 in series (1) also yields
this particular summation formula.

The theorem in Sec. 13 tells us that a function f in the space C),(—x, ) of
piecewise smooth functions on the interval —w < x < 7 has a valid Fourier series
representation on that interval, or one that is equal to f(x) at all but possibly
a finite number of points there. It also ensures that a function f in the space
C;,(O, ) has valid Fourier cosine and sine series representations on the interval
0 < x < . This is because, according to Sec. 6, the cosine series for a function f on
the interval 0 < x < 7 is the same as the Fourier series corresponding to the even
extension of f on the interval —7 < x < 7 and the sine series for f on the interval
0 < x < = is the Fourier series for the odd extension of f. In view of the even
periodic function represented by the cosine series, that series converges to f(0+)
at the point x = 0 and to f(wr —) at x = 7. The sum of the sine series is, of course,
zero when x = 0 and when x = 7.

EXAMPLE 2. In Example 2, Sec. 3, we found the Fourier cosine series
corresponding to the function f(x) = sinx on the interval 0 < x < m:

2 4 & cos2nx
2 sinx ~ — — — —.
@ T o7 Z 4n?z —1

n=1
Since sin x is piecewise smoothon 0 < x < s and continuous on the closed interval
0 < x < &, correspondence (2) is evidently an equality when 0 < x < 7.

Our final example here illustrates how the theorem in Sec. 12 can be useful
when the one in Sec. 13 fails to apply.
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EXAMPLE 3. The odd function
3) fo)=vx (- <x<m)

is piecewise continuous on the interval —7 < x < 7. But since

1
/
) e
when x # 0, it is clear that the one-sided limits f'(0+) and f/(0—) do not exist.
Hence f is not piecewise smooth on —m < x <, and the theorem in Sec. 13 does
not apply.

If, however, F denotes the periodic extension, with period 27, of the piece-
wise continuous function (3), the theorem in Sec. 12 can be applied to that ex-
tension. To be precise, since the one-sided derivatives of F exist everywhere in
the interval —7 <x <m except at x = 0, we find that the Fourier series for F
on — <x <m converges to F(x) when —7 < x < 0 and when 0 < x < =. That
series representation is also valid at x = 0 since F is odd and the series is actually
a Fourier sine series on 0 < x < m, which converges to zero when x = 0. Since
f(x) = F(x) when —7 < x < 7, we may conclude that the Fourier series for f
on that interval is valid for all such x.

PROBLEMS

1. State why the Fourier sine series in Example 1, Sec. 5, for the function
fx)=x O<x<m)

is a valid representation for x on the interval —7 <x <. Thus verify fully that the
series converges for all x (—oo < x < 00) to the function whose graph is shown in Fig. 5
(Sec. 5).

2. For each of the following functions, point out why its Fourier series on the interval
—n <x <misconvergent when —w < x < m,and state the sum of the series when x = 7:

(a) the function

[ —m/2 when —7 <x <0,
f(x)_{ /2 when O<x<m,

whose series was found in Problem 1, Sec. 7;
(b) the function

fx) =e™ (a #0),

whose series was found in Problem 4, Sec. 7.
Answers: (a) sum = 0; (b) sum = cosharn.
3. By writing x = 0 and x = /2 in the representation
. 2 4 < cos2nx
sinxy = — —

T 4n? —1
n=1

0O<x=<m),

established in Example 2, Sec. 14, obtain the following summations:

i 11 —~ (-D" 1 =&
— 4 -1 2 a2 -1 2 4

n=1
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Point out why the Fourier series in Problem 7, Sec. 7, for the function

Fo) = 0 when —7 <x <0,
~ ] sinx when O<x<m

converges to f(x) everywhere in the interval —7 <x <.

. State why the correspondence

= cos(2n — x

xNE_EZ; Qn—1)y ©<x<m

obtained in Example 1, Sec. 3, is actually an equality on the closed interval 0 < x < 7.
Thus show that

— @n-1? 8’

(Compare with Example 1, Sec. 14.)

. (a) Use the correspondence

2 ® (=1
x2~%+4z(n2) cos nx 0 <x <m),

found in Problem 3(a) Sec. 5, to show that

(- 1)n+1 7.[2 1 72
— and E_l E = ?
(b) Use the correspondence (Problem 6, Sec. 5)
4 i 2
s T ,(mm)- —6
X ?+8 E (-1 Tcosnx O<x<m)

and the summations found in part (@) to show that

-+t Txt ~1
= M LTy

. With the aid of the correspondence (Problem 6, Sec. 7)

2asinan ( 1"*1
cosax ~ ——— | 55 E ———— COSsnx (—m <x<m),
b4 211

where a # 0, £1, £2, ..., show that

i __1\n+l
=1+2a22( D (@a#0,+1,£2,..)).

sinam - n? —a?

. Without actually finding the Fourier series for the even function f(x) = vx? on

—m <Xx <, point out how the theorem in Sec. 12 ensures the convergence of that
series to f(x) when —7 < x < 0 and when 0 < x < 7 but not when x = 0.

. Let f denote a function that is piecewise continuous on an interval —c <x <c¢ and

periodic with period 2¢. Show that for any number a,

c a+c
/f(x)dx:/ f(x)dx.
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Suggestion: Write

c a+c c
/ fx)dx = / feodx + / fs)ds
—c —C a-+tc

and then make the substitution x = s — 2¢ in the second integral on the right-hand side
of this equation.

15. CONVERGENCE ON OTHER
INTERVALS

In Sec. 8 we introduced Fourier series corresponding to piecewise continuous
functions f on arbitrary intervals —c < x < c. To treat the convergence of such
series, we include here a few remarks about the function

(1) g(s) = f(;—s) (—m <s<m)

that was used in Sec. 8.
Let us write the function (1) as

(2) g = f(x) where X = jT—S (—m <s < m).

It is clear that the equation x = c¢s/m, or s = mx/c, establishes a one-to-one cor-
respondence between points in the interval —m < s < 7 and points in the interval
—c < x <c. Suppose now that f is piecewise smooth on the interval —c <x <c¢
and that f(x) at each point x where f is discontinuous is the mean value of the
one-sided limits f(x +) and f(x —), as is the case when f is continuous at x.

One can see from equations (2) that if a specific point sy corresponds to a
specific point x, then

glso+) = flxo+) and  g(so—) = f(x0—).

Since f(x) is always the mean value of f(x+) and f(x —), it follows from these
relations between one-sided limits that the number g(s) = f(x) is always the
mean value of g(s +) and g(s —). In particular, g is continuous at s when f is con-
tinuous at x. Since f is piecewise continuous on the interval —c < x < ¢, then, g is
piecewise continuous on the interval —w <s < . The derivative f’ is also piece-
wise continuous, and a similar argument shows that g’ is piecewise continuous. So
g is piecewise smooth on the interval —7 <s <mw. According to the theorem in
Sec. 13, the Fourier series for g on the interval —w <s < converges to g(s) for
each s in that interval. Moreover, since it was relation (1) that gave us the new
correspondence for f on —c <x < c in Sec. 8, the correspondence is, in fact, an
equality. That is,

® £ =%+ 3" (aneos ™ b, sn ™),

n=1

where

4) anzl/ f(x)cos@dx n=0,1,2,..)
cJ_. c
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and
(5) bnzl/ £y sin 7 gy n=1,2,...).
cJ_. c

We state this result as a theorem that is sufficient for our applications. The
theorem and the one that follows it apply to any function f that has the following
properties:

(i) the function f is piecewise smooth on the stated interval;

(if) the value f(x) at each point of discontinuity of f in that interval is the mean
value of the one-sided limits f(x +) and f(x —).

Theorem 1. Let f denote a function that has properties (i) and (ii) on an
interval —c < x < c. The Fourier series representation (3), with coefficients (4) and
(5), is valid for each x in that interval.

Note that series (3) also represents the periodic extension, with period 2c, of
the function f. Thatis, it converges to a function F(x) whose graph coincides with
the graph of f(x) on —¢ < x < c and is repeated every 2¢ units along the x axis.
The series has the expected sums at the endpoints x = £c. The sum at x = c is,
for instance, the mean value of F(c+) and F(c —).

If we restrict function (1) to the interval 0 < s < =, Fourier cosine and sine
series representations on 0 < x < ¢ follow from representations on 0 < s < 7
that involve only cosines and sines, respectively.

Theorem 2. Let f denote a function that has properties (i) and (ii) on an
interval 0 < x < c. The Fourier cosine series representation

ay  — nimx
(6) f(x)=5+;ancos7,
with coefficients
2 C
7) ay = E/ £(x) cos ? dx n=0,1,2,..),
0

is valid for all x in that interval. The same is true of the Fourier sine series
representation

> nmx
8 - bn i )
® =3 bsin”
with coefficients

9) b,1=%/ £y sin 7 gy n=1,2,...).
c Jo C

Series (6) represents, of course, the even periodic extension, with period 2c,
of f;and series (8) represents the odd periodic extension, with period 2c, of f.
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PROBLEMS

1. Use formulas (4) and (5), Sec. 15, as well as Theorem 1 in that section, to show that if

Fx) = 0 when —3 <x <0,
V=11 when 0O0<x<3

1
and if f(0) = 2 then

12 1 . @n-Dm
f(x)_§+;z_;2n—lsln 3 (-3 <x <3).

Describe graphically the function that is represented by this series for all values of
X (—00 < X < 00).
2. Let f denote the function whose values are

Flx) = 0 when -2 <x <1,
V=11 when 1<x <2,

and
1
fED)=fH=f2)= 3
Use formulas (4) and (5) in Sec. 15, together with Theorem 1 there, to show that
fx) = L i 1 [sin 07 cos X + (cosnn — cos n—”) sin @}
4 mi=n 2 2 2 2

n=1
for each x in the closed interval -2 < x < 2.
3. Let M(c, t) denote the square wave (Fig. 10) defined by means of the equations

1 when 0 <t <c,
Mic, 1) = {—1 when ¢ <t < 2c,

and M(c,t + 2c) = M(c,t) when t > 0. Show that

4~ 1 . @n—-Dm
M(c,t) = ;2_1:2n_1s1n - (t #c¢,2c,3c,...).
Mc, t)
| | |
o ic :20 i3c :46 iSC t
N S

FIGURE 10

4. Let F denote the periodic function, of period c, where

%—x when ngg%,
Fx) = 3¢ c
X — — when §<x§c.
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(a) Describe the function F(x) graphically, and show that it s, in fact, the even periodic
extension, with period c, of the function

fx) = ——x (Ofxg%).

(b) Use the result in part (a) and the Fourier cosine series correspondence found in
Problem 7, Sec. 8, to show that

2 1 4n —2
Fx) = CZ(Zn—1)2 OS( " - hiad (—00 < x < 00).

. Let f denote the periodic function, of period 2, where

Flx) = cosmc when 0 <x <1,
- when 1 <x <2

and where
1
fO=5 and  f)=—3

By referring to the correspondence
COS TTX 8 Z " sin 2nmx O<x<1
~ = — <x<
7 4n? —1 ’
obtained in Problem 8, Sec. 8, show that

1 4
f(x):icosnx—l—;z:ﬁsinbmx (—00 < X < ).

. Suppose that a function f is piecewise smooth on aninterval 0 < x < ¢, and let F' denote

this extension of f on the interval 0 < x < 2c:

Jfw when 0 < x <,
F(x) = { f2c —x) when ¢ < x < 2c.

[The graph of y = F(x) is evidently symmetric with respect to the line x = c.] Show
that the coefficients B, in the Fourier sine series for F on the interval 0 < x < 2c¢ can
be written

Bn:ﬂ/f(x)sin@dx n=12.).
¢ 0 2c

Thus show that

fx) = ansin w,

n=1

/f() 1)mdx n=12..),

for each point x (0 < x < ¢) at which f is continuous.
Suggestion: Write

where

c 2¢
ani[/ f(x)sm—dx—l—/ f(2c—s)sm—ds
0

and make the substitution x = 2¢ — s in the second of these integrals.
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7. Use the result in Problem 6 to establish the representation

Z (=D @n—Dmx
2n — 1)2 2¢

8. After writing the Fourier series representation (3), Sec. 15, as

N
a . nmx . nmX
f(x)=70+]$13;0 El <ancos%+bns1n%>,
=

use the exponential forms’

€l 4 =it . ol _ oif
cosf) = ————, sinf = ———
2 2i

of the cosine and sine functions to put that representation in exponential form:

f(x) = hm Z A, exp(z—>

where

a a, —ib, a, +ib,
A:—, An= P —n = =1,2,....
°= 73 2 @ )
Then use expressions (4) and (5), Sec. 15, for the coefficients a, and b, to obtain the
single formula

1 C
A, = _/ Fx) exp<_i@) dx  (n=0,+1,+2, ...
2c J_, c

16. A LEMMA

We prove here an important lemma to be used in Sec. 17. Sections 17 and 18,
regarding the absolute and uniform convergence of Fourier series, and Secs. 19
and 20, dealing with differentiation and integration of such series, will be used only
occasionally later on and will be specifically cited as needed. Hence the reader
may at this time pass directly to Chap. 3 without serious disruption.

For convenience, we treat only Fourier series for which the fundamental
interval is —7 < x < 7. Adaptations to series on any interval —c < x < ¢ can be
made by the method used in Sec. 8.

Lemma. Let f denote a function such that

(@) f is continuous on the interval —m < x <,
(i) f(=m) = f();

(iii)  its derivative f is piecewise continuous on the interval —m < x < 7.

TFor background on these forms and an introduction to series and integrals involving complex-valued
functions, see the authors’ book (2009), listed in the Bibliography.
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If a), and b,, are the Fourier coefficients
1 [~ 1 7

(1) a, = —/ f(x) cosnx dx, b, = —/ f(x)sinnx dx
T ) _x T J x

for fon —m < x < 7, the series

) i\/a%—i-b,%

n=1

converges.

The class of functions satisfying conditions (i) through (iii) here is, of course,
asubspace of the space of piecewise smooth functions on the interval —7 < x < 7.

We begin the proof of the lemma with the observation that the Fourier
coefficients

1 /" 1 [
3) oy = —/ f'(x) cosnx dx, Bn = —/ f'(x) sinnx dx
T J_» T Jn
for f’ exist because of the piecewise continuity of f’. Note that
1M , 1
a=— [ f@dx=—[f@@) — f(-m)]=0.
7 ) s i

Also, since f is continuous and f(—x) = f(x), integration by parts reveals that
whenn=1,2,...,

o %/n (cosnx) f'(x)dx

= %{[(cosmc) f1 +n/ﬂ f(x) sinnx dx} = nb,.
Likewise,

B, = %/” (sinnx) f'(x) dx

= %{[(sinnx)f(x)]ﬂn —-n f(x)cosnx dx} = —nay;

—7T
and we find that

4) an = —&, o

b, = — n=1,2,...).
n n

In view of relations (4), the sum sy of the first N terms of the infinite series
(2) becomes

N N
(5) sN=Z\/aﬁ+bﬁ=Z%\/aﬁ+ﬂﬁ.

Cauchy’s inequality
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which applies to any two sets of real numbers
pn(n=1,2,...,N) and g, n=1,2,...,N)

(see Problem 6, Sec. 20, for a derivation), can now be used to write

N N
1
(6) 53 < (; E) [; (a2 + B7) (N=1,2,...).
The sequence of sums
RS
™) ;’? (N=1,2,...)

here is clearly bounded since each sum is a partial sum of the convergent series
whose terms are 1/n? [see Problem 6(a), Sec. 14]. The sequence

N

®) > (e +87) (N=1,2,...)
n=1

is also bounded since o, (n = 0,1,2,...) and 8, (n = 1,2,...) are the Fourier

coefficients for f’ ontheinterval —7 < x < 7 and must, therefore, satisfy Bessel’s

inequality:

N
1 T
> (ep+8l) < —/ [f ()] dx (N=1,2,...).
T Jn
n=1
[See Problem 4(b), Sec. 11.] In view of the boundedness of sequences (7) and (8),
it now follows from inequality (6) that the sequence s3(N = 1,2, ...) of squares is
bounded, in addition to being nondecreasing. Hence it converges, and this means
that the sequence sy(N = 1,2, ...) converges. Thus series (2) converges.

17. ABSOLUTE AND UNIFORM
CONVERGENCE OF FOURIER SERIES

We turn now to the absolute and uniform convergence of Fourier series. We begin
by recalling some facts about uniformly convergent series of functions."

Let s(x) denote the sum of an infinite series of functions f,(x), where the
series is convergent for all x in some subset E of the real axis. Thus

o
(1) s(x) = 2 fa@) = Jim sy(x)
for all x in E, where each sy(x) denotes the partial sum of the first N terms of
the series. The series converges uniformly with respect to x if the absolute value
of the difference s(x) — sy(x) can be made arbitrarily small for all x in the set £

fSee, for instance, the book by Kaplan (2003, Chap. 6) or the one by Taylor and Mann (1983, Chap. 20),
both listed in the Bibliography.



50 CONVERGENCE OF FOURIER SERIES CHAP.2

by taking N sufficiently large. That is, for each positive number ¢, there exists a
positive integer N;, independent of x, such that, for each x in E,

(2) Is(x) —sy(x)| < ¢ whenever N > N.,.

For us, the set E will be some closed interval a < x < b, or possibly an open one
a < x < b. Geometrically, statement (2) then tells us that for each fixed x in E,
the distance between sy(x) and s(x) is less than ¢. Thus the graph of y = sy (x) lies
entirely inside a band of width 2¢ centered along the graph of y = s(x), as shown
in Fig. 11.

y
| |
o a b X
FIGURE 11

We include here a few properties of uniformly convergent series that are
often useful. If the functions f;, are continuous and if series (1) is uniformly con-
vergent, then the sum s(x) of that series is a continuous function. Also, the series
can be integrated term by term over the interval a <x <b to give the integral of
s(x) from x = a to x = b. If the functions f, and their derivatives f, are contin-
uous, if series (1) converges, and if the series whose terms are f;(x) is uniformly
convergent, then s’(x) is found by differentiating series (1) term by term.

A sufficient condition for uniform convergence is given by the Weierstrass
M-test. Namely, if there is a convergent series

3) > M,
n=1

of positive constants such that
(4) | fa()] < My, (@a<x<b

for each n, then series (1) is uniformly convergent on the stated interval.

Theorem. Let f denote a function such that

(@) f is continuous on the interval —mw < x < m,

(i) f(=m)= f@);

(iii) its derivative f’ is piecewise continuous on the interval —mw < x < 7.
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The Fourier series

(5) 02_0 + Z(a,, cosnx + b, sin nx)

n=1

for f, with coefficients

(6) a, = l/ f(x)cosnx dx, b, = l/ f(x)sinnx dx,
T J_x T )7

converges absolutely and uniformly to f(x) on the interval —m < x < 7.

To prove this, we first note that the conditions on f ensure the continuity of
the periodic extension of f for all x. Hence it follows from the theorem in Sec. 13
that series (5) converges to f(x) everywhere in the interval —7 < x < w. Observe
how it follows from the inequalities

la,| < \/az+b2 and  |b,| <+\/a2+ D]

that

lan cosnx + b, sinnx| < |a,| + |by| < 21/a2 + b2 n=1,2,...).

Since the series

i\/aﬁ+bﬁ

n=1

converges, according to the lemma in Sec. 16, the comparison test and the
Weierstrass M-test thus apply to show that the convergence of series (5) is
absolute and uniform on the interval —7 < x < 7, as stated.

Modifications of the statements in both the lemma in Sec. 16 and the above
theorem are apparent. For instance, it follows from the theorem that the Fourier
cosine series on 0 < x < 7 for a function f that is continuous on the closed interval
0 < x < 7 converges absolutely and uniformly to f(x) when 0 < x < w if f’is
piecewise continuous on 0 < x < 7. For the sine series, however, the additional
conditions f(0) = f(x) = 0 are needed.

Since a uniformly convergent series of continuous functions always con-
verges to a continuous function, a Fourier series for a function f cannot converge
uniformly on an interval that contains a point at which f is discontinuous. Hence
the continuity of f, assumed in the theorem, is necessary for the series there to
converge uniformly. The lack of uniformity of the convergence of a Fourier series
is illustrated in the next section.

18. THE GIBBS PHENOMENON

Suppose that x; is a point at which a piecewise smooth function is discontinuous.
The nature of the deviation near xj of the values of the partial sums of a Fourier
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series for f is commonly referred to as the Gibbs phenomenon.” We illustrate it
here using the piecewise smooth function defined on the interval —7 < x < 7 by
means of the equations

/2 when —7 <x <0,
f(x)—{ /2 when 0<x <,

and f(0) = 0.
According to Problem 1, Sec. 5, and the Fourier theorem in Sec. 13, the
Fourier (sine) series

sin(2n — 1)x
22 1 (—m<x<m)

for f convergesto f(x) everywhere in the interval —7 < x < 7. Let Sy(x) denote
the sum of the first N terms of this series when 0 < x < 7. Thus

N sin(2n — 1)x
(1) Sn(x) =ZZT 0 <x<m),
n=1

and we know that the sequence Sy(x)(N = 1,2, ...) converges to 7/2 = 1.57---
when 0 < x < 7. Differentiating expression (1), we have

N
(2) Sy(x) =2 Z cos(2n — 1)x.

n=1

This can be put in closed form with the aid of the trigonometric identity
2sin Acos B = sin(A+ B) + sin(A— B).

More precisely, by writing A= x and B = (2n — 1)x and then summing each side
of the result from n = 1 ton = N, we have

N N N
2sinx Z cos2n — x = Z sin 2nx — Z sin2(n — 1)x.
n=1 n=1 n=1

The two summations on the right here telescope to give us

N
2sinx Z cos(2n — 1)x = sin2Nx,
n=1
and expression (2) becomes
sin2 Nx
3 S’ = 0 .
3) N (X) pr O<x<m)

We find from expression (3) that this derivative is zero in the interval
0 < x < 7 when
km

=_— k=1,2,...,2N—-1).
2N ( » ~ ’ )

TFor a detailed analysis of this phenomenon, see the book by Carslaw (1952, Chap. 9), which is listed
in the Bibliography.
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Hence x = n/(2N) is the smallest positive number at which Sy(x) has a critical
point. By differentiating expression (3) and then substituting x = 7/(2N), we see
that

, 2N
5 (33) = “sinr2N) =

and this tells us that a relative maximum occurs at x = 7 /(2N), as shown in Fig. 12.

y
o by )
RN
/2 T \ ?
P\ |
| |
| |
| |
| |
| |
| |
| |
0] - T w X
2N
FIGURE 12

Next, we integrate each side of equation (3) from x = 0 to x = 7/(2N) in
order to see that

kS 7/@N) sin 2 Nx

It is left to Problem 7, Sec. 20, to show how it follows from expression (4) that

thNQ%) A %ﬁd

The value of this integral is the number o = 1.85 - - - that is shown in Fig. 12, which
indicates how “spikes” in the graphs of the partial sums y = Sy(x), moving to the
left as N increases, are formed, their tips tending to the point o on the y axis.” The
behavior of the partial sums is similar on the interval —7 < x < 0.

The convergence of series (1) to f(x) on —7 < x < 7 is not uniform, of
course, because f isnot continuous on that interval. It is, moreover, not uniform on
0 < x < 7 even though f is continuous there, because of the Gibbs phenomenon.
To be specific, let ¢ denote any positive number smaller than the difference

T
_ T 028,
773

where = denotes approximate equality. It is evident from Fig. 12 that because the
tip of the “spike” occurring when x = 7 /(2N) tends to o, the graph of y = Sy(x)

"The integral occurs as a particular value of the sine integral function Si(x), which is tabulated in, for
See also the more recent handbook edited by Olver, Logier, Boisvert, and Clark (2010) that is listed.
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when N is large is not completely contained in a strip of width 2¢ centered along
the horizontal line segment y = /2 on the interval 0 < x < .

19. DIFFERENTIATION OF FOURIER
SERIES

Not all Fourier series are differentiable, as Example 1 illustrates.

EXAMPLE 1. According to Theorem 1 in Sec. 15, the Fourier series in
Example 2, Sec. 7, for the function f(x) = x (—7 < x < ) converges to f(x) at
each point in the interval —7 < x < 7:

> (-1 n+1

1) x=22

n=1

sin nx (—m <x <m).

But the differentiated series

o0
2 Z (=) cos nx

n=1

does not converge since its nth term fails to approach zero as n tends to infinity.

Sufficient conditions for differentiability can be stated as follows, where the
conditions on f are the same as those in the theorem in Sec. 17, as well as in the
lemma in Sec. 16.

Theorem. Let f denote a function such that

(@) f is continuous on the interval —mw < x < m,

(i) f(=m)= f@);

(iii)  its derivative f’ is piecewise continuous on the interval —m < x < 7.

The Fourier series representation

2) fx) = 612—0 + Z(an cos nx + by, sin nx) (=7 <x <m),

n=1

where
1 [ 1 [ )
a, = —/ f(x) cosnx dx, b, = —/ f(x)sinnx dx,
T ) _x T J

is differentiable at each point x in the interval —m < x < 7w at which the second-order
derivative f" exists:

o0
3) f'(x) = Zn(— a, sinnx + b, cos nx). (=7 <x <m).

n=1

Our proof of this theorem is especially brief. To start, we consider a point x
(—m < x < m) at which f” exists; and we note that f’ is therefore continuous
at x. Hence an application of the Fourier theorem in Sec. 12 to the function f’
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shows that
o o0
4 fl(x)= 70 + Z(an cos nx + B, sin nx) (—m <x <m),
n=1
where

1 [ 1 [7
o, = —/ f'(x) cos nx dx, Bn = —/ f'(x)sinnx dx.
T ), 7 ),

But since f and f’ satisfy all the conditions stated in the lemma in Sec. 16, we
know from the proof there that

(5) ag =0, o, = nby, B, = —na, n=12..).

When these substitutions are made, equation (4) takes the form (3); and the proof
is complete.

At a point x where f”(x) does not exist, but where f’ has one-sided deriva-
tives, differentiation is still valid in the sense that the series in equation (3) con-
verges to the mean of the values f’(x+) and f’(x —). This is also true for the
periodic extension of f.

The theorem applies, with obvious changes, to other Fourier series. For in-
stance, if f is continuous when 0 <x < and f’ is piecewise continuous on the
interval 0 < x < 7, then the Fourier cosine series for f on 0 < x < x is differen-
tiable at each point x (0 < x <) where f”(x) exists.

EXAMPLE 2. We know from Problem 5, Sec. 7, and the theorem in Sec. 13
that when a # 0,

sinhaw

coshax =

1 +2a2§: =D Cos nx
amn pt a? + n?

on the closed interval —m < x < z. Inasmuch as the hypothesis in the theorem here
is satisfied when f(x) = coshax, it follows that

asinhax =

2a sinhan i (=" (—nsinnx)
— nx
i a? +n?

on the interval —7 < x <. That is, when a # 0,

2sinhar &
6 inh > -1 n+1
(6) sinh ax - Z( )

n=1

sinnx (—m <x <m).
a2 +n?

Note that equation (6) is, in fact, valid when the condition a # 0 is dropped.

20. INTEGRATION OF FOURIER SERIES

Integration of a Fourier series is possible under much more general conditions
than those for differentiation. Suppose that f is piecewise continuous and that

(1) f(x) ~ %0 + Z(an cosnx + b, sin nx) (—m <x<m)

n=1
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where
1 [ 1 7 )

2) a, = —/ f(x)cosnx dx, b, = —/ f(x)sinnx dx.
T J x T J

In the following theorem it is not even essential that series (1) converge in order
that the integrated series converge to the integral of the function.

Theorem. Let f be a function that is piecewise continuous on the interval
—n < x < 7. Regardless of whether series (1) converges or not, the equation

X o 1
/ f(s)ds = @(x +7)+ Z —{a, sinnx — by[cosnx + (—1)"*1]}
x 2 —n
is valid when —m < x < m.

Series (3) is, of course, obtained by replacing x by s in series (1) and then
integrating term by term from s = —x to s = x. Observe that if ay £ 0, the first
term on the right in equation (3) is not of the type encountered in a Fourier series.
Hence integrating a Fourier series does not always yield an actual Fourier series.

Our proof starts with the fact that since f is piecewise continuous, the
function

4) F(X)=/x f(S)dS—a2—0x (—m=x=m)

is continuous; moreover,
(5) Fo) = fo) -3 (-7 <x<m),

except at points where f is discontinuous. Hence F’ is piecewise continuous on the
interval —7 < x < . Since F is piecewise smooth, then, it follows from Theorem 1
in Sec. 15 that

A o0
(6) F(x) = 70 +Z(An cosnx + B, sinnx) (—m<x<m),
n=1
where
1 /" 1 (7 )
(7 A, = —/ F(x)cosnxdx, B, = —/ F(x)sinnx dx.
T J_x T )z
We note from expression (4) and the first of expressions (2) when n = 0 that
8) F(—m) = %TL’ and F(n) = / f(s)ds— —n = aym — %OJT = az—on;
hence
) F(-n) = F(n).

This shows that representation (6) is also valid at the endpoints of the open inter-

val —7 < x < and, therefore, at each point of the closed interval -7 < x < .
Let us now write the coefficients A, and B, in terms of a, and b,. When

n > 1, we may integrate integrals (7) by parts, using the fact that F is continuous
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and F’ is piecewise continuous. Thus

A, = l{[F(x)smnx} _/ sin nx F’(x)dx}
T n | . J. n

¥

=—— F'(x)sinnx dx;
nmw

and, in view of expression (5) for F'(x), we have
1 T
A, = ——/ [f(x) — @] sinnx dx
nw J_, 2

1 1 [ T b
=——~—/ f(x)sinnxdx—l—ﬂ/ sinnxdx = ——-
n wJ)_, 2nw J_,

n
Likewise, keeping relation (9) in mind, we find that

1 x d
B — L { [_F(x)cosnx} +/ CoS nx Flx )dx}
T n -7

—T
1 TT
= — F'(x) cosnx dx;
nw

and, using expression (5) once again, we can see that

% _z {f(x) - %} cosnx dx

1 1 /7 ™ .
—~—/ f(x)cosnxdx—a—o/ cosnxdxza—,
n /)., 2nmw J_,

B,

n

As for Ay, from the final value for F(;r) shown in the second of relations (8)
and the fact that representation (6) is valid when x = 7, we know that

ap Ao >
ST=5 Z A, (=)
n=1
So, by solving for Ay here and then using the relation A, = —b,/n that we have
found, we arrive at
( 1)n+1
Ag_aon—2ZA( 1)"_an—22 by.

n=1 n=1

With these expressions for A, and B, including Ay, representation (6) takes
the form

_ % LI _ _qyntl
F(x) = 2n+;n{ansmnx bu[cosnx + (—1)"]}.

Finally, if we use expression (4) to substitute for F(x) here, we arrive at the desired
result (3).
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The theorem can be written for the integral from xj to x, where —m < xp <7

and — < x < m, by noting that

/xf(s)ds:/x fs)ds — Y f(s)ds.

PROBLEMS

1.

Show that the function

Fx) = 0 when —7 <x <0,
"] sinx when O<x<m

satisfies all the conditions in the theorem in Sec. 17. Then, with the aid of the Weierstrass
M-test in Sec. 17, verify that the Fourier series

1+1smx 2 cos2nx
T 2 4n? -1

n=1

(—m <x<m)

for f,found in Problem 7, Sec. 7, converges uniformly on the interval —7 < x < 7, as
the theorem in Sec. 17 tells us. Also, state why this series is differentiable in the interval
—m <x <m, except at the point x = 0, and describe graphically the function that is
represented by the differentiated series for all x.

. We know from Example 1, Sec. 3, that the series

4 i cos(2n — 1)x

b
2 Q2n—1)

B

n=

is the Fourier cosine series for the function f(x) = x on the interval 0 < x <. Differ-
entiate this series term by term to obtain a representation for the derivative f'(x) =1
on that interval. State why the procedure is reliable here.

. State the theorem in Sec. 19 as it applies to Fourier sine series. Point out, in particular,

why the conditions f(0) = f(r) = 0 are present in this case.

. Let a, and b, denote the Fourier coefficients in the lemma in Sec. 16. Using the fact

that the coefficients in the Fourier series for a function in C,(—m, 7) always tend to
zero as n tends to infinity (Problem 5, Sec. 11), show why

lim na, =0 and lim nb, = 0.

n—o0 n—oo

. Integrate froms =0tos = x (—w < x < ) the Fourier series

g (_1)n+1 .
2 Z p sin ns
n=1

in Example 1, Sec. 19, and the one

sin(2n — 1)s
2 Z 2n—1

appearing in Sec. 18. In each case, describe graphically the function that is represented
by the new series.
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6. Letp,(n=1,2,...,N)and g, (n=1,2,..., N) denote real numbers, where at least

one of the numbers p,, say p,,, is nonzero. By writing the quadratic equation

N N N
xZZpﬁJeranqn +Zqﬁ =0
n=1 n=1 n=1

in the form
N
D (x4 =0,
n=1
show that the number xo = —g,,/ p» is the only possible real root. Conclude that since

there cannot be two distinct real roots, the discriminant

(Ere) -(Z) ()

of this quadratic equation is negative or zero. Thus derive Cauchy’s inequality (Sec. 16)

(S = (27 (24

which is clearly valid even if all the numbers p, are zero.
. Rewrite expression (4), Sec. 18, as

s
=1
Sy (ZN) +J

w/(2N) . 7/2N) .
- 2N.
I=/ LY Gin 2N dx and J :/ TR .
0 0

where

X Sin x X

(a) With the aid of 'Hopital’s rule, show that the one-sided limits

. X —sinx . sin2Nx
lim ———— and lim
x—=0 XxSInx x—0 X
x>0 x>0

exist and hence, that the integrands in these two integrals are piecewise continuous
on the interval 0 < x < 7r/(2N). This establishes the existence of the integrals.

(b) Usethefact (Sec.1) thata piecewise continuous function defined on a finite interval
is bounded on that interval to show that

7/(2ZN)
X
] < /
0

as N tends to infinity.
(c) By making the substitution # = 2/Nx in the integral J, show that

—sinx
sin2 Nx

- dx — 0
xsinx

(d) Conclude from the results obtained in parts (b) and (c) that

s T sint
i s () = [0
oV oN /0 7

as stated in Sec. 18.



CHAPTER

3

PARTIAL
DIFFERENTIAL
EQUATIONS
OF PHYSICS

This chapter is devoted mainly to the derivation of certain partial differential
equations arising in studies of heat conduction, electrostatics, and mechanical
vibrations. Solutions of these equations, to be obtained in subsequent chapters,
will involve not only Fourier series of the type treated in Chaps. 1 and 2 but also
other kinds of series to be developed in the later chapters.

21. LINEAR BOUNDARY VALUE
PROBLEMS

In the theory and application of partial differential equations, the dependent vari-
able, denoted here by u, is usually required to satisfy some conditions on the
boundary of the domain on which the differential equation is defined. The equa-
tions that represent those boundary conditions may involve values of derivatives
of u, as well as values of u itself, at points on the boundary. In addition, some
conditions on the continuity of u and its derivatives within the domain and on
the boundary may be required. Such a set of requirements constitutes a boundary
value problem in the function u. We use that terminology whenever the differential
equation is accompanied by boundary conditions.

A boundary value problem is correctly set if it has one and only one solution
within a given class of functions. Physical interpretations often suggest boundary
conditions under which a problem may be correctly set. In fact, it is sometimes
helpful to interpret a problem physically in order to judge whether the bound-
ary conditions may be adequate. This is a prominent reason for associating such

60
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problems with their physical applications, aside from the opportunity to illustrate
connections between mathematical analysis and the physical sciences.

The theory of partial differential equations gives results on the existence and
uniqueness of solutions of boundary value problems. But such results are neces-
sarily limited by the great variety of types of differential equations and domains on
which they are defined, as well as types of boundary conditions. Instead of appeal-
ing to general theory in treating a specific problem, our approach will be to actually
find a solution, which can often be verified and shown to be the only one possible.

Frequently, it is convenient to indicate partial differentiation by writing in-
dependent variables as subscripts. If, for instance, u is a function of x and y, we
may write

3%u 0u

ou
u, or u,(x, y) for —, U, for —, u,, for
x. y) 0x 0x2 Y

dyox’
etc. We shall always assume that the partial derivatives of u satisfy continuity

conditions allowing us to write u,, = uxy.Jr Also, we shall be free to use the symbol
uy(c, y), for example, to denote values of the function du/dx on the line x = c.

EXAMPLE. The problem consisting of the differential equation

(1) Uee (X, Y) +uyy(x, y) =0 (x>0,y>0)
and the two boundary conditions

) u(0, y) = ux(0, y) (y=>0),
(3) u(x,0) =sinx + cosx (x>0

is a boundary value problem in partial differential equations. The differential
equation is defined in the first quadrant of the xy plane (see Fig. 13). As the
reader can readily verify, the function

4) u(x, y) = e Y(sinx + cosx)

is a solution of this problem. The function (4) and its partial derivatives of the first
and second order are continuous in the region x > 0, y > 0.

O | u=sinx + cosx x

FIGURE 13

TSee, for instance, the book by Taylor and Mann (1983, pp. 200-201) that is listed in the Bibliography.
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A differential equation in a function u, or a boundary condition on u, is
linear if it is an equation of the first degree in u and derivatives of u. Thus, the
terms of the equation are either prescribed functions of the independent variables
alone, including constants, or such functions multiplied by u or a derivative of u.
Note that the general linear partial differential equation of the second order in
u = u(x, y) has the form

(5) Auye + Buyy + Cuyy + Duy + Euy+ Fu = G,

where the letters A through G denote either constants or functions of the indepen-
dent variables x and y only. The differential equation and the boundary conditions
in the example above are all linear. The differential equation

(6) ZUxx + xyzuyy - exuz = f(y, 2)

islinearinu = u(x, y, z); but the equation u,, + uu, = xisnonlinearinu = u(x, y)
because the term uu,, is not of the first degree as an algebraic expression in the
two variables u and u,, in accordance with equation (5).

As expected, a boundary value problem is said to be linear if its differential
equation and all of its boundary conditions are linear. The boundary value problem
in our example is, therefore, linear. The method of solution presented in this book
does not apply to nonlinear problems.

A linear differential equation or boundary condition in u is homogeneous
if each of its terms, other than zero itself, is of the first degree in the function u
and its derivatives. Homogeneity will play a central role in our treatment of linear
boundary value problems. Observe that equation (1) and condition (2) are homo-
geneous, but that condition (3) is not. Equation (5) is homogeneous in a domain
of the xy plane only when the function G is identically equal to zero (G = 0)
throughout that domain; and equation (6) is nonhomogeneous unless f(y,z) =0
for all values of y and z being considered.

22. ONE-DIMENSIONAL HEAT
EQUATION

Thermal energy is transferred from warmer to cooler regions interior to a solid
body by means of conduction. It is convenient to refer to that transfer as a flow of
heat, as if heat were a fluid or gas that diffused through the body from regions of
high concentration into regions of low concentration. We shall now find a partial
differential equation that is satisfied by temperatures in the solid. In order to do
this, we need to consider some terminology that occurs in physics.

(i) Flux and Thermal Conductivity

Let Py denote a point (xo, yo, Z0) interior to the body and § a smooth surface
through Py. Also, let n be a unit vector that is normal to S at the point Py
(Fig. 14). At time ¢, the flux of heat ®(xy, yo, 2o, t) across S at Py in the direc-
tion of n is the quantity of heat per unit area per unit time that is being conducted
across S at P in that direction. Flux s, therefore, measured in such units as calories
per square centimeter per second.
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FIGURE 14

If u(x, y, z, t) denotes temperatures at points (x, y, z) of the body at time
t and if n is a coordinate that represents distance in the direction of m, the flux
®(x9, Yo, 20, t) is positive when the directional derivative du/dn is negative at Py
and negative when du/dn is positive there. A fundamental postulate, known as
Fourier’s law, in the mathematical theory of heat conduction states that the magni-
tude of the flux ®(xo, yo, 20, ¢) is proportional to the magnitude of the directional
derivative du/dn at Py at time ¢. That is, there is a coefficient K, known as the
thermal conductivity of the material, such that

du
@) d=-K o (K >0)

at Py and time .

(#i) Specific Heat
Another thermal coefficient of the material is its specific heat o . This is the quantity
of heat required to raise the temperature of a unit of mass of the material one unit
on the temperature scale. Unless otherwise stated, we shall always assume that
the coefficients K and o are constant throughout the solid body and that the same
is true of density 8, which is the mass per unit volume of the material. With these
assumptions, a second postulate in the mathematical theory is that conduction
leads to a temperature function u which, together with its derivative u, and those
of the first and second order with respect to x, y, and z, is continuous throughout
each domain interior to a solid body in which no heat is generated or lost.

Suppose now that heat flows only parallel to the x axis in the body, so
that flux ® and temperatures u depend on only x and ¢. Thus ® = ®(x,¢) and
u = u(x,t). We assume at present that heat is neither generated nor lost within
the body and hence that heat enters or leaves only through its surface. We then
construct a small rectangular parallelepiped, lying in the interior of the body, with
one vertex at a point (x, y, z) and with faces parallel to the coordinate planes. The
lengths of the edges are Ax, Ay, and Az, asshownin Fig. 15. Observe that since the
parallelepiped is small, the continuous function u, varies little in that region and
has approximately the value u, (x, t) throughout it. This approximation improves,
of course, as Ax tends to zero.

The mass of the element of material occupying the parallelepiped is
8 AxAy Az. So, in view of the definition of specific heat o stated above, we know
that one measure of the quantity of heat entering that element per unit time at
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FIGURE 15

time ¢ is approximately
(2) 08 Ax Ay Azu(x,1).

Another way to measure that quantity is to observe that since the flow of heat
is parallel to the x axis, heat crosses only the surfaces ABCD and EFGH of the
element, which are parallel to the yz plane. If the direction of the flux ®(x, ¢) is in
the positive direction of the x axis, it follows that the quantity of heat per unit time
crossing the surface ABCD into the element at time ¢ is ®(x, f)Ay Az. Because
of the heat leaving the element through the face EFGH, the net quantity of heat
entering the element per unit time is, then,

DP(x,t) AyAz — P(x + Ax,t) Ay Az.
In view of Fourier’s law (1), this expression can be written
3) Kluy(x + Ax,t) —uy(x, )] Ay Az.
Equating expressions (2) and (3) for the quantity of heat entering the element
per unit time and then dividing by 6§ Ax Ay Az, we have, approximately,
K ' Uy(x + Ax, t) —uy(x, t)

1) = —
(6, 1) od Ax

Letting Ax tend to zero here, we find that temperatures in a solid body, when heat
flows only parallel to the x axis, satisfy the one-dimensional heat equation

(4) l/[[(x, t) = kuxx(x» t)v
where
k=X
od

The positive constant k here is called the thermal diffusivity of the material.
In the derivation of equation (4), we assumed that there is no source (or
sink) of heat within the solid body, only heat transfer by conduction. If there is a
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uniform source throughout the body that generates heat at a constant rate Q per
unit volume, it is easy to modify the derivation to obtain the nonhomogeneous
heat equation

(5) u,(x, [) = kuxx(-xa [) +£I0,
where
_9
% o8’

This is accomplished by simply adding the term Q Ax Ay Azto expression (3) and
proceeding in the same way as before. The rate O per unit volume at which heat
is generated may, in fact, be any continuous function of x and ¢, in which case the
term ¢ in equation (5) is replaced by a function g(x, ?).

The heat equation describing flow in two and three dimensions is discussed
in Sec. 23.

23. RELATED EQUATIONS

When the direction of heat flow in a solid body is not restricted to be simply
parallel to the x axis, temperatures u in the body depend, in general, on all of the
space variables, as well as ¢. By considering the rate of heat passing through each
of the six faces of the element in Fig. 15 (Sec. 22), one can derive (see Problem 1)
the three-dimensional heat equation, satisfied by u = u(x, y, z, t):

(1) u, = k(g + Uyy + Uzz).

The constant ks the thermal diffusivity of the material, appearing in equation (4),
Sec. 22. When the laplacian

2) VU = Uy + Uy + Uz,
is used, equation (1) takes the compact form
(3) Uu; = szu.

Note that when there is no flow of heat parallel to the z axis, so that u,; =0
and u = u(x, y, t), equation (1) reduces to the heat equation for two-dimensional
flow parallel to the xy plane:

4) U, = k(e + uyy).

The one-dimensional heat equation u, = ku,, that was obtained in Sec. 22 for
temperatures u = u(x, t) follows, of course, from this when there is, in addition,
no flow parallel to the y axis. If temperatures are in a steady state, in which case u
does not vary with time, equation (1) becomes Laplace’s equation

(5) Urx + Uy + Uz = 0.

Equation (5) is often written V?u = 0.
The derivation of equation (1) in Problem 1 takes into account the possibility
that heat may be generated in the solid body at a constant rate Q per unit volume,
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and the generalization
(6) u = kVZu + qo

of equation (5), Sec. 22, is obtained. If the rate Q is a continuous function of the
space variables x, y, and z and if temperatures are in a steady state, equation (6)
becomes Poisson’s equation

(7) Viu = f(x,y,2),

where f(x,y,2) = —qx,y,2/k

It should be emphasized that the various partial differential equations in this
section are important in other areas of applied mathematics. In simple diffusion
problems, for example, Fourier’s law ® = —K du/dn applies to the flux & of a
substance that is diffusing within a porous solid. In that case, ® represents the
mass of the substance that is diffused per unit area per unit time through a surface,
u denotes concentration (the mass of the diffusing substance per unit volume of
the solid), and K is the coefficient of diffusion. Since the mass of the substance
entering the element of volume in Fig. 15 per unit time is Ax Ay Az u,, one can
write Q = 0 in the derivation of equation (6) and replace the product ¢§ in
that derivation by unity to see that the concentration u satisfies the diffusion
equation

(8) U, = szl/l.

A function u = u(x, y, z) that is continuous, together with its partial deriva-
tives of the first and second order, and satisfies Laplace’s equation (5) is called a
harmonic function. We have seen in this section that the steady-state temperatures
at points interior to a solid body in which no heat is generated are represented
by a harmonic function. The steady-state concentration of a diffusing substance is
also represented by such a function.

Among the many physical examples of harmonic functions, the velocity po-
tential for the steady-state irrotational motion of an incompressible fluid is promi-
nent in hydrodynamics and aerodynamics. An important harmonic function in
electric field theory is the electrostatic potential V(x, y, z) in a region of space
that is free of electric charges. The potential may be caused by a static distribution
of electric charges outside that region. The fact that V is harmonicis a consequence
of the inverse-square law of attraction or repulsion between charges. Likewise,
gravitational potential is a harmonic function in regions of space not occupied by
matter.

In this book, the physical problems involving the laplacian, and Laplace’s
equation in particular, are limited mostly to those for which the differential equa-
tions are derived in this chapter. Derivations of such differential equations in
other areas of applied mathematics can be found in books on hydrodynamics,
elasticity, vibrations and sound, electric field theory, potential theory, and other
branches of continuum mechanics. A number of such books are listed in the
Bibliography.
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PROBLEMS

1. Letu = u(x, y, z, t) denote temperatures in a solid body throughout which there is a
uniform heat source. Derive the heat equation

u, = kV2u + qq

for those temperatures, where the constants k and g, are the same ones as in equa-
tion (5), Sec. 22.

Suggestion: Modify the derivation of equation (5), Sec. 22, by also considering
the net rate of heat entering the element in Fig. 15 (Sec. 22) through the faces parallel
to the xz and xy planes. Since the faces are small, one may consider the needed flux
at points on a given face to be constant over that face. Thus, for instance, the net
rate of heat entering the element through the faces parallel to the xz plane is to be
taken as

Kluy(x,y+ Ay, z,t) —uy(x, y, z, )] Ax Az.

2. Suppose that the thermal coefficients K and o (Sec. 22) are functions of x, y, and z.
Modify the derivation in Problem 1 to show that the heat equation takes the form

odu; = (Kuy), + (Kuy)y + (Kuy),
in a domain where all functions and derivatives involved are continuous and where
there is no heat generated.

3. Show that the substitution 7 =kt can be used to write the two-dimensional heat
equation

U = k(uxx + uyy)
in the form
Ur = Uy + Uyy,
where the thermal diffusivity is unity.
Suggestion: Note that
du dudr
ar ot dt’
4. Show that the physical dimensions of thermal diffusivity k (Sec. 22) are I?T~!, where
L denotes length and 7 time.
Suggestion: Observe first that the dimensions of thermal conductivity K and
specific heat o are AL™!T-!B~! and AM~! B!, respectively, where M denotes mass,

Ais quantity of heat, and B is temperature. Then recall that k = K/(c§), where § is
density (ML™).

24. LAPLACIANIN CYLINDRICAL AND
SPHERICAL COORDINATES

We recall (Sec. 23) that the heat equation, and also Laplace’s equation, can be
written in terms of the laplacian

(1) VU = Uy + Uyy + Uz,

Often, because of the geometric configuration of the physical problem, it is more
convenient to use the laplacian in other than the rectangular coordinates x, y,
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and z. In this section, we give expressions for V2u in two different coordinate
systems already encountered in calculus. These alternative forms of V2u will then
be derived in Sec. 25, where it is assumed that u possesses continuous partial
derivatives of the first and second orders with respect to the independent variables.

(i) Cylindrical Coordinates

The cylindrical coordinates p, ¢, and z determine a point P(p, ¢, z), shown in
Fig. 16. Cylindrical and rectangular coordinates evidently share the coordinate z.
Also, p and ¢ are the polar coordinates in the xy plane of the projection Q of P
onto that plane.’

IH@@@

FIGURE 16

We shall show in Sec. 25 that the laplacian of u in cylindrical coordinates is

1 1
() Viu=u,, + P u, + 2 Upgp + Uzz.

Note how one can group the first two terms in this expression to write
2 1 1
3) Vou = P (puy)p + pS Upp + Uz

When u is independent of z, so that u = u(p, ¢), expression (2) becomes the
two-dimensional laplacian of u in polar coordinates:

1 1
2, —
4) Vu—upp+;up+?u¢¢.
Laplace’s equation V>« = 0 in polar coordinates can, therefore, be written in the
form
(5) pzupp + pu, + gy = 0.

Also, it follows from expression (2) that when temperatures u in a solid body vary
only with p and time ¢, and not with the space variables ¢ and z, the heat equation

In calculus, the symbols r and 6 are often used instead of p and ¢, but the notation used here is
common in physics and engineering. The notation for spherical coordinates, appearing later in this
section, may also differ somewhat from that learned in calculus.
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u; = kV2u becomes

1
(6) U = k(upp + ; u,,).

Equations (5) and (6) will be of particular interest in the applications. Another
special case that will be used later on occurs when the function « in the laplacian
(2) is independent of ¢, in which case the term containing u, vanishes.

(ii) Spherical Coordinates
The spherical coordinates r, ¢, and 6 of a point P(r, ¢, 0) are shown in Fig. 17.
Note that the coordinate ¢ is common to spherical and cylindrical coordinates.

FIGURE 17

It will be shown in Sec. 25 that the laplacian of u in spherical coordinates is

7) v2 n 2 n 1 n 1 n cotd
u=1u —Uu — U — U —5— Up.
rr - r 2 sinz 9 03] 2 06 ) 0

Other forms of this expression are

1 1
8 Viu="- o
® ! r (rid)er + r2sin’ @ Hoo + r2sin@ (sm6 up)g
and

1
9 Viu = —(r? 00 '
( ) u 72 (}’ ur)r + 2 Sin29 Upg + r2sing (sin 6 ug)o

Some of our applications later on will involve Laplace’s equation V?u = 0 in spher-
ical coordinates when u is independent of ¢. According to expression (8), that
equation can then be written

1 .
(10) r(ru),, + pr (sin @ ug)y = 0.

The reader who wishes to accept expressions (2) and (7) without derivation
can at this time pass directly to Sec. 26.
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25. DERIVATIONS

In deriving expressions for the laplacian in cylindrical and spherical coordinates
that were stated in Sec. 24, we consider first the cylindrical coordinates p, ¢, and z.

(i) Cylindrical Coordinates
One can see from Fig. 16 in Sec. 24 that the cylindrical coordinates p, ¢, and z are
related to the rectangular coordinates x, y, and z by the equations

1) X = pcosg, y = psing, =12z,

as well as the ones
(2) p=\Vxt+)2, ¢=tan‘1§, =1z,

where the quadrant to which the angle ¢ belongs is determined by the signs of x
and y, not by the ratio y/x alone.

Let u denote a function of x, y, and z. Then, in view of relations (1), it is also
a function of the three independent variables p, ¢, and z. If u is continuous and
possesses continuous partial derivatives of the first and second order, the following
method, based on the chain rule for differentiating composite functions, can be

used to express the laplacian

u  u  u
3 V= — +— +——
®) " 8x2+8y2+822

in terms of p, ¢, and z.
Since

du dudp Odudp dudz
ax  dpdx AP dx 9z dx’

it follows from relations (2) that

ou du X au y au
T Ta A PR P
_xdu y du
T pdp pP0¢
Hence, by relations (1),
(4) 8—M:cosqb%—sm(])a—u.
ax ap p Jd¢
Replacing the function « in equation (4) by du/dx, we see that
5 P cosp L (1) 300 2 (30)
0x2 dp \ dx o 0¢ \ dox

We may now use expression (4) to substitute for the derivative du/dx appearing
on the right-hand side of equation (5):

9%u du sing 8u> sing 9 ( du sing Bu)

0
m—“’“’%(m%‘ b 96) o 3\ %% T, 9
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By applying rules for differentiating differences and products of functions and
using the relation

0%u 0’u
opd¢ — 0¢dp’
which is ensured by the continuity of the partial derivatives, we find that
©) Bz_u ZCOSZ¢82_M_2sin¢cos¢ 0%u sin2¢82_u
9x2 9p? 0 d¢p dp pr 3¢
sin¢ du  2sin¢ cos¢ du
p P> 8

In the same way, one can show that

du you x du

7) A
( dy pdp  p?d¢p
or
d d d
®) M sing 2t L0
dy ap p 0¢
and also that
9 8%u _ i’ d’u  2singcosp d°u  cos’¢ d’u
ay? dp? o dpop  p> 0¢?
cos’¢p du  2sin¢g cos¢ du
p O p? Gl

By adding corresponding sides of equations (6) and (9), we arrive at

(10) 82_u+32_u=@+l3_u+i82_u'
dx2 ~ 3y?  9p>  pdp  p*og?
Since cylindrical and rectangular coordinates share the coordinate z, it follows
that equation (3) becomes
Pu  1ou 1 °u  u
(11) Vzuza_,(ﬂ+;%+ﬁw+8_zz
in cylindrical coordinates. This is, of course, the same as expression (2) in Sec. 24.

(ii) Spherical Coordinates
As for the spherical coordinates r, ¢, and 6, Fig. 17 in Sec. 24 shows that they are
related to the rectangular coordinates x, y, and z as follows:

(12) X =rsinfcos ¢, y=rsinfsing, Z=rcosf.
Spherical and cylindrical coordinates are, moreover, related by the equations
(13) z=rcoso, p =rsinb, ¢ =¢.

Expression (11) for V2u in cylindrical coordinates can be transformed into
spherical coordinates quite readily by means of the proper interchange of letters,
without any further application of the chain rule. This is accomplished in three
steps, described below.
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First, we observe that except for the names of the variables involved, re-
lations (13) are the same as relations (1) connecting cylindrical and rectangular
coordinates. Since relations (1) gave us expressions (8) and (10), it follows imme-
diately, then, that

(14) M sino 2% 4

and
®u  u  Pu  1ou 1 3%u
15 —t+ - —S="—=+-"—+5—-
(15) 022 + ap2  or? e TR
Next, we note how the second of relations (13) and equation (14) enable us
to write
18u+182u_18u+cot08u+ 1 9%
pdp  p2ap?  rar r2 96 = r2sin’g 0¢?’
Finally, we rearrange terms in expression (11) for V2u in cylindrical coordi-
nates and write

?u  du 1ou 1 d%u
(n Vu= (5550 )+ (it e
Using equations (15) and (16) to substitute for the sums in parentheses here, we
arrive at the expression
u 2 du 1 du 13%u coth du
S Yo Tsneas T T ve0

which is the same as expression (7), Sec. 24, for V2u in spherical coordinates.

(16)

(18) Vu

PROBLEMS

1. In Sec. 24, show how expressions (8) and (9) for V2u in spherical coordinates follow
from expression (7).
2. Derive expressions (8) and (9) in Sec. 25 for
9 2
oau and ou
dy dy?
in cylindrical coordinates.
3. We saw in Sec. 24 how the laplacian in cylindrical coordinates reduces to the two-
dimensional laplacian

V2 — 1 1
U=up + ;”p + puw
in polar coordinates when u = u(p, ¢) is independent of z. Follow the steps below to

show how that two-dimensional laplacian also follows from the laplacian
n 1 n cotd

— U U u

r2sinfe 0 2 v rz

in spherical coordinates that was stated in Sec. 24.

Viu=u +%u +
- rr r r

"The method used here is from a note, using slightly different notation, by the first author and F. Farris
in Math. Mag., vol. 59, no. 4, pp. 227-229, 1986.
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(a) Recall equations (13), Sec. 25, which relate spherical and cylindrical coordinates:
z=rcosf, p=rsinb, ¢=4¢.

Then, assuming that du/dz = 0, use the chain rule to show that

ou Jdudz Jdudp dJudp OJu
—=——+—— 4+ —— = —rcosb.
060 0z 30  9p 36 AP 30  Ip

(b) Use the final result in part (a) to show that

9%u 9 [ou Pu 5, 5 du .
— =r— | —cosf | = —r“cos” 0 — —rsinb.
062 36 \ ap 9p? ap
Then set & = /2 and r = p to express the derivative 9%u/36% in cylindrical
coordinates:
’u _ ou
362 = P
(c) With the aid of the final result in part (b) and continuing toset = n/2 and r = p,
finish this derivation of the two-dimensional laplacian in polar coordinates that is
stated at the beginning of the problem.

26. BOUNDARY CONDITIONS

Equations that describe thermal conditions on the surfaces of a solid body must
accompany the heat or Laplace’s equation if we are to determine the temperature
function u within the body. Three types of such boundary conditions are described
and illustrated below. It should be emphasized that when a surface S is mentioned,
S is often only one of the surfaces of the solid; but it is possible that there is only
one surface, as in the case of a solid sphere.

(i) Prescribed Temperatures

Temperatures on a surface may be prescribed. They are often constant temper-
atures but can be time-dependent, as will be the case in the next section. Stated
initial temperatures throughout the body are also considered to be boundary
conditions.

(ii) Constant Flux, Insulation

Conditions on surfaces may be other than just prescribed temperatures. Suppose,
for example, that the flux ® into the solid at points on a surface § is some constant
®,. That is, at each point P on S, we know that @, units of heat per unit area per
unit time flow across S in the direction opposite to an outward unit normal vector
n at P. From Fourier’s law (1) in Sec. 22, we know that if du/dn is the directional
derivative of u at P in the direction of n, the flux into the solid across S at P is the
value of Kdu/dn there. Hence

1 K—=9o
M =y

on the surface S. Observe that if § is perfectly insulated, &y = 0 at points on S
and condition (1) becomes

du
2) =

— =0.
dn
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(iii) Newton’s Law of Cooling

There may be surface heat transfer between a boundary surface S and a medium
whose temperature is a constant 7. The inward flux ®, which can be negative, may
then vary from point to point on S; and we assume that at each point P, the flux
is proportional to the difference between the temperature of the medium and the
temperature at P. Under this assumption, which is sometimes called Newton’s law
of cooling, there is a positive constant H, known as the surface conductance of the
material, such that ® = H(T — u) at points on S. Condition (1) is then replaced
by the condition

du
K=o = H(T —u),
or
du H

The constant £ is, of course, positive.

EXAMPLE 1. Consider a semi-infinite slab occupying the region0 < x < c,

y > 0 of three-dimensional space. Figure 18 shows the cross section of the slab in
the xy plane. Suppose that there is a constant flux @, into the slab at points on the
face in the plane x = 0 and that there is surface heat transfer (possibly inward)
between the face in the plane x = ¢ and a medium at temperature zero. Also, the
surface in the plane y = 0 is insulated. Since

du ou d du  Ju

dn  x an dn  dx
on the faces in the planes x = 0 and x = c, respectively, a temperature function
u = u(x,y, z, t) evidently satisfies the boundary conditions

—Ku, (0, y, z,t) = Py, uy(c,y,z,t) = —hu(c, y, z,t).

The insulated surface gives rise to the boundary condition u,(x, 0, z, t) = 0.

y

O O
(7777777222227 x
X =cC

FIGURE 18

EXAMPLE 2. Let u denote temperatures in a long rod, parallel to the z
axis, whose cross section in the xy plane is the sector0 < p < 1,0 < ¢ <m/20of a
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disk (Fig. 19). We assume that u is independent of the cylindrical coordinate z, so
that u = u(p, ¢), and that the rod is insulated on its planar surfaces, where ¢ = 0
and ¢ = /2. Evidently,

d ad

—u=0 when y =0 and —u=0 when x = 0.

ay 0x
Also, in view of the transformation equations x = p cos ¢ and y = p sin ¢ (Sec. 25),
the chain rule tells us that

ou dudx  Odudy ou ou

3 oxdp ayas . Jax Yoy

Consequently, u must satisfy the boundary conditions

b
1y(p,0) =0, u¢(p, E) =0 0<p<1).
y
V
é p=1
7
Z
7
7
7
7
O vy X
FIGURE 19

27. DUHAMEL’S PRINCIPLE

Boundary value problems in heat conduction can have boundary conditions that
are time-dependent. We present here a special case of a result, known as Duhamel’s
principle, that is often useful in solving boundary value problems involving such
conditions. Suppose that a function = u(P, t) satisfies the heat equation u, = kV?u
at each point P in the interior of a region throughout which the initial temperature
is zero. Also, suppose that u = F(¢) on a portion S of the boundary of the region
and that u = 0 on the remaining part S’ (see Fig. 20). The boundary value problem
for u = u(P, t) is then

(1) u, = kVZu, u(P, 0) =0,

) w(P,t)y=F() on S, wP,t)=0 on §.

N
u(P,0) =0
N
-

FIGURE 20
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For simplicity here, we assume that F(¢) is continuous and differentiable when
t > 0 and that F(0) = 0. Our special case of Duhamel’s principle tells us that if
v = v(P, t) satisfies the related boundary value problem

(3) v, = kV?v, v(P,0) =0,

4) v(P,t)=1 on S, v(P,t) =0 on ¥,
then

(5) u(P,t) = /0[ F(t)v,(P,t — t)dx.

Note that the boundary value problem for v(P, ¢) is obtained from the one for
u(P, t) by replacing F(t) by unity.

To obtain expression (5), we assume that ¢+ > 0 and consider a subdivision
(see Fig. 21)

O=1m<Tn<Dh<n3< - <T 1 <Ty=t

of the interval from 0 to . We then approximate the function F(¢) by the step
function described by means of the dashed line segments and solid dots in Fig. 21.

F(1)

FIGURE 21

Keeping in mind that F(zp) = 0, we observe that just after time ¢ = 7y, the
temperature u(P, t) is approximately

[F(r1) — F(r)]v(P,t — 7).
Just after the time ¢ has passed t = 1, the approximation of u(P, t) becomes

[F(z) = F(r)]v(P, t — 1) + [F(2) — F(r)]v(P, 1 — 7).

TThe derivation that we shall give here is essentially Duhamel’s and appears in, for example, the books
by Carslaw and Jaeger (1986), Hildebrand (1976), and Arpaci (1966), all of which are listed in the
Bibliography. The paper by Bartels and Churchill (1942) and the book by Churchill (1972), also listed,
use Laplace transforms to establish a more general form of Duhamel’s principle that is applicable to
other types of time-dependent boundary conditions. The book by Churchill also adapts Duhamel’s
principle to boundary value problems in mechanical vibrations.
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The sum here is a reasonable approximation because of the linearity of the pro-
blem in u( P, t). Continuing in this way, we arrive at the approximation

n

(6) u(P,1) =Y [F() — Fu-n]v(P. 1 — w).

k=1

Now, according to the mean value theorem for derivatives in calculus, there
exists a point 7’ in each subinterval 7,1 < 7} < 74 such that

F(t) — F(tim1) = F'(t) Ay,

where Aty = 7 — w—1(k =1, 2, ..., n). Hence approximation (6) can be written

(7) u(P,t) = Z F (i) v(P,t — i) Ay
k=1

According to the definition of definite integral, then, approximation (7) becomes

t
8) u(P,t) = / F(v(P,t —1)dt
0

as the At tend to zero. Even though the two points 74 and t;° appearing in approx-
imation (7) may not be the same, thinking of them as the same can be justified.

Finally, it is straightforward (Problem 9) to use integration by parts to obtain
expression (5) from expression (8).

EXAMPLE. In order to illustrate the use of Duhamel’s principle, we turn
now to a temperature problem involving an infinite slab occupying the region
0 < x < & in three-dimensional space. The problem consists of the heat equation

9) u(x, t) = ki (x, t) O<x<mt>0)
and the boundary conditions
(10) u(0,t) =0, u(m, t) = F(t), and u(x,0) =0,

where F(t) is as stated just after conditions (2).

Inasmuch as the second of conditions (10) is time-dependent, we consider
the related boundary value problem
(11) v(x, 1) = kv (x, 1) O<x<mt>D0),
(12) v(0,1) =0, v(m,t) =1, and v(x,0) =0.

Anticipating a solution of a problem to be solved in Example 2, Sec. 39, namely
solution (15) there, we know that

=" _

2 .
ek sinnx

1 o0
v(x,t):; x—i—ZZ P
n=1

fSee, for instance, p. 546 of the book by Taylor and Mann (1983) or pp. 984-985 of the one by Kaplan
and Lewis (1971), both of which are listed in the Bibliography.
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Hence, in view of Duhamel’s principle,

t t
u(x,t) = / F()v(x,t —t)dt = / F(1)
0 0

2 o0
2 .
= E (=) ke ™ =9 sin nx | d.
T
n=1

That is,
2k ¢ +1, o ' —n2k(t—7)
(13) u(x,t) = . Z (=D" nsmnx/ F(t)e "™ dr.
n=1 0
PROBLEMS

1. Letu(x)denote the steady-state temperatures in aslab bounded by the planes x = 0 and
x = c when those faces are kept at fixed temperatures u = 0 and u = u,, respectively.
Set up the boundary value problem for u(x) and solve it to show that

u(x):ﬂx and ¢0=K@,
c c

where @, is the flux of heat to the left across each plane x = xy (0 < xy < ¢).

2. A slab occupies the region 0 < x < c¢. There is a constant flux of heat @ into the slab
through the face x = 0. The face x = c is kept at temperature u = 0. Set up and solve
the boundary value problem for the steady-state temperatures u(x) in the slab.

Answer: u(x) = =0 (c — x).

3. Letaslab 0 < x < c be subjected to surface heat transfer, according to Newton’s law
of cooling, at its faces x = 0 and x = c, the surface conductance H being the same on
each face. Show that if the medium x < 0 has temperature zero and the medium x > ¢
has the constant temperature 7, then the boundary value problem for steady-state
temperatures u(x) in the slab is

u'(x)=0 O<x<o),

Ku'(0) = Hu(0), Ku'(c) = H[T — u(o)],

where K is the thermal conductivity of the material in the slab. Write # = H/K and
derive the expression
for those temperatures.

4. Let u(r) denote the steady-state temperatures in a solid bounded by two concentric
spheres r = a and r = b (a < b) when the inner surface r = a is kept at temperature

zero and the outer surface r = b is maintained at a constant temperature u#,. Show why
Laplace’s equation for u = u(r) reduces to

d2
W("“) =0,

and then derive the expression

u(r) = bbuo (1 - ﬁ) (a<r<b).

—a r
Sketch the graph of u(r) versus r.

5. In Problem 4, replace the condition on the outer surface r = b with the condition that
there be surface heat transfer into a medium at constant temperature 7" according to
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Newton’s law of cooling. Then obtain the expression
hb*T a
= (1- —) <r<b»d
ur) a—l—hb(b—a)( r (@<r=b

for the steady-state temperatures, where # is the ratio of the surface conductance H to
the thermal conductivity K of the material.

6. A slender wire lies along the x axis, and surface heat transfer takes place along the
wire into the surrounding medium at a fixed temperature 7. Modify the procedure in
Sec. 22 to show that if u = u(x, ¢) denotes temperatures in the wire, then

u; = kuy, + b(T — u),

where b is a positive constant.

Suggestion: Let r denote the radius of the wire, and apply Newton’s law of
cooling to see that the quantity of heat entering the element in Fig. 22 through its
cylindrical surface per unit time is approximately H [T — u(x,t)]27r Ax.

b f
§ ) ) §
| I x

TO

FIGURE 22

7. Show that the special case
u, = ku,, — bu

of the differential equation derived in Problem 6 can be transformed into the one-
dimensional heat equation (Sec. 22)

v, = kv

with the substitution u(x, t) = e " v(x, 1).

8. Suppose that temperatures u in a solid hemispherer < 1,0 < 6 < n/2 are independent
of the spherical coordinate ¢, so that u = u(r, ), and that the base of the hemisphere
is insulated (Fig. 23). Use transformation (13), Sec. 25, which relates spherical and
cylindrical coordinates, to show that

Bu_ 3u+ u
0~ U oz ap

FIGURE 23
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Thus show that u must satisfy the boundary condition

bid
Uy (r, 5) =0.

9. Use integration by parts to obtain expression (5) in Sec. 27 from expression (8) in that
section.
Suggestion: Write

U=v(P,t—1), dV = F'(r)dt
and

dU = —v,(P,t — 1)dr, V = F(7).

28. A VIBRATING STRING

A tightly stretched string, whose position of equilibrium is some interval on the x
axis, is vibrating in the xy plane. Each point of the string, with coordinates (x, 0) in
the equilibrium position, has a transverse displacement y = y(x, t) at time t. We
assume that the displacements y are small relative to the length of the string, that
slopes are small, and that other conditions are such that the movement of each
point is parallel to the y axis. Then, at time ¢, a point on the string has coordinates
(x,y), where y = y(x, ).

Let the tension of the string be great enough that the string behaves as if it
were perfectly flexible. That is, at a point (x, y) on the string, the part of the string
to the left of that point exerts a force T, in the tangential direction, on the part to
the right (see Fig. 24); and any resistance to bending at the point is to be neglected.
The magnitude of the x component of the tensile force T is denoted by H. Our
final assumption here is that H is constant. That is, the variation of H with respect
to x and ¢ can be neglected.

y
Vix + Ax, f) S
——_ 2B
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FIGURE 24

These idealizing assumptions are severe, but they are justified in many
applications. They are adequately satisfied, for instance, by strings of musical
instruments under ordinary conditions of operation. Mathematically, the assump-
tions will lead us to a partial differential equation in y(x, ¢) that is linear.

Now let V(x,t) denote the y component of the tensile force T exerted by
the left-hand portion of the string on the right-hand portion at the point (x, y).
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We see from Fig. 24 that V is negative when T is downward. It is, on the other
hand, positive when T is upward. In the next paragraph we shall show that the y
component V(x, t) of the force exerted at time t by the part of the string to the left
of a point (x, y) on the part to the right is given by the equation

(1) V(x’ t) = _ny(x’ t) (H > O)v

which is basic for deriving the equation of motion of the string. Equation (1) is
also used in setting up certain types of boundary conditions.

To establish expression (1), we note that if « is the angle of inclination of the
string at the point (x, y) at time ¢, then

—V(x,t)
H

This is indicated in Fig. 24, where V(x, ) < O and y,(x,t) > 0.If V(x, t) > 0, then
/2 < a < and y,(x, t) < 0; and a similar sketch shows that

Vix,t)
H

Hence expression (1) continues to hold. Note, too, that V(x,¢)=0 when
Yu(x, ) = 0.

Suppose that all external forces such as the weight of the string and resistance
forces, other than forces at the endpoints, can be neglected. Consider a segment
of the string not containing an endpoint and whose projection onto the x axis has
length Ax. Since x components of displacements are negligible, the mass of the
segment is §Ax, where the constant § is the mass per unit length of the string.
At time ¢, the y component of the force exerted by the string on the segment at
the left-hand end (x, y) is V(x, t), given by equation (1). The tangential force S
exerted on the other end of the segment by the part of the string to the right is also
indicated in Fig. 24. Its y component V' (x + Ax, t) evidently satisfies the relation

Vix+ Ax,t) .
I =

where 8 is the angle of inclination of the string at that other end. That is,

=tano = y(x, ).

=tan(r — o) = —tano = —y,(x, 1).

tan 8,

2) V(x + Ax,t) = Hy.(x + Ax, 1) (H > 0).

Note that except for a minus sign, this is equation (1) when the argument x there
is replaced by x + Ax.

Now the acceleration of the end (x, y) in the y direction is y, (x, t). Conse-
quently, by Newton’s second law of motion (mass times acceleration equals force),
it follows from equations (1) and (2) that

3) SAxyy(x,t) = —Hy,(x,t) + Hy,(x + Ax, 1),
approximately, when Ax is small. This suggests that we write

H x4+ Ax,t) — ye(x,1)
Ve ) = = 2 LAALEN
1) Ax
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and as Ax tends to zero,

4) Vi (X, 1) = @y (x, 1) <a2 = ?)
whenever these partial derivatives exist. This is the one-dimensional wave equa-
tion, satisfied by the transverse displacements y(x, ¢) in astretched string under the
conditions stated above. The constant a has the physical dimensions of velocity.

One can choose units for the time variable so thata = 1in the wave equation.
More precisely, if we make the substitution t = at, the chain rule shows that

2 2
3_y=a8_y and a—y=ai(aa—y)=azw.
ot ot or? at \ 9t at?
Equation (4) then becomes y,;; = yy,. (A similar observation was made in Prob-
lem 3, Sec. 23, with regard to the heat equation.)

When external forces parallel to the y axis act along the string, we let F
denote the force per unit length of the string, the positive sense of F being that of
the y axis. Then a term F Ax must be added on the right-hand side of equation (3),
and the equation of motion is

F
(5) Vir(X, 1) = @ yeu(x, 1) + 5

In particular, with the y axis vertical and its positive sense upward, suppose that
the external force consists of the weight of the string. Then FAx = —§ Ax g, where
the positive constant g is acceleration due to gravity; and equation (5) becomes the
linear nonhomogeneous equation

(6) Yie(x, 1) ZQZYxx(xvt)_g-

In equation (5), F may be a function of x, ¢, y, or derivatives of y. If the
external force per unit length is a damping force proportional to the velocity in
the y direction, for example, F is replaced by — By,, where the positive constant B
is a damping coefficient. Then the equation of motion is linear and homogeneous:

)

If an end x = O of the string is kept fixed at the origin at all times ¢ > 0, the
boundary condition there is clearly

B
(7) Vie(x, 1) = a®yye(x, 1) — by, (x, 1) (bz-—)

®) y(0,1) =0 (t > 0).

But if the end is permitted to slide along the y axis and is moved along that axis
with a displacement f(¢), the boundary condition is the linear nonhomogeneous
one

©) y0,0) = f() (t > 0).

Suppose that the left-hand end is attached to a ring which can slide along the
y axis. When a force F(¢) (t > 0) in the y direction is applied to that end, F(¢) is
the limit, as x tends to zero through positive values, of the force V (x, r) described
earlier in this section. According to equation (1), the boundary condition at x = 0
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is then
—Hy,(0,1) = F(?) (t > 0).

The minus sign disappears, however, if x =0 is the right-hand end, in view of
equation (2).

PROBLEMS

1. A stretched string, with its ends fixed at the points 0 and 2c on the x axis, hangs at rest
under its own weight. The y axis is directed vertically upward. Point out how it follows
from the nonhomogeneous wave equation (6), Sec. 28, that the static displacements
y(x) of points on the string must satisfy the differential equation

aZy//(x):g (02:§>

on the interval 0 < x < 2c, in addition to the boundary conditions
y0) =0,  yQ2c) =0,

By solving this boundary value problem, show that the string hangs in the parabolic
arc

2a?

22 2
(x—c)2=i(y+£) 0 <x <20)
8

and that the depth of the vertex of the arc varies directly with ¢? and § and inversely
with H.

2. Use expression (1), Sec. 28, for the vertical force V and the equation of the arc in which
the string in Problem 1 lies to show that the vertical force exerted on that string by
each support is §cg, one-half the weight of the string.

3. Give the needed details in the derivation of equation (5), Sec. 28, for the forced vibra-
tions of a stretched string.

4. The physical dimensions of the magnitude H of the x component of the tensile force in
astring are those of mass times acceleration: MLT 2, where M denotes mass, L length,
and T time. Show that since a> = H/$, the constant a has the dimensions of velocity:
LT

5. A strand of wire 1 ft long, stretched between the origin and the point 1 on the x axis,
weighs 0.0321b (8g = 0.032, g = 32 ft/s?) and H = 101b. At the instant ¢ = 0, the strand
lies along the x axis but has a velocity of 1 ft/s in the direction of the y axis, perhaps
because the supports were in motion and were brought to rest at that instant. Assuming
that no external forces act along the wire, state why the displacements y(x, ¢) should
satisfy this boundary value problem:

Y (x, 1) = 10%y, (x, 1) O<x<1,t>0),
0,0 =y1,1)=0, y(x,0) =0, »(x,0) =1

29. VIBRATIONS OF BARS
AND MEMBRANES

We describe here two other types of vibrations for which the displacements satisfy
wave equations. We continue to limit our attention to fairly simple phenomena.
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(i) Vibrations of Elastic Bars

Let the coordinate x denote distances from one end of an elastic bar, in the
shape of a cylinder or prism, to other cross sections when the bar is unstrained.
Displacements of the ends, initial displacements, and velocities in the bar, all di-
rected lengthwise along it and uniform over each cross section involved, cause the
sections to move parallel to the x axis. At time ¢, the longitudinal displacement
of the section at a point x is denoted by y(x, t). Thus the origin of the displace-
ment y of the section at x is in a fixed coordinate system outside of the bar, in the
plane of the unstrained position of that section (Fig. 25).

0
|
I
|
Ax ! \
I

o x x + Ax X

FIGURE 25

At the same time, a neighboring section, labeled x + Ax in Fig. 25 and to
the right of the section at x, has a displacement y(x + Ax,t). The element of
the bar with natural length Ax is, then, stretched or compressed by the amount
y(x + Ax,t) — y(x,t). We assume that such an extension or compression of the
element satisfies Hooke’s law and that the effect of the inertia of the moving
element is negligible. Hence the force exerted on the section at x by the part of
the bar to the left of that section is

_AEy(x + Ax,t) — y(x, t)’
Ax
where A is the area of each cross section, the positive constant E is Young’s
modulus of elasticity, and the ratio shown represents the relative change in the
length of the element. As Ax tends to zero, it follows that the longitudinal force
F(x,t) exerted on the element at its left-hand end is given by the basic equation

(1) F(x,t) = —AEy,(x,1).

Similarly, the force on the right-hand end is
(2) F(x+ Ax,t) = AEy.(x + Ax, t).

Let the constant § denote the mass per unit volume of the material. Then,
applying Newton’s second law to the motion of an element of the bar of length
Ax, we may write

3) SAAxY;(x,t) = —AEy (x,t) + AEy,(x + Ax, t).
We find, after dividing by § A Ax and letting Ax tend to zero, that

E
(4) Ve (X, 1) = @ yex (x, 1) (a2 = 3).

Thus the longitudinal displacements y(x, t) in an elastic bar satisfy the wave
equation (4) when no external longitudinal forces act on the bar, other than at
the ends. We have assumed that displacements are small enough that Hooke’s law
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applies and that sections remain planar after being displaced. The elastic bar here
may be replaced by a column of air, in which case equation (4) has applications in
the theory of sound.

The boundary condition y(0, t) = 0 signifies that the end x = 0 of the bar is
held fixed. If, instead, the end x = 0 is free when ¢ > 0, then no force acts at that
end; that is, F(0, ) = 0 and, in view of equation (1),

(5) y:(0,6) =0 (t > 0).

(i) Vibrations of Membranes

Turning to another type of vibration, we let z(x, y, ) denote small displacements in
the z direction, at time ¢, of points on a flexible membrane that is tightly stretched
over a horizontal frame. In the equilibrium position, a point on the membrane has
coordinates (x, y) in the xy plane. The plane through that point and parallel to
the xz plane intersects the displaced membrane in a curve containing the points
labeled A and B in Fig. 26. By making similar constructions, we can form the
element ABCD of the membrane that is also shown in Fig. 26. The projection
of the element onto the xy plane is a small rectangle with edges of lengths Ax
and Ay.

X

FIGURE 26

We now examine the internal tensile forces that are exerted on the element
at points of the curve AB, those forces being tangent to the element and normal
to AB. In analyzing such a force, we let H denote the magnitude per unit length
along A B of the component parallel to the xy plane. We assume that H is constant,
regardless of what point or curve on the membrane is being discussed. In view of
expressions (1) and (2) in Sec. 28 for the forces V on the ends of a segment of a
vibrating string, we know that the force in the z direction exerted over the curve
AB is approximately —Hz,(x, y, ) Ax and that the corresponding force over the
curve DC is approximately Hz,(x, y + Ay, t)Ax. Similar expressions are found
for the vertical forces exerted over AD and BC when the tensile forces on those
curves are considered. It then follows that the sum of the vertical forces exerted
over the entire boundary of the element is approximately

©) —Hzy(x,y,1) Ax+ Hzy(x, y + Ay, 1) Ax
—Hzo(x,y,t) Ay + Hzy(x + Ax, y, 1) Ay.
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If Newton’s second law is applied to the motion of the element in the z
direction and if § denotes the mass per unit area of the membrane, it follows
from expression (6) for the total force on the element that z(x, y, t) satisfies the
two-dimensional wave equation

H
(7) Zu = a*(2ux + Zyy) (a2 = f)
Details of these final steps are left to the problems, where it is also shown that if
an external transverse force F(x, y, t) per unit area acts over the membrane, the
equation of motion takes the form

(8) 2 =0 (Zax + 2y) + g
Equation (8) arises, for example, when the z axis is directed vertically upward and
the weight of the membrane is taken into account in the derivation of equation (7).
Then F/§ = —g, where g is acceleration due to gravity.

From equation (7), one can see that the static transverse displacements z(x, y)
of a stretched membrane satisfy Laplace’s equation (Sec. 23) in two dimensions.
Here the displacements are the result of displacements, perpendicular to the xy
plane, of parts of the frame that support the membrane when no external forces
are exerted except at the boundary.

PROBLEMS

1. The end x = 0 of a cylindrical elastic bar is kept fixed, and a constant compressive force
of magnitude F units per unit area is exerted at all times ¢ > 0 over the end x = c.
The bar is initially unstrained and at rest, with no external forces acting along it. State
why the function y(x, ¢) representing the longitudinal displacements of cross sections
should satisfy this boundary value problem, where a*> = E/§:

Vi (X, 1) = @y (x, 1) O<x<ct>0),

(0,1 =0, Ey.(c,t) = —Fy, y(x,0) = y;(x,0) =0.

2. Theleft-hand end x = 0 of a horizontal elastic bar is elastically supported in such a way
that the longitudinal force per unit area exerted on the bar at that end is proportional
to the displacement of the end, but opposite in sign. State why the end condition there
has the form

yx(0,1) = by(0,1) (b >0).
3. Modify the derivation of equation (4), Sec. 29, to show that
Ve, 1) = @’y (x, 1) + g,

where g is acceleration due to gravity, when the bar is hung vertically and vibrates
because of its own weight.

4. Let z(p) represent static transverse displacements in a membrane, stretched between
the two circles p = 1 and p = pg (po > 1) in the plane z = 0, after the outer support
0 = po is displaced by a distance z = zy. State why the boundary value problem in z(p)
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can be written
d dz
—<p—>= (1 < p < po),

z(1) =0, 2(po) = 20,
and obtain the solution

Inp
In po

z2(p) = 20 (1 <p =< po).

5. Show that the steady-state temperatures u(p) in an infinitely long hollow cylinder
1 < p < py,—00 < z < oo alsosatisfy the boundary value problem written in Problem 4
if u = 0 on the inner cylindrical surface and u = z; on the outer one. Thus, show that
Problem 4 is a membrane analogy for this temperature problem. Soap films have been
used to display such analogies.

6. Use expression (6), Sec. 29, to derive the nonhomogeneous wave equation (8),
Sec. 29, for a membrane when there is an external transverse force F(x, y,t) per
unit area acting on it. [Note that if this force is zero (F = 0), the equation reduces
to equation (7), Sec. 29.]

7. Let z(x, y) denote the static transverse displacements in a membrane over which an
external transverse force F(x, y) per unit area acts. Show how it follows from the
nonhomogeneous wave equation (8), Sec. 29, that z(x, y) satisfies Poisson’s equation:

Zut+zy+ =0 (fzg).

[Compare with equation (7), Sec. 23.]

8. A uniform transverse force of Fy, units per unit area acts over a membrane, stretched
between the two circles p = 1 and p = py (po > 1) in the plane z = 0. From Problem 7,
show that the static transverse displacements z(p) satisfy the equation

F
() + fop=0 (f()= EO>,
and derive the expression
fo, 5 Inp p*-1
=—(pg—1)| —— — 1< p < pp).
2(p) = 4 (5 —1) Y (1< p < po)

30. GENERAL SOLUTION
OF A WAVE EQUATION

In this section, we shall find the general solution of the one-dimensional wave
equation (Secs. 28 and 29)

(1) Ve (X, 8) = azyxx(x, t) (oo <x <o00,t>0)

that can be useful in special cases.
The differential equation (1) can be simplified as follows by introducing the
new independent variables

(2) u=x+at, v=x—at.
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According to the chain rule for differentiating composite functions,
dy dy du  dydv
ot du ar | ovor
That is,
3) oy = aa—y —a 8_y
ot ou av
Replacing the function y by dy/dt in equation (3) yields the expression

82
By (N, (Y,
ot? du \ ot v \ ot

and using equation (3) again, this time to substitute for dy/d¢ on the right here,

we see that
92 B] 9
ot? ou\ du v dv \ du v
or
92 a2 92 92
(4) Iy _ 22 _ 2 y 7y .
at? ou? dvou  Jv?

We have, of course, assumed that
9y 9%y
dudv  Jvou’
In like manner, one can show that (Problem 1)

0’y _ oy ¥y ¥y

5 — == 42—+ —

®) ax2  ou? dvou  Iv?

In view of expressions (4) and (5), then, equation (1) becomes
(6) Yuw =0

with the change of variables (2).
Equation (6) can be solved by successive integrations to give y, = ¢’(1) and

y=9¢@ + ¢,

where the arbitrary functions ¢ and y are twice differentiable. The general solution
of the wave equation (1) is, therefore,

(7 y(x, 1) = ¢p(x +at) + ¥ (x —at).

EXAMPLE 1. Suppose that the function y(x, ¢) in the wave equation (1) is
subject to the boundary conditions
(8) y(x,0) = f(x), y(x,0 =0 (—00 < X < 00).

Physically, y(x,t) represents transverse displacements in a stretched string of
infinite length, initially released at rest from the position y = f(x).
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The boundary conditions here are simple enough that we can actually deter-
mine the functions ¢ and ¢ in expression (7), that satisfies conditions (8) when

pX)+y¥(x) = f(x) and  ad'(x) —ay’(x) =0.
The second of these equations tells us that ¥ (x) = ¢(x) + C, where C is some

constant. It then follows from the first equation that

1 1
() =3 [f)=C] and ¥ (x)= 3 [f()+C].

Hence expression (7) becomes

1
©) yx, ) = 5[f(X+m)+ fx —an).

The solution (9) of the boundary value problem consisting of equations (1)
and (8) is known as d’Alembert’s solution. It is easily verified under the assumption
that f’(x) and f”(x) exist for all x.

Note how solution (9) can be used to display the instantaneous position of
the string at time ¢ graphically by adding ordinates of two curves, one obtained by
translating the curve

(10) y=1f@

to the right through the distance at and the other by translating it to the left
through the same distance. As ¢ varies, the curve (10) moves in each direction as
a wave, with velocity a, that is often called a traveling wave.

EXAMPLE 2. In this example, we replace conditions (8) by

(11) y(x,0) =0, v (x,0) = g(x) (—00 < x < 00),

where g(x) is integrable over any finite interval. With these conditions, the dis-
placements are initially zero and the initial velocities of points on the string are

gx).
As in Example 1, it is easy to find the functions ¢ and ¢ in expression (7).
To do this, we first note how it follows from conditions (11) that

(12) )+ Y0 =0,  ad'(x) —ay'(x) = g).
Since ¥ (x) = — ¢(x) and

d X

E/o g(s)ds = g(x),

integration of each side of the second of equations (12) yields

(13) 2a¢p(x) = / g(s)ds + C,

0
where C is an arbitrary constant. Because ¥ (x) = — ¢(x), expression (7) now
becomes

1 x+at 1 x—at
y(x, 1) = — {/ g(s)ds—i—C} - — {/ g(s)ds+C} )
2a 0 2a 0
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T'hat is,

1 x+at
(14) y(x,t) = 2—/ g(s)ds.
a X

—at

The solutions (9) and (14) in the two examples just above can be combined
(Problem 2) to show that if

(15) Yu(x,t) = azyxx(x, 1) (—o00 < x <o00,t >0),
(16) y(x’ 0) = f(x)v )’t(x»O) :g(x) (_OO <X <OO),
then

1 1 x+at
17) yx,t) = =[f(x +at) + f(x —ad)] + — / g(s)ds.

2 2a Jy—a:
PROBLEMS

1. Show that if u = x + at and v = x — at, where a is the constant in the wave equation
(1), Sec. 30, and y(x, ¢) is the displacement of the string there, then

dy dy 0y
ax au+av'

Use this expression for dy/dx to obtain expression (5) in Sec. 30:

2 92 2 2

Py _ By, 0y Oy
ax2  ou? dvou  Jv?

2. Let Y(x,t) denote d’Alembert’s solution (9), Sec. 30, of the boundary value problem

solved in Example 1 in that section, and let Z(x, t) denote the solution (14) of the
related problem in Example 2 there. Verify that the sum

yx, 1) =Y(x,t) + Z(x, 1)
is a solution of the boundary value problem

Vi (X, 1) = @y (x, 1) (—00 < x < 00,t > 0),

y(x,0) = f(x), yi(x,0) = gx) (—00 < x < 00).

Thus, show that

x+at
y(x,t):l[f(x—i-at)—l—f(x—at)]—l-i/ g(s)ds
2 2a ), .
is a solution of the problem here.

3. Let y(x,t) represent transverse displacements in a long stretched string one end of
which is attached to a ring that can slide along the y axis. The other end is so far out
on the positive x axis that it may be considered to be infinitely far from the origin. The
ring is initially at the origin and is then moved along the y axis (Fig. 27) so that y = f(¢)
when x = 0 and ¢ > 0, where f is a prescribed continuous function and f(0) = 0. We
assume that the string is initially at rest on the x axis; thus y(x, t) — 0 as x — oo. The
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boundary value problem for y(x, ¢) is

Vi (X, 1) = @% e (x, 1) (x>0,¢>0),
y(xso):O’ }’t(X,O):O (XZO),
0,0 = f() > 0).
y
T
T
[0 at X
FIGURE 27

(a) Apply the first two of these boundary conditions to the general solution (Sec. 30)
yx, 1) = ¢(x +at) + ¥ (x —at)
of the one-dimensional wave equation to show that there is a constant C such that
dp(x)=C and y(x)=-C (x > 0).
Then apply the third boundary condition y(0, ) = f(¢) to show that

ven=r(3)-c (x> 0),

where C is the same constant.
(b) With the aid of the results in part (a), derive the solution

0 when x > at,
Y1) = f(t — f) when x < at.
a
Note that the part of the string to the right of the point x = at on the x axis is
unaffected by the movement of the ring prior to time ¢, as shown in Fig. 27.
4. Use the solution obtained in Problem 3 to show that if the ring at the left-hand end of
the string in that problem is moved according to the function

0 = sinwt  when 0 <t <1,
foy= 0 when t>1,

then
0 when x <a(t —1) or x > at,
Yo 1) = sin{n(t - E)} when a(t—1) <x < at.
a

Observe that the ring is lifted up 1 unit and then returned to the origin, where it
remains after time ¢+ = 1. The expression for y(x, ¢) here shows that when ¢ > 1, the
string coincides with the x axis except on an interval of length a, where it forms one
arch of a sine curve (Fig. 28). Furthermore, as ¢ increases, the arch moves to the right
with speed a.
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y| =1

. VRN

10} a(t—1) at X

FIGURE 28

31. TYPES OF EQUATIONS AND
BOUNDARY CONDITIONS

The second-order linear partial differential equation (Sec. 21)
(1) Auye + Buyy, + Cuyy + Du, + Euy + Fu=G

inu = u(x, y),where A, B, ..., Gare constants or functions of x and y, is classified
in any given region of the xy plane according to whether B> —4AC is positive,
negative, or zero throughout that region. Specifically, equation (1) is

(i) hyperbolic it B> —4AC > 0;
(ii) elliptic if B> —4AC < 0;
(iii) parabolicif B> —4AC = 0.

For each of these categories, equation (1) and its solutions have distinct
features. Some indication of this is given in Problems 2 and 3. The terminology
here is suggested by the equation

) Ax* + Bxy +Cy* + Dx+ Ey + F =0,
where A, B, ..., F are constants. From analytic geometry, we recall that equa-
tion (2) represents a conic section in the xy plane and that the different types of
conic sections arising are similarly determined by B> — 4AC.
EXAMPLE 1. Laplace’s equation
Ugy + Uy, =0

is a special case of equation (1) in which A= C =1 and B = 0. Hence it is elliptic
throughout the xy plane. Poisson’s equation (Sec. 23)

Upx T Uyy = fx,y)

in two dimensions is elliptic in any region of the xy plane where f(x, y) is defined.
The one-dimensional heat equation

—kuy +u, =0

in u = u(x, t) is parabolic in the xt plane, and the one-dimensional wave equation
—a*yer + yu =0

in y = y(x, t) is hyperbolic there.
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When some of the coefficients in equation (1) actually vary with x and y, the
type of the equation can vary in the xy plane.

EXAMPLE 2. Consider the equation
Upy — 2XUyy + (1 — yz)uyy =0.
Here
B> —4AC = (—2x)> —4()(1 — y») =4(x> + y* — 1),

and we find that the equation is parabolic on the circle x> + y*> = 1, elliptic inside
it, and hyperbolic exterior to it.

As indicated below, the three types of second-order linear equations just
described require, in general, different types of boundary conditions in order to
determine a solution.

Let u denote the dependent variable in a boundary value problem. A condi-
tion that prescribes the values of u itself along a portion of the boundary is known
as a Dirichlet condition. The problem of determining a harmonic function on a
domain such that the function assumes prescribed values over the entire bound-
ary of that domain is called a Dirichlet problem. In that case, the values of the
function can be interpreted as steady-state temperatures. Such a physical inter-
pretation leads us to expect that a Dirichlet problem may have a unique solution
if the functions considered satisfy certain requirements as to their regularity.

A Neumann condition prescribes the values of normal derivatives du/dn on
a part of the boundary. Another type of boundary condition is a Robin condition."
It prescribes values of hu + du/dn at boundary points, where 4 is either a constant
or a function of the independent variables.*

If a partial differential equation in y is of the second order with respect to
one of the independent variables ¢ and if the values of both y and y, are prescribed
when ¢ = 0, the boundary condition is one of Cauchy type with respect to ¢. In the
case of the wave equation y,; = a’yy,, such a condition corresponds physically
to that of prescribing the initial values of the transverse displacements y and
velocities y, in a stretched string. Initial values for both y and y, appear to be
needed if the displacements y(x, t) are to be determined.

PROBLEMS
1. Classify each of the following differential equations in various regions and sketch those
regions:
(@) yug +uyy =0; (b) Ux + 21y + yuy, = 0; () Xty + yutyy, — 3u, = 2.

Answers: (a) Parabolic on the x axis, elliptic above it, and hyperbolic below it;
(b) parabolic on the curve y = x*, elliptic above it, and hyperbolic below it.

"Victor Gustave Robin (pronounced row-ban’) (1855-1897), French mathematical physicist.

*When such a condition is prescribed on the entire boundary of a region throughout which u is
harmonic, the boundary value problem is sometimes referred to as a Churchill problem. See pp. 154—
156 of the book by Sneddon (2006) that is listed in the Bibliography.
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Consider the partial differential equation
Ayxx + Byxt + C,YN =0 (A7é 0’ C 7é 0):

where A, B, and C are constants, and assume thatit is hyperbolic, so that B> —4AC > 0.

(a) Use the transformation
u=x+at, v=x+ pt (@ # B)
to obtain the new differential equation
(A+ Ba + Ca?)yu, + [2A+ Ba + B) +2CaB]yu + (A+ BB + CB)y,, =0.
(b) Show that when « and 8 have the values

_B+VBI_4AC _B— VB —4AC
%= 2C and  fo = 2C :

respectively, the differential equation in part (a) reduces to y,, = 0.

(¢) Conclude from the result in part (b) that the general solution of the original dif-
ferential equation is

Y=o +aot) + Y(x + fot),

where ¢ and y are arbitrary functions that are twice differentiable. Then show how
the general solution (7), Sec. 30, of the wave equation

_azyxx + Yu = 0

follows as a special case.

. Show that under the transformation

u=x, v=oax+ Bt B#0),
the given differential equation in Problem 2 becomes
Ayuu+ QAa + BB) Y + (Ad” + Bap + CB)y,, = 0.
Then show that this new equation reduces to
(@) Yuu + yso = 0 when the original equation is elliptic (B> — 4AC < 0) and
—B 2A
“=liac—p T Jaac—m

(b) Vuu = 0 when the original equation is parabolic (B> — 4AC = 0) and
a=-B, B=2A



CHAPTER

THE
FOURIER
METHOD

We turn now to a careful presentation of the Fourier method for solving bound-
ary value problems involving partial differential equations. Once the basics of the
method have been developed, we shall, in Chap. 5, use it to solve a variety of
boundary value problems whose solutions entail Fourier series. Then, in subse-
quent chapters, we shall apply the method to problems whose solutions involve
other, but closely related, types of representations.

32. LINEAR OPERATORS

If u; and u, are functions and ¢; and ¢; are constants, the function ciuy + cyup 1s
called a linear combination of u; and u,. Note that u; + u, and ciuy, as well as
the constant function 0, are special cases. A linear space of functions, or function
space, is a class of functions, all with a common domain of definition, such that
each linear combination of any two functions in that class remains in it; that is, if
u1 and uy are in the class, then so is cjuy + cup. An example is the function space
C,(a, b), introduced in Sec. 1.

A linear operator L on a given function space transforms each function u of
that space into a function Lu, which need not be in the space, and has the property
that for each pair of functions u; and u»,

(1) L(ciuy + coup) = c1 Luy + o Luy
whenever c; and ¢, are constants. In particular,
(2) L(u +u) = Luy + Lu, and L(ciuq) = ciLuy.

95
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The function Lu may be a constant function; in particular,
L) = LO-0) =0L©0) =0.
If us is a third function in the space, then
L(ciuy + coup + cuz) = Lciug + coup) + Licsus)
=c1Lu; +cyLuy + c3Lus.

Proceeding by mathematical induction, we find (Problem 7, Sec. 34) that L trans-
forms linear combinations of N functions in this manner:

N N
(3) L (Z c,,u,,) = Z cnLu,.
n=1 n=1

EXAMPLE 1. Suppose that both u; and u;, are functions of the independent
variables x and y. According to elementary properties of derivatives, a derivative
of any linear combination of the two functions can be written as the same linear

combination of the individual derivatives. Thus,

0 8”1 8u2
4 — (i + coup) =c1— +cp—,
4) ax(ll 2U2) ey 255

provided that du/dx and du,/dx exist. In view of property (4), the class of func-
tions of x and y that have partial derivatives of the first order with respect to x
in the xy plane is a function space. The operator d/9dx is a linear operator on that
space. It is naturally classified as a linear differential operator.

EXAMPLE 2. Consider aspace of functions u(x, y) defined on the xy plane.
If f(x, y)is afixed function, also defined on the xy plane, then the operator L that
multiplies each function u(x, y) by f(x, y) is a linear operator, where Lu = fu.

If linear operators L and M, distinct or not, are such that M transforms each
function u of some function space into a function Mu to which L applies, and if u;
and u, are functions in that space, it follows from equation (1) that

(5) LM(ciuy + coup) = L(cgy Muy + coMuy) = ¢i LMuy + ¢ LMu,.

That is, the product LM of linear operators is itself a linear operator.
The sum of two linear operators Land M is defined by means of the equation

(6) (L+M)u= Lu+ Mu
and is found to be linear by writing
(L+ M)(c1ur + coup) = Liciug + couz) + M(cruy + couz)
= c1Luj + co Luy + ¢ Muy + c; Mu,
= c1(Luy + Muy) + c2(Luy + Muy)
= c1(L+ M)uy + c2(L+ M)u,.

The sum of any finite number of linear operators is, in fact, linear.
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EXAMPLE 3. Let L denote the linear operator 3?/3x? defined on the space
of functions u(x, y) whose derivatives of the first and second order with respect to
x exist in a given domain of the xy plane. The product M = f 3/dx of the linear
operators in Examples 1 and 2 is linear on the same space, and the sum

92 0
L+M=— —
+ 8x2+f3x

is therefore linear.

33. PRINCIPLE OF SUPERPOSITION

Each nonzero term of a linear homogeneous differential equation in u consists of
a function of the independent variables only, which may be a constant function,
times a derivative of u or u itself. Hence every linear homogeneous differential
equation has the form

(1) Lu=0,

where L is a linear differential operator.
In particular, we recall from Sec. 21 that

(2) Auyy + Buy, + Cuyy + Duy + Euy + Fu =0,

where the letters A through F denote constants or functions of x and y only, is the
general second-order linear homogeneous partial differential equation in u(x, y).
It can be written in the form (1) when
2 2 2
3) L:Aa——i-B 0 +C8—+Di+Ei+F.
9x2 dy dx ay? ax dy

Linear homogeneous boundary conditions also have the form (1). Then the
variables appearing as arguments of « and as arguments of functions that serve as
coefficients in the linear operator L are restricted so that they represent points on
the boundary of the domain.

We now state a principle of superposition, which is fundamental to the
Fourier method for solving linear boundary value problems. It involves infinite
series of the type

) = cunn
n=1

where ¢, are constants and u,, are specified functions.

Theorem. Suppose that each function of an infinite set uy, u,, ... satisfies a
linear homogeneous differential equation or boundary condition Lu = 0. Then the
infinite series (4) also satisfies Lu = 0, provided that

(i) the series converges and is differentiable for all derivatives involved in L;

(if) any required continuity condition at the boundary is satisfied by Lu when
Lu = 0 is a boundary condition.
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Superposition is also useful in the theory of ordinary differential equa-
tions. For example, from the two solutions y = ¢* and y = e™* of the linear
homogeneous equation y” — y = 0, we know that y= cje* + ce™" is also a so-
lution. In this book, we shall be concerned mainly with applying the principle of
superposition to solutions of partial differential equations.

To prove the theorem, we must deal with the convergence and differentia-
bility of infinite series. Suppose that the functions u, and constants c, are such that
series (4) converges to u throughout some domain of the independent variables,
and let x represent one of those variables. The series is differentiable, or termwise
differentiable, with respect to x if the derivatives du,/dx and du/dx exist and if
the series of functions c¢,du, /dx converges to du/dx:

) ou _ f: c ouy,
ax —"3d
n=1
Note that a series must be convergent if it is to be differentiable. If, in addition,
series (5) is differentiable with respect to x, then series (4) is differentiable twice
with respect to x.

Let L be a linear operator where Lu is a product of a function f of the
independent variables by u or by a derivative of u, or where Lu is a sum of a
finite number of such terms. We now show that if series (4) is differentiable for all
the derivatives involved in L and if each of the functions u, in series (4) satisfies
the linear homogeneous differential equation Lu = 0, then series (4) satisfies it.

To accomplish this, we first note that according to the definition of the sum
of an infinite series,

N

f— = f lim cha””
when series (4) is differentiable with respect to x. Thus,
6 ou li
(6) f ax Nl_{réo f— ax Z Cnllp.

Here the operator d/dx can be replaced by other derivatives if the series involved
are differentiable. Then, by adding corresponding sides of equations similar to
equation (6), including one that may not have any derivative at all, we find that

N
(7 Lu= Alll_r)réo L (2 Cn u,,) .

The sum on the right-hand side of equation (7) is a linear combination of the
functions uy, up, ..., uy;and if Lu, =0 (n =1, 2, ...), it follows, with the aid of
property (3), Sec. 32, that

N
Lu:l\llglgoz_;anunz Jlim 0 =0.

This is, of course, the desired result.
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The above discussion applies as well to linear homogeneous boundary con-
ditions Lu = 0. In that case, we may require the function Lu to satisfy a condition
of continuity at points on the boundary so that its values there will represent
limiting values as those points are approached from the interior of the domain.
This completes the proof of the theorem.

34. EXAMPLES

We now illustrate how the superposition theorem in Sec. 33 is to be used in solving
boundary value problems. In our discussion, we shall assume that needed con-
ditions for convergence and differentiability of series are satisfied. We assume,
moreover, that any continuity requirements involving boundary conditions are
satisfied. The examples here will be used in sections immediately following this
one, where two boundary value problems will be completely solved by means of
the Fourier method.

EXAMPLE 1. Consider the linear homogeneous heat equation (Sec. 22)

(1) u(x, 1) = ki (x, 1) O<x<ct>0),
together with the linear homogeneous boundary conditions
(2) u,(0, t) =0, uy(c,t)=0 (t > 0).
Equation (1) takes the form Lu = 0 when
2
L=k aax2 %;

and it is straightforward to verify that if

2 2k
(3) up =1, u,,:exp(—n 712 t> cos@ n=1,2,...),
c c
then
32 b 32140 8u0
Luy = k— — — =k———=0
0 ( ox2 ax) R T
and
92 9 %u, ou, i\ 2 n2n2k
Luy = (b = o Y =kt = S = k(25 =0
( dx2 at) tn 9x2 ot c )t + U
(n=1,2,...).
Thus, by the superposition theorem, Lu = 0 if u denotes the infinite series
oo
4) M=Aouo+ZAnun,
n=1

where A, (n =0, 1,2, ...) are constants. In view of expressions (3), then, the series

2 Zk
(5) u(x,t) = Ag + Z Ay exp( ) cos %
C C

n=1

satisfies the heat equation (1).
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Conditions (2) can, moreover, be written in terms of the operator L = 3/dx
as Lu=0, where Lu is to be evaluated at x =0 and at x =c.
Inasmuch as

auo

(Luo)x—0 = <W)x_0 =0

9 2’k
(L) =0 = (—u") = {—E exp (_n 712 t) sin nnx} =0
ox ) o c c ¢ |0

n=12,..)

and

when this operator is used, the first of conditions (2) is satisfied by the functions
(3). Likewise, (Lug)y—- = 0 and (Lu,),_. =0(m =1,2,...). Hence, by the super-
position theorem, series (5) satisfied both of the conditions (2).

This example will be used in Sec. 36, where the functions (3) are discovered
and where it is shown how the results here can be used to complete the solution
of a certain boundary value problem for temperatures in a slab.

EXAMPLE 2. Itis easy to verify that if L is the linear operator

L2 2 92
=aq — — —
ax2 012
and
. t
(6) yn=s1n?cos? n=12..),

where a and ¢ are positive constants, then

9% 92 92 92
A S

ax2 a2 ax2 a2
2 2
= —a’® (n%) yn+(?) V=0 n=1,2,...).

Hence it follows from our superposition theorem that Ly = 0 when y is the infinite
series

o0
(7) y= Z By yn,
n=1
where B, (n = 1,2, ...) are constants. That is, the series
o0
. nmnx nmat
(8) Y(x»t)zansm? T
n=1
satisfies the wave equation (Sec. 28)
©) Vi (X, 1) = %y (x, 1) O<x<ct>0).

Now write L = 1 and observe that

t
(Lyp)x=0 = (sin @ cos nra ) =0
x=0

C
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and

t
(Lyn)x=c = (Sin @ Cos nra > =0.
¢ ¢ x=c

In view of our superposition theorem, this shows that series (8) also satisfies the
boundary conditions

(10) y©0,0)=0,  y(,1)=0 t > 0).
On the other hand, if L = 9/9¢, we find that

0 t
(Lyn)i—o = <—y"> = (_n_na sin 2% sin 274 ) =0 m=12,..).
=0 ¢ ¢ ¢ Ji=0

So, again by the superposition principle, series (8) satisfies the condition
(11) yi(x, 0 =0 O <x<o).

The differential equation (9) and boundary conditions (10) and (11) are part
of a boundary value problem for a vibrating string that will be fully stated and
solved in Sec. 37, where it is also shown how the functions (6) arise.

PROBLEMS

1. Show that if an operator L has the two properties
L(uy + up) = Luy + Lu,, L(ciuy) = ¢ Luy

for any functions u1, u, in some space and for every constant ¢y, then L is linear; that
is, show that it has property (1), Sec. 32.

2. Use the linear operators L = x and M = 3/9dx to illustrate the fact that products LM
and ML are not always the same.

3. Verify that each of the functions

uy =y, u, = sinh ny cos nx n=1,2,..)
satisfies Laplace’s equation (Sec. 23)
U (X, Y) + 1y (x,y) =0 O<x<m0<y<?2)
and the boundary conditions
u (0, y) = u,(m, y) =0, u(x,0)=0.

Then use the superposition principle in Sec. 33 to show formally, without considering
questions of convergence, differentiability, or continuity, that the series

ulx,y)=Apy+ Z A, sinh ny cos nx
n=1
satisfies the same differential equation and boundary conditions.

4. Show that each of the functions
1 1

= - and =
bit X Y2 T+x
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satisfies the nonlinear differential equation
Y+ =0.

Then show that the sum y; + y, fails to satisfy that equation. Also show that if c is a
constant, where ¢ # 0 and ¢ # 1, neither cy, nor cy, satisfies the equation.

5. Letu; and u, satisfy alinear nonhomogeneous differential equation Lu = f, where fis
anonzero function of the independent variables only. Prove that the linear combination
Uy + cauy fails to satisfy that equation when ¢; + ¢, # 1.

6. Let L denote a linear differential operator, and suppose that f is a function of the
independent variables. Show that the solutions u of the equation Lu= f are of the
form u = u; + up, where the u; are the solutions of the equation Lu; =0 and u, is
any particular solution of Lu, = f. (This is a principle of superposition of solutions for
nonhomogeneous differential equations.)

7. Use mathematical induction on the integer N to verify property (3), Sec. 32, of a linear
operator:

N N
L (Z c,,un> = chLun.

n=1 n=1

Suggestion: Point out that the property is true when N = 1 and then show that
if it is true when N is any positive integer M, it must be true for N = M + 1.

35. EIGENVALUES AND EIGENFUNCTIONS

In Secs. 36 and 37, where two boundary value problems involving partial differ-
ential equations are solved, we shall encounter two related problems involving
a certain ordinary differential equation. We treat those related problems here in
order to obtain solutions of the problems in Secs. 36 and 37 more efficiently.

We consider first the problem of finding values of A and nontrivial functions
X(x), or functions that are not identically equal to zero, such that

(1) X'(x) +2Xx) =0, X0 =0  X(c)=0,

where the differential equation is defined on the interval 0 < x < c¢. All of the
conditions in this problem are linear and homogeneous, and so any nonzero con-
stant times a nontrivial solution X(x) is essentially the same as X(x). Problem (1)
is called a Sturm-Liouville problem. The general theory of such problems is de-
veloped in considerable detail in Chap. 8, where it is shown that A must be a real
number.

Turning now to finding solutions of problem (1), we examine three cases.

(i) The case A =0

If A =0, the differential equation in problem (1) becomes X" (x)=0. Its general
solution is X(x) = Ax + B, where A and B are constants. Since X'(x) = A, the
boundary conditions X’(0) =0 and X’(c) = 0 require that A=0. So X(x) = B;
and, except for a constant factor, problem (1) has the solution X(x)=1 if A=0.
Note that any nonzero value of B might have been selected here.
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(ii) The case \ > 0
If A > 0, we can write A = o (@ > 0). The differential equation in problem (1)
then takes the form X" (x) + «?X(x) = 0, its general solution being

X(x) = Cicosax + Gy sinax.
Writing
X' (x) = —Cia sinax + Cya cos ax

and keeping in mind that « is positive and, in particular, nonzero, we see that the
condition X’(0) = Oimplies that C; = 0. Also, from the condition X’(c) = 0, it fol-
lows that Cya sin e = 0. Now if X(x) is to be a nontrivial solution of problem (1),
C1 # 0. Hence « must be a positive root of the equation sin@c = 0. That is,

nm

o= — n=1,2,...).
c
So, except for the constant factor Cj,
X(x) =cos@ n=12..)
and the corresponding values of A are
_ 2o (TN _
A_a_(c) n=12..).

(iii) The case A < 0
If A < 0, we write A = —a? (@ > 0). This time, the differential equation in pro-
blem (1) has the general solution

Xx)=Cie* + Cye™™.
Since
X' (x) = Clae®™ — Cae ™,
the condition X’(0) = 0 implies that C; = C;. Hence
X(x) = Gi(e™ +e*),
or
X(x) = 2C cosh ax.

But the condition X’(c) = 0 requires that C; sinh ec = 0; and, since sinh ¢ # 0,
itfollows that C; = 0. So problem (1) has only the trivial solution X(x) = 0if A < 0.

The values
nm \2
() A =0, An = (7) n=12,..)

of A for which problem (1) has nontrivial solutions are called eigenvalues of that
problem, and the solutions

3) Xo(x) =1, X, (x) = cos ? n=1,2,..)

are the corresponding eigenfunctions.
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The second Sturm-Liouville problem that we shall encounter is
4) X' (x) + 2 X(x) =0, X(0) =0, X(c) =0,

where the differential equation is the same as in problem (1) and is again defined
on the interval 0 < x < c. The method of solving this problem is similar to the one
used to solve problem (1); and finding the solutions is left to Problem 5, Sec. 37,
where the cases A = 0 and A < 0 both yield only trivial solutions X(x) = 0. It
turns out that the eigenvalues are

nm\2
(5) h= (=) n=1,2...)
and that the corresponding eigenfunctions are
(6) X, (x) = sin 2% n=12..).
c

36. A TEMPERATURE PROBLEM

The linear boundary value problem

(1) u(x, 1) = kttg (x, 1) O<x<c, t>0),
2) uy(0,¢) =0, u(c,t) =0 (t > 0),
3) u(x,0) = f(x) O<x <o)

is a problem for the temperatures u(x, t) in an infinite slab of material, bounded
by the planes x = 0 and x = ¢, if its faces are insulated and the initial temperature
distribution is a prescribed function f(x) of the distance from the face x = 0.
(See Fig. 29.) We assume that the thermal conductivity k of the material is constant
throughout the slab and that no heat is generated within it.
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FIGURE 29

In this section, we illustrate the Fourier method for solving linear boundary
value problems by solving the temperature problem just stated. A number of the
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steps to be taken here are only formal, or manipulative. Verification of the final
solution can be found in Chap. 11 (Sec. 110).

To determine nontrivial (u # 0) functions that satisfy the homogeneous con-
ditions (1) and (2), we seek separated solutions of those conditions,” or functions
of the form

4) u=Xx)T@)

that satisfy them. Note that X is a function of x alone and T is a function of ¢
alone. Note, too, that X and 7 must be nontrivial (X # 0, T # 0).
If u = XT satisfies equation (1), then

X)) T'(t) = kX" () T(t);
and, for values of x and ¢ such that the product X(x)7'(¢) is nonzero, one can divide
each side of this equation by kX(x) T(¢) to separate the variables:
T'(@)  X"(x)
kT Xx) &

Since the left-hand side here is a function of ¢ alone, it does not vary with x.
However, it is equal to a function of x alone, and so it cannot vary with ¢. Hence
the two sides must have some constant value —X in common. That is,

o _ . X' _

kT(@t) X(x)
Our choice of —A, rather than A, for the separation constant is, of course, a minor
matter of notation. It is only for convenience later on (Chap. 8) that we have
written —A.

If u = XT is to satisfy the first of conditions (2), then X’(0)7'(¢) must vanish
forallz (r > 0). With our requirement that 7 = 0, it follows that X’ (0) = 0. Likewise,
the second of conditions (2) is satisfied by u = XT if X'(c) = 0.

Thus u = X T satisfies conditions (1) and (2) when X and T satisfy these two
homogeneous problems:

(5) X'(x)+2Xx) =0, X' 0 =0, X'(c)=0,

(6) T'(t) + AkT(t) = 0,

where the parameter 1 is the same in each problem. We recall from Sec. 35 that
equations (5) make up a Sturm-Liouville problem whose eigenvalues

n \ 2
(7) Ao =0, Ap = (T) n=12,..)
correspond to the eigenfunctions
(8) Xox) =1,  X,(x) =cos ? (n=1,2,...)

TThis terminology is borrowed from the book by Pinsky (2003), which is listed in the Bibliography.
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Turning to the differential equation (6), we need to determine its solutions
To(t) and T,(¢t) (n = 1,2,...) corresponding to each of the eigenvalues 1y and
An (n=1,2,...). Those solutions are found to be constant multiples of

(9) o) =1, T,(t) = exp (—HZZ;kt) n=12 ).
Hence each of the products

(10) ) = Xo(0) To(t) = 1

and

11) Up = X, () (1) = exp (—”zfzzkr) cos @ n=1,2..)

satisfies the homogeneous conditions (1) and (2). The procedure just used to obtain
them is called the method of separation of variables.

Now, as already shown in Example 1, Sec. 34, the superposition principle in
Sec. 33 tells us that the generalized linear combination

> n’n’k nmx
(12) u(x,t) = Ag+ 2; Ayexp| — = t ) cos —~

n=
of the functions (10) and (11) satisfies conditions (1) and (2), provided that any
needed convergence, differentiability, and continuity requirements are satisfied.
The constants A, (n = 0,1,2,...) in expression (12) are readily obtained from
the nonhomogeneous condition (3), namely u(x,0) = f(x). More precisely, by
writing ¢ = 0 in expression (12), we have

fay =2 i A, cos X 0 <x <0
- <x <o)
2 ot " c

Since this is a Fourier cosine series on 0 < x < ¢ (see Secs. 8 and 15), it follows
that

(13) Ay=1 / " o dx
¢ Jo
and
(14) A = %/L F) cos T gy n=12,..).
c Jo C

The formal solution of our temperature problem is now complete. It consists
of expression (12) together with coefficients (13) and (14). Note that the steady-
state temperatures, occurring when ¢ tends to infinity, are Ay. That constant tem-
perature is evidently the mean, or average, value of the initial temperatures f(x)
over the interval 0 < x < c.

EXAMPLE. Suppose that the thickness c of the slab is unity and that the
initial temperatures are f(x) =x (0 < x < 1). Here

1 1
AO:/O xdx:i.
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Using integration by parts, or Kronecker’s method (Sec. 5), and observing that
sinnm =0 and cosnm = (—1)"
when 7 is an integer, we find that

1 . 1 n

Xsinnmx  COSnmX 2 (=D"—-1

A, =2 | xcosnmxdx =2 +— ==
0 nmw nr? |, 7w n

n=1,2,...).

When ¢ = 1 and these values for A, (n = 0, 1, 2,...) are used, expression
(12) becomes

1 2 &K= -
u(x,t) = E = Z ) exp( n*m?kt) cos nmx,
orf
4 & (2n — 1) 2kt]
(15) u(x,t) = E - Zl e cos(2n — 1)mx.

37. A VIBRATING STRING PROBLEM

To illustrate further the Fourier method, we now consider a boundary value prob-
lem for displacements in a vibrating string. This time, the nonhomogeneous con-
dition will require us to expand a function f(x) into a sine series, rather than a
cosine series.

Let us find an expression for the transverse displacements y(x, ¢) in a string,
stretched between the points x = 0 and x = ¢ on the x axis and with no external
forces acting along it, if the string is initially displaced into a position y = f(x)
and released at rest from that position. The function y(x, t) must satisfy the wave
equation (Sec. 28)

(1) V(. 1) = @ yue(x, 1) O<x<ct>0).
It must also satisfy the boundary conditions

) y0.0=0,  y,)=0, 30 =0,

©) y(x, 0) = f(x) O=x=o),

where the prescribed displacement function f is continuous on the interval
0 < x < cand where f(0) = f(c) =0.
We assume a product solution

(4) y=Xx)T()

TSince the coefficients in this series are zero when 7 is even, the index 7 can be replaced by 2n — 1
wherever it appears after the summation symbol. Compare with Example 1, Sec. 3.
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of the homogeneous conditions (1) and (2) and substitute it into those conditions.
This leads to the two homogeneous problems

(5) X'(x)+2X(x)=0, X©0) =0, X =0,

(6) T"(t) + 2a*T(t) = 0, T'(0) = 0.

Problem (5) is the second Sturm-Liouville problem mentioned in Sec. 35,
where it was left to the reader to show that its eigenvalues are

(7) b = (?)2 n=1.2...)
and that the corresponding eigenfunctions are
(8) X, (x) = sin 7 n=1.2...)
When A = A,, problem (6) becomes

() + (?)ZT(I) =0, T =0
and it follows that except for a constant factor, the solution is
9) T. (1) :cos%ﬂt n=1,2,..)).
Consequently, each of the products
(10) Yo = X () To(t) = sin ? cos "”T‘” n=1,2...)

satisfies the homogeneous conditions (1) and (2).
According to Example 2 in Sec. 34, the generalized linear combination

oo
. hmx nmat
(11) yix, t) = Z B, sin — cos

n=1

Cc

also satisfies the homogeneous conditions (1) and (2), provided that the constants
B, can be restricted so that the infinite series is suitably convergent and differ-
entiable. That series will satisfy the nonhomogeneous condition (3) if the B, are
such that

- . A7X
(12) fx) = nZ:; B, sin — 0 <x<o).
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Because representation (12) is a Fourier sine series representation on the
interval 0 < x < ¢, we know from Sec. 15 that

(13) B, = %/ F(x)sin @ dx n=1.2,..).
0

The formal solution of our boundary value problem is, therefore, series (11) with
coefficients (13). Note that series (11) converges to zero at the endpoints x = 0
and x = c of the interval 0 < x < c.

EXAMPLE. Consider a harp string of length ¢ = 2 whose midpoint is

initially raised to a height & above the horizontal axis. The rest position from
which the string is released thus consists of two line segments (Fig. 30).

y =/

2.0) x

FIGURE 30

The function f, which describes the initial position of this plucked string, is
given by the equations

(14) f(x):{hx when 0 < x <1,

—h(x —2) when 1 < x <2;

and the coefficients B, in the Fourier sine series for that function on the interval
0 < x < 2 can be written

2 1 5
Bi= [ feosinS dr=n [wsin"T dx—n (25T ax
’ 2 0 2 1 2

After integrating by parts, or using Kronecker’s method (Sec. 5), and simplifying,
we find that

8h 1 . nmw
BHZP'ESIHT (l’l=1,2,...).
Series (11) then becomes
=1 nm nmx nmat
(15) yx, 1) = = 2 ) sin > sin — - cos —
Since
nw
L
sin —

when n is even and since
. 2n—-Dm
n e —

si 5 = sin(mr - %) =—cosnr = (-1)""' (n=1,2,..),
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expression (15) for the displacements of points on the string in question can also
be written'

8h o= (=D 2n—Dmx  (2n—1)nat
(16) y(x,t) = ; 2 Gn =1y sin 3 cos 3 .

PROBLEMS
1. In Problem 3, Sec. 34, the functions
Uy =y, u, = sinh ny cos nx n=1,2,...)
were shown to satisfy Laplace’s equation
U (X, y) + Uy (x,y) =0 O<x<m0<y<?2)
and the homogeneous boundary conditions
uy(0,y) =u,(m,y) =0, u(x,0) =0.

After writing u = X(x)Y(y) and separating variables, use the solutions of the Sturm-
Liouville problem (1) in Sec. 35 to show how the functions uyandu, (n = 1, 2, ...) canbe
discovered. Then, by proceeding formally, derive the following solution of the bound-
ary value problem that results when the nonhomogeneous condition u(x, 2) = f(x) is

included:
ulx,y)=Aoy+ Z A, sinh ny cos nx,
n=1
where
A - L nf(x)dx A -z nf(x)cosnxdx n=12,..)
7 2 0 ’ " msinh2n ), Tomen
2. Suppose that in Sec. 36 we had written
(RO = kX *) instead of '@ = X (x).
T@) X(x) kT(t) X(x)
Continuing with
T/ 1"
O _Xw_
T(1) X(x)

where A is a separation constant, show how the products (10) and (11) in Sec. 36 still
follow. (This illustrates how it is generally simpler to keep the physical constants out
of the Sturm-Liouville problem, as we did in Sec. 36.)

3. For each of the following partial differential equations in u = u(x, t), determine if it is
possible to write u = X(x)7(¢) and separate variables to obtain ordinary differential
equations in X and 7. If it can be done, find those ordinary differential equations.

((1) Uyy — XUy = 0; (b) (x + t)uxx — U = 07
(¢) Xtbey + Uy +tuy =0;  (d) ey — Uy — u = 0.

See the footnote with the example in Sec. 36.
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4. By assuming a product solution y = X(x)7(¢), obtain conditions (5) and (6) on X and
T in Sec. 37 from the homogeneous conditions (1) and (2) of the string problem there.

5. Derive the eigenvalues and eigenfunctions, stated in Sec. 35, of the Sturm-Liouville
problem

X"(x) +21X(x) =0, X(0) =0, X(c) =0.

6. Point out how it follows from expression (11), Sec. 37, that, for each fixed x, the dis-
placement function y(x, t) is periodic in ¢ with period
2c

T =
a

38. HISTORICAL DEVELOPMENT

Mathematical sciences experienced a burst of activity following the invention
of calculus by Newton (1642-1727) and Leibnitz (1646-1716). Among topics in
mathematical physics that attracted the attention of great scientists during that
period were boundary value problems in vibrations of strings, elastic bars, and
columns of air, all associated with mathematical theories of musical vibrations.
Early contributors to the theory of vibrating strings included the English mathe-
matician Brook Taylor (1685-1731), the Swiss mathematicians Daniel Bernoulli
(1700-1782) and Leonhard Euler (1707-1783), and Jean d’Alembert (1717-1783)
in France.

By the 1750s d’Alembert, Bernoulli, and Euler had advanced the theory of
vibrating strings to the stage where the wave equation y, = a’y,, was known
and a solution of a boundary value problem for strings had been found from
the general solution of that equation. Further studies, moreover, led them to the
notion of superposition of solutions, to a solution of the form (11), Sec. 37, where
a series of trigonometric functions appears, and thus to the matter of representing
arbitrary functions by trigonometric series. Euler later found expressions for the
coefficients in those series. But the concept of a function had not been clarified,
and a lengthy controversy took place over the question of representing arbitrary
functions on a bounded interval by such series. The question of representation
was finally settled by the German mathematician Peter Gustav Lejeune Dirichlet
(1805-1859) about 70 years later.

The French mathematical physicist Jean Baptiste Joseph Fourier (1768-
1830) presented many instructive examples of expansions in trigonometric series
in connection with boundary value problems in the conduction of heat. His book
Théorie analytique de la chaleur, published in 1822, is a classic in the theory of heat
conduction. It was actually the third version of a monograph that he originally sub-
mitted to the Institut de France on December 21, 1807." He effectively illustrated
the basic procedures of separation of variables and superposition, and his work
did much toward arousing interest in trigonometric series representations.

TA. Freeman’s early translation of Fourier’s book into English was first reprinted by Dover, New York,
in 1955. The original 1807 monograph itself remained unpublished until 1972, when the critical edition
by Grattan-Guinness that is listed in the Bibliography appeared.
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But Fourier’s contributions to the representation problem did not include
conditions of validity; he was interested in applications and methods. As noted
above, Dirichlet was the first to give such conditions. In 1829 he firmly established
general conditions on a function sufficient to ensure that it can be represented by
a series of sine and cosine functions.*

Representation theory has been refined and greatly extended since the time
of Dirichlet. It is still growing.

#For supplementary reading on the history of these series, see the articles by Langer (1947) and Van
Vleck (1914), listed in the Bibliography.
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S

BOUNDARY
VALUE
PROBLEMS

This chapter is devoted to the use of Fourier series in solving various boundary
value problems that are mathematical formulations of problems in physics. The
basic method has already been described in Chap. 4.

Except for the final section of this chapter (Sec. 49), we shall limit our at-
tention to problems whose solutions follow from the solutions of the two Sturm-
Liouville problems needed in Secs. 36 and 37 of Chap. 4. To be specific, we saw in
Sec. 35 that the Sturm-Liouville problem

(1) X'(xX)+1X(x)=0, X0 =0, X =0

on the interval 0 < x < ¢ has nontrivial solutions when A is one of the
eigenvalues

2
=0, =(") n=1.2..)
c
and that the corresponding solutions, or eigenfunctions, are
Xo(x) =1, X, (x) :cos@ n=1,2..)
Moreover, for the Sturm-Liouville problem
(2) X"(x) + 2 X(x) =0, X(0) =0, X(c) =0,
on the same interval 0 < x < ¢,
nmw\2
b= (=) (n=12..)

113
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and

X, (x) =sin? n=1,2,...).

Asillustrated in Chap. 4, the solutions of problems (1) and (2) lead to Fourier
cosine and sine series representations, respectively. A third Sturm-Liouville prob-
lem, to be solved in Sec. 49, leads to Fourier series with both cosines and sines.
Boundary value problems whose solutions involve terms other than

nmx . hmx
cos— and sin —
c c
are taken up in Chap. 8, where the general theory of Sturm-Liouville problems is
developed, and in subsequent chapters.

Once it is shown that a solution found for a given boundary value problem
truly satisfies the partial differential equation and all of the boundary conditions
and continuity requirements, the solution is rigorously established. But, even for
many of the simpler problems, the verification of solutions may be lengthy or
difficult. The boundary value problems in this chapter will be solved only formally
in the sense that we shall not always explicitly mention needed conditions on
functions whose Fourier series are used, and in most cases we shall not verify the
solutions.

We shall also ignore questions of uniqueness, but the physical requirements
of a given boundary value problem that is well posed generally suggest that there
should be only one solution of that problem. In Chap. 11 we shall give some
attention to uniqueness of solutions, in addition to their verification.

39. A SLAB WITH FACES AT
PRESCRIBED TEMPERATURES

We consider here the problem of finding temperatures in the same slab asin Sec. 36
when its faces, or boundary surfaces, are kept at certain specified temperatures.
For convenience, however, we take the thickness of the slab to be 7 units, keeping
in mind that we shall illustrate in Example 1, Sec. 40, how temperature formulas
for a slab of arbitrary thickness ¢ follow readily once they are found when ¢ = 7.
In each of the examples below, the temperature function u = u(x, ¢) is to satisfy
the one-dimensional heat equation

(1) u(x,t) = kuyy(x, t) O<x<mt>D0).
EXAMPLE 1. If both faces of the slab are kept at temperature zero and

the initial temperatures are f(x) (Fig. 31), then

2) u(0, 1) =0, u(m, t) =0, and u(x,0) = f(x).

Conditions (1) and (2) make up the boundary value problem; and, by separa-
tion of variables, we find that a function u = X(x) T(¢) satisfies the homogeneous
conditions if

3) X'(x)+2X(x) =0, XO0) =0, X)) =0
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—~—~ " S
u=20 u(x, 0) = f(x) u=20
— _] -
T — T N ———
xX=a
FIGURE 31
and
4) T'(t) + AkT(t) = 0.

According to Sec. 35, the Sturm-Liouville problem (3) has eigenvalues and
eigenfunctions

A =n, X, (x) = sinnx n=1,2,..).

The corresponding functions of 7 arising from equation (4) are, except for constant
factors,

T,(t) = ek n=1,2,..).
Formally, then, the function
®) u(x,t) = Z B, e "M sin nx
n=1

satisfies all of the conditions in the boundary value problem, including the non-
homogeneous condition u(x, 0) = f(x), if

(6) f(x) =Zaninnx O <x<m).
n=1

Let us assume that f is piecewise smooth on the interval 0 < x < 7. Then f(x) is
represented by its Fourier sine series (6), where

(7) ang/ﬂf(x)sinnxdx n=1,2,..)).
T Jo

The function (5), with coefficients (7), is our formal solution of the boundary
value problem (1)—(2). It can be expressed more compactly in the form

2 & 2 i .
u(x,t) = — Ze‘" ke s1nnx/ f(s)sinns ds,
T n=1 0

where the variable of integration s is used in order to avoid confusion with the
free variable x.
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EXAMPLE 2. Iftheslabisinitially at temperature zero throughout and the
face x = O is kept at that temperature, while the face x = = is kept at a constant
temperature up when ¢ > 0, then

(8) u(0, 1) =0, u(m, t) = u, u(x,0) =0.

The boundary value problem consisting of equations (1) and (8) is not in
proper form for the method of separation of variables to be applied because one
of the two-point boundary conditions is nonhomogeneous. But if we write

9) ulx,t) =U(x,t) + ®(x),
equations (1) and (8) become
Ur(x, 1) = k[Usx(x, 1) + @"(x)]
and
U@ ,t) +®0) =0, U(r,t) + (1) = uy, Ux,0)+dD(x) =0.
Suppose now that
(10) ®"(x) =0 and ®(0) =0, () = up.
Then U(x, t) satisfies the boundary value problem
(11) Us(x, 1) = kUse(x, 1), U@©,1)=0, UQr,t)=0, U(x,0)=—d(x).
Conditions (10) tell us that
(12) d(x) = il X.
/g
Hence problem (11) is a special case of the one in Example 1, where
(13) fo=-2x.
7T

When f(x) is this particular function, the coefficients B, in solution (5) can be
found by evaluating the integrals in expression (7). But since we already know
from Example 1, Sec. 5, that

o (_1)n+1
(14) x:ZZ sin nx O<x<m)
n
n=1
and since the numbers B, are the coefficients in the Fourier sine series for the
function (13) on the interval 0 < x < 7, we can see at once that
wp , (=)™ wg  (=1)"

B, =—-22 ) n=1,2,...).
T n T n

Consequently,

o0 _1 n
Ux,t) = % 2y % e~"M sin nx;
n=1
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and so, in view of expressions (9) and (12),

o0 _1 n
(15) u(x,t) = ol 4+ 22 =D e "M sinnx|.
T ~ n

By letting ¢ tend to infinity in solution (15), we find that the function (12)
represents steady-state temperatures in the slab. In fact, conditions (10) consist of
Laplace’s equation in one dimension together with the conditions that the tem-
perature be 0 and g at x = 0 and x = 7, respectively. Expression (9), in the form

Ux,t) =ulx,t) — o),

reveals that U(x,t) is merely the desired solution minus the steady-state
temperatures.

Finally, note that one can replace the term x in solution (15) by its represen-
tation (14) and write that solution as

2Lt0 > (_1)n+1 2
16 ulx,t) = — =~ 1-e""M)sinnx.

(16) (1) == 2_1: S )
This alternative form can be more useful in approximating u(x, ¢) by a few terms of
the series when ¢ is small, since the factors 1 —exp(—n?kt) are then small compared
to the factors exp(—n’kt) in expression (15). Hence the terms that are discarded
are smaller. The terms in series (15) are, of course, smaller when ¢ is large.

PROBLEMS'

1. Let the initial temperature distribution be uniform over the slab in Example 1,
Sec. 39, so that f(x) = uy. Find u(x, ¢) and the flux ®(xy, 1) = — Ku, (xy, t) (see Sec. 22)
across a plane x = xy (0 < xo < 7) when ¢ > 0. Show that no heat flows across the
center plane x = /2.

2. Suppose that f(x) = sinx in Example 1, Sec. 39. Find u(x, ¢) and verify the result fully.

Suggestion: Use the integration formula obtained in Problem 9, Sec. 5.
Answer: u(x,t) = e ¥ sinx.

3. Let v(x,¢) and w(x, t) denote the solutions found in Examples 1 and 2 in Sec. 39.
Assuming that those solutions are valid, show that the sum u = v + w gives a tem-
perature formula for a slab 0 < x < 7 whose faces x = 0 and x = 7 are kept at
temperatures 0 and uy, respectively, and whose initial temperature distribution is f(x).

4. Suppose that the conditions on the faces of the slab in Example 2, Sec. 39, are reversed,
so that

u,t) =uy and u(m,t) =0.

By replacing x with 7 — x in solution (15) in that example, show that the solution of
this new boundary value problem is

o)

X 2 2k
u(x,t) = up 1————5 —e " Msinnx|.
moomi=n

TOnly formal solutions of the boundary value problems here and in the sets of problems to follow
are expected, unless the problem specifically states that the solution is to be fully verified. Partial
verification is often easy and helpful.
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5. Lettheface x = Ooftheslabin Problem 4 be maintained at temperatures (0, t) = F(¢),
instead of u(0, t) = uy, where F(t) is continuous and differentiable when ¢ > 0 and
where F(0) = 0. Use the solution in Problem 4 together with Duhamel’s principle in
Sec. 27 to show that

2k & !
u(x, t) = — E nsinnx/ F(r)e k=0 g
0

n=1

(Compare with the example in Sec. 27.)

40. RELATED TEMPERATURE
PROBLEMS

Asindicated in Example 2, Sec. 39, a given boundary value problem can sometimes
be reduced to one already solved. The examples in this and the following section
illustrate this further.

EXAMPLE 1. Consider the boundary value problem consisting of the
conditions

(1) u(x, 1) = ki (x, 1) O<x<c, t>0),
2) u0,t) =0, u(e,t) =0, u(x,0) = f(x).

This is the problem for the temperatures in an infinite slab that was solved in
Example 1, Sec. 39, when ¢ = . Itis also the problem of determining temperatures
in a bar of uniform cross section, such as one in the shape of a right circular cylinder
(Fig. 32), when its bases in the planes x = O and x = c are kept at temperature zero,
its lateral surface is insulated and parallel to the x axis, and its initial temperatures
are f(x) (0 <x < o).

i zzzzzzzzzzzzzzzzzzzzzz2zz2z2z244

u=0() u(x, 0) = f(x) ) u=0

N zzzzzzzzzzzzzzzz2zz2z2z2z2z224 X
x=0 x=c
FIGURE 32

The problem in Example 1, Sec. 39, where ¢ = 7, suggests that we make the
substitution
3) s="

C

in the problem here and then refer to the solution in that earlier example. Since
du duds wu

8x  dsdx cos

Pu 9 (du\ 3 (mou\ds 7*d’u
9x2 9x\dx /) ads\cds/dx 2 9s2’

and
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equation (1) becomes

(4) %:(%)% O<s<mt>0).
Conditions (2) tell us that

(5) u=0 when s=0 and u=0 when s=mn

and that

(6) u= f(;—s) when = 0.

Except for notation, conditions (4), (5), and (6) make up the earlier boundary
value problem in Example 1, Sec. 39. From that example, we know that

it n2r2k
u= Z B, exp <— = t> sin ns,
n=1

where
2 g
an—/ f(g)sinnsds n=1,2,..).
0

T T

Finally, then, substitution (3) gives us the solution of the boundary value problem

(1)-(2):

- n’r’k \ . nmx
(7) u(x,t) = Zl B, exp (— = t) sin ——,
where
2 C
(8) B, = —/f(x)sin@dx n=1,2,..).
C Jo C

EXAMPLE 2. Suppose that the face x = 0 of a slab of thickness x is kept
at temperature zero and that the face x = is insulated. Then, in addition to
satisfying the heat equation

9) u(x, 1) = ki (x, 1) O<x<mt>0),
u satisfies the homogeneous conditions

(10) u,t) =0 and U (m,t) =0 (t > 0).
Also, let the initial temperatures be

(11) u(x,0) = f(x) (0 <x<m),

where f is piecewise smooth. By writing u = X(x)7(¢) and separating variables
in conditions (9) and (10), we find that

X'(x) +2X(x) =0, X0 =0, X'(r)=0.

Although this problem in X can be treated by methods to be developed in Chap. 8,
we are not fully prepared to handle it at this time. The stated temperature problem
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can, however, be solved here by considering a related problem in a larger slab
0 < x < 2x (Fig. 33).

—_—————
T ~~—— SNe———~

Z =1

7 [
Z

Z |
Z

u=20 u(x, 0) = flx) é u(x, 0) = f2m—x) : u=0

Z

7 [

[ Z I x

0 Z |
Z

Z I

Z I
Z

Z I
Z

Z |

— | Z —_ |

~ e T ==~

x=a x=2m
FIGURE 33

Let the two faces x = 0 and x = 27 of that larger slab be kept at temperature
zero, and let the initial temperatures be

(12) u(x,0) = F(x) 0 <x <2m)
where

_J ™ when 0<ux <m,
(13) Fx) = { f@r —x) when 7 <x <2m.

The function F is a piecewise smooth extension of the function f on the interval
0 < x < 2m,and the graph of y = F(x) is symmetric with respect to the line x = .
This procedure is suggested by the fact that with the initial condition (12) no heat
will flow across the midsection x = 7 of the larger slab. So, when the variable x is
restricted to the interval 0 < x < m, the temperature function for the larger slab
will be the desired one for the original slab.

According to Example 1, the temperature function for the larger slab is

(14) (x,t) i B,e n2kt sin nx
u(x,t) = xp| ———t | sin —,
2P\ 2
where B, are the coefficients in the Fourier sine series for the function F on the
interval 0 < x < 2

1 2
B,,:—/ F(x)sinde n=1,2,...).
T Jo 2

This integral can be written in terms of the original function f(x) by simply refer-
ring to Problem 6, Sec. 15, which tells us that

1_ _1" T
B,,=¥/f(x)sinﬂdx n=1,2,...);
T 0 2
that is, By, = 0 and

(15) Bop1 =2 /”f(x) sin P DY 4y n=1,2,..).
T Jo 2
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Solution (14) then becomes

16 ) = By, —
(16) u(x, t) ; 2n_1 €XP 1

bl

{ 2n — D2k ] . 2n—-1x
t| sin

with coefficients (15).

PROBLEMS

1. The initial temperature of a slab 0 < x < 7 is zero throughout, and the face x = 0 is
kept at that temperature. Heat is supplied through the face x = = at a constant rate
A (A > 0) per unit area, so that Ku,(, t) = A(see Sec. 26). Write

ulx,t) =U(x,t)+ d(x)

and use the solution of the problem in Example 2, Sec. 40, to derive the expression

n — 2 J—
u(x,t) = — {x + — Z (2( ?1)2 { (@n 41) kt] sin (@2n 5 1)x}

for the temperatures in this slab.

2. Solve this temperature problem by making the substitution s = wx, proceeding as in
Example 1, Sec. 40, and then referring to solution (15) that was obtained in Example 2,
Sec. 39:

u;(x, 1) = ki (x, 1) O<x<1,t>0),

u©,t) =0, wu(l,t)=uy, u(x,0)=0.

3

—nznzkt

Answer: u(x,t) =uy | x + sinnmx

2
T
n=1

3. Let v(x, t) denote temperatures in a slender wire lying along the x axis. Variations of
the temperature over each cross section are to be neglected. At the lateral surface, the
linear law of surface heat transfer between the wire and its surroundings is assumed to
apply (see Problem 6, Sec. 27). Let the surroundings be at temperature zero; then

vi(x, 1) = kvxx(-xa t) — bv(xa t),

where b is a positive constant. The ends x = 0 and x = ¢ of the wire are insulated
(Fig. 34), and the initial temperature distribution is f(x). Solve the boundary value
problem for v by separation of variables. Then show that

v(x, 1) = u(x,t)e

where u is the temperature function found in Sec. 36.

L

° ¥

FIGURE 34
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0°
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4. Solve the boundary value problem consisting of the differential equation
u,(x,t) =ty (x,t) — bu(x,t) O<x<mt>D0),
where b is a positive constant, and the boundary conditions
u(0,t) =0, u(m,t) =1, u(x,0) =0.

Also, give a physical interpretation of this problem (see Problem 3).

Suggestion: The Fourier series for sinh ax in Example 2, Sec. 19, is useful here.
sinhxv/b 2 b = . N
Answer: u(x,t) = + —e Z(—l) Z1h e

—— 1 Sin nx
sinhwv/b 7

n=1

41. TEMPERATURES IN A SPHERE

In this section we consider temperatures u(r, t) in a solid sphere r < 1 with certain
boundary and initial conditions. The variable r is, of course, the spherical coordi-
nate in Sec. 24, and u is independent of the other coordinates ¢ and 6. It follows
from expression (8), Sec. 24, for the laplacian that

2, -1
Viu =~ (ru),

and hence that the heat equation u, = kV?u to be used here takes the form

k
1 u = ;(ru)rr O<r<1,t>0).

EXAMPLE 1. In this example, the solid sphere is initially at temperatures
f(r) and its surface r = 1 is kept at temperature zero (Fig. 35). The differential
equation (1) and the boundary conditions

2) u(l, ) =0, u(r, 0y = f@r)

evidently make up the boundary value problem for the temperatures u(r, ¢) in the
sphere.
To solve this problem, we introduce the function

3) U, t) =ru(r,t)

FIGURE 35
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to obtain the new boundary value problem

(4) U (r, t)kurr(r, t) (0<r <1,t>0),
(5) Uwo0,0y=0, Ud,t)=0, UFr0 =rf(r)

in U(r, ). The first of conditions (5) follows from relation (3) and the fact that
u(r, t) is expected to be continuous at the center » = 0 of the sphere. The solution
of the problem consisting of conditions (4) and (5) follows immediately from the
final result in Example 1, Sec. 40, when ¢ = 1 there. In view of relation (3), then,
we arrive at the temperatures in our sphere:

1 o0
(6) u(r,t) = — Z B, exp(—n*n’kt) sinnzr
r n=1
where
1
(7) B, =2/ rf(r)sinnmrdr n=1,2,...).
0

EXAMPLE 2. Consider now the same sphere as in Example 1, but let the
surface r = 1 be at temperature F(¢), where F(¢) is continuous and differentiable
when ¢ > 0 and where F(0) = 0. Also, suppose that the initial temperature of the
sphere is zero. The boundary value problem is, then, equation (1) together with
the conditions

(8) u(l,t) = F@t), u(r,0)=0.

By writing U(r, t) = ru(r, t), as we did in Example 1, we have the boundary
value problem

) Ui(r, 1) = kU (r, 1) O<r<11t>0),
(10) U@,1)=0, U, t)=F@), U0 =0.
Now, according to Problem 2, Sec. 40, the problem
v (r, t) = kv, (r, 1) O<r<1,t>0),
v(0,)=0, v(,0H=1, v 0 =0

has solution

2 S (_1)n —n’r?kt
v(r,t) =r + — Z e sInnmr;
mieon

and Duhamel’s principle in Sec. 27 tells us that

(11) Ur,t) = / F(o)v,(r, t — t)dr.
0

Inasmuch as

o0
2.2 .
v (r, 1) = 2nkZ(—1)”+lne_" K sin nrr,

n=1
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it now follows from the relation u(r, t) = U(r, t)/r and expression (11) that
(12) u(t,t) = =— Z( 1)"+n smnnr/ e K= B (1) d.

0

The special case in which F(¢) = ¢ is treated in Problem 1 below.

PROBLEMS

1. Derive this special case of the temperature function (12) in Example 2, Sec. 41,

CHAP. 5

when

F@) =t

1

Sl

u(r,t)y =t — sinnmr.

3kr

Suggestion: The summation formula (see Problem 1, Sec. 8)

2 > ( 1)n+1 )
=z § = 0 1
n sinnmr =r O<r<1

will be useful here.

. A solid sphere r < 1 is initially at temperature zero, and its surface is kept at that
temperature. Heat is generated at a constant uniform rate per unit volume throughout
the interior of the sphere, so that the temperature function u = u(r, t) satisfies the
nonhomogeneous heat equation (see Sec. 23)

du _k 82
ot
where g is a positive constant. Make the substitution

(VM)+610 O<r<1,t>0),

u(r,t)y =U(, t) + &(r)

in the temperature problem for this sphere, where U and & are to be continuous when
r = 0. [Note that this continuity condition implies that »®(r) tends to zero as r tends
to zero.] Then refer to the solution derived in Example 1, Sec. 41, to write the solution
of a new boundary value problem for U(r, t) and thus show that

( 1) —n 72kt
n3

1
u(r,t):%gr( r)+—z

sinnxr

n=1

Suggestion: It is useful to note that in view of the formula for the coefficients in
a Fourier sine series, the values of certain integrals that arise are, except for a constant
factor, the coefficients in the following series [see Problem 4(a), Sec. 8]:

12 ( 1)n+1

r( sinnwr O<r<1.

nll

. A hollow sphere 1 < r < 2isinitially at temperature zero. The interior surface is kept
at that temperature, and the outer one is maintained at a constant temperature uy. Set
up the boundary value problem for the temperatures

u=u(r,t) 1<r<2,t>0)

and follow these steps to solve it:
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(a) Write v(r, t) = ru(r, t) to obtain a new boundary value problem for v(r, ¢). Then
puts =r — 1 to obtain the problem

vy = kg O<s<1,t>0),
v =0whens =0, v = 2uy whens =1,

v=0whent =0.

(b) Use the result in Problem 2, Sec. 40, to write a solution of the boundary value
problem reached in part (a). Then show how it follows from the substitutions
made in part (a) that

o0

1 2 —-1)"
u(r,t) =2uy |1 — -+ — Z ue”‘z”zk’ sinnw(r-1)| .
roomri=on

42. A SLAB WITH INTERNALLY
GENERATED HEAT

‘We consider here the same infinite slab0 < x < 7 asin Sec. 39, but we assume that
there is a source that generates heat at a rate per unit volume which depends on
time. The slab is initially at temperatures f(x), and both faces are maintained at
temperature zero. According to Sec. 22, the temperatures u(x, ¢) in the slab must
satisfy the modified form

@) ur(x, 1) = ki (x, 1) + q(2) O<x<mt>0)

of the one-dimensional heat equation, where g (¢) is assumed to be a continuous
function of ¢. The conditions

) u®©,6)=0, wu(r,t)=0, and  u(x,0)= f(x)

complete the statement of this boundary value problem.

Since the differential equation (1) is nonhomogeneous, the method of sep-
aration of variables cannot be applied directly. We shall use here, instead, the
method of variation of parameters. Also called the method of eigenfunction ex-
pansions, it is often useful when the differential equation is nonhomogeneous,
especially when the term making it so is time-dependent. To be specific, we seek
a solution of the boundary value problem in the form

oo
3) u(x,t) = Z B, (t) sinnx

n=1
of a Fourier sine series whose coefficients B, (t) are differentiable functions of ¢.
The form (3) is suggested by Example 1, Sec. 39, where the problem is the same
as this one when ¢(¢) = 0 in equation (1). We anticipate that the function ¢(¢) in
equation (1) will cause the coefficients B, in the solution

o0
_n? .
u(x,t) = E B, e "M sin nx
n=1

that we obtained for the homogeneous part of that earlier problem to depend on
t. Instead of writing the coefficients of sin nx as

B,(t) e,
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we simply write B, (¢) since it is only important that these coefficients depend on ¢
and that they donotdepend on x. So our approach here is tostart with a generalized
linear combination, with coefficients depending on ¢, of the eigenfunctions

X, (x) = sinnx n=1,2,..)

of the Sturm-Liouville problem arising in Example 1, Sec. 39. The reader will
note that the method of finding a solution of the form (3) is similar in spirit to
the method of variation of parameters used in solving linear ordinary differential
equations that are nonhomogeneous.

We assume that series (3) can be differentiated term by term. Then, by
substituting it into equation (1) and recalling [Problem 1(b), Sec. 5] that

1:2Wﬁnm¢ 0 <x<m),
n=1

we may write

Z B/ (t)sinnx = kz [—n? B,(t)] sinnx + q (1) Z 2[1_”—;_1)”] sinnx,

n=1 n=1 n=1
or

2 2[1 = (="
Z [ ]

Z [B,(t) + n’kB,(t)]sinnx =
nm

n=1 n=1

q(t) sinnx.

By identifying the coefficients in the sine series on each side of this last equation,
we now see that

2[

4) B.(t) + n*kB,(t) = 1%_1)”] q(t) n=1,2,...).

Moreover, according to the third of conditions (2),

Z B,(0)sinnx = f(x) 0 < x < 7);

n=1

and this means that
(5) B, (0) = b, n=1,2,..),
where b,, are the coefficients
2 s
(6) b,,:—/ f(x)sinnx dx n=12,..)
T Jo
in the Fourier sine series for f(x) on the interval 0 < x < 7.

For each value of n, equations (4) and (5) make up an initial value problem
in ordinary differential equations. To solve the linear differential equation (4), we
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observe that an integrating factor is’

exp (/ nzkdt> = exp n’kt.

Multiplication through equation (4) by this integrating factor puts it in the form

i[enzkt Bn([)] — 2 [1 B (_1)”] enZktq(t),
niw

dt

where the left-hand side is an exact derivative. If we replace the variable ¢ here
by t and integrate each side from t = 0 to t = ¢, we find that

[e 2kTB( )] M/ n*ke q(t) dr.

In view of condition (5), then,

2[1— (=D [*
(7) B,(t) =b, ek M / e‘"zk(’_’)q(r) drt.
nm 0
Finally, by substituting this expression for B,(¢) into series (3), we arrive at the
formal solution of our boundary value problem:

8) u(x,t) = Z by e~ sin nx

4 Z sin(2n — 1)x / 7(2,,71)2,{04)(1(17) .

2n—1 0

Observe that the first of these series represents the solution of the boundary value
problem in Example 1, Sec. 39, where q(¢) = 0.

Toillustrate how interesting special cases of solution (8) are readily obtained,
suppose now that f(x) = Oin the third of conditions (2) and that g(¢) is the constant
function g (¢) = qo. Since b, =0 (n =1,2,...) and

‘ , 1 — exp[—(2n — 1)%kt]
—Cn=17kt-0) 5 g — 40 P
A e q0 T k (2n _ 1)2 ’

solution (8) reduces to*

_4qo o~ 1 —exp[—@2n — D?kt] .
©) D= 2 @n—1)

sin 2n — 1)x.

"The reader will recall that any linear first-order equation y’ + p(¢)y = g(¢) has an integrating factor
of the form exp[ f p(t) dt]. See, for instance, the book by Boyce and DiPrima (2009, Sec. 2.1), listed in
the Bibliography.

#This result occurs, for example, in the theory of gluing of wood with the aid of radio-frequency heating.
See G. H. Brown, Proc. Inst. Radio Engrs.,vol.31,no. 10, pp. 537-548, 1943, where operational methods
are used.
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In view of the Fourier sine series representation (Problem 5, Sec. 5)

x(n_x)zﬁiw O<x<m
m i 2n—1)3 ’

solution (9) can also be written

9 4qy o= exp[—(2n — 1)%kt] .
(10)  u(x,1) = g{x(n —Xx) — — 2 2n 1) sin 2n — 1)x.
(See remarks at the end of Example 2, Sec. 39.)
PROBLEMS
1. The boundary value problem
U (X, 1) = Uy (X, 1) + xp(t) O<x<1,t>0),

u(,t) =0, u(l,t) =0, ux,0)=0

describes temperatures in an internally heated slab, where the units for ¢ are chosen
so that the thermal conductivity k of the material can be taken as unity (compare with
Problem 3, Sec. 23). Solve this problem with the aid of the expansion (see Problem 1,
Sec. 8)

2 (=Dt
— E A 0 1
sin nx O<x<1

and using the method of Variation of parameters.
1)+l t
Answer: u(x,t) = Z - ) sinnmx [ e7T00 p(1) dir.
0

2. Letu(x,t)denote temperatures inaslab0 < x <1 thatisinitially at temperature zero
throughout and whose faces are at temperatures

u0,)=0 and  u(l,t) = F(),

where F(t) and F’(t) are continuous when ¢ > 0 and where F(0) = 0. The unit of time
is chosen so that the one-dimensional heat equation has the form u, (x, t) = u,,(x, 1).
Write

ux, 1) =U(x, 1) +xF(@),
and observe how it follows from the stated conditions on the faces of the slab that
Uuao,nH=0 and ud,t =0.

Transform the remaining conditions on u(x, t) into conditions on U(x, t), and then
refer to the solution found in Problem 1 to show that

(="

u(x,t) = xF(t) + = Z

n=1

t
2.2
smnnx/ e T D E (1) d.
0

(Compare with Example 3, Sec. 39.)
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3. Show that when F(t) = At, where Ais a constant, the expression for u(x, ¢) obtained
in Problem 2 becomes

2
u(x,t) = xt + — Z( " M sin nmx |.

4. A bar, with its lateral surface insulated, is initially at temperature zero, and its ends
x = 0 and x = c are kept at that temperature. Because of internally generated heat,
the temperatures in the bar satisfy the differential equation

U (x,t) = kue(x,t) +q(x, t) O<x<c,t>0).
Use the method of variation of parameters to derive the temperature formula

2 o0
ue 1) = 3" L@sin ?

n=1

where [,(¢) denotes the iterated integrals

t 2.2 c
In(t)=/ exp{—nﬂzk(t—r)}/ q(x, 7)sin 25 dx dr n=1.2..).
0 C C

0

Suggestion: Write
o0 2 .

a0 D) = Zb”(t) sin " where  b,() = - / q(x, t)sin 22 dx.
_ c Cc o c

5. By writingc =1, k=1, and g(x, t) = x p(¢) in the solution found in Problem 4, obtain
the solution already found in Problem 1.
6. Solve the boundary value problem (1)—(2) in Sec. 42 when ¢(t) = gy by writing

ulx,n)=Ux, 1) + ®(x)
and referring to the solution of the problem treated in Example 1, Sec. 39.

Answer: u(x,t) = ;]_]0( x(m —x)+ Z b, e~k sin nx,

n=1
where

T

b,,:z/ [f(x)——x(rr—x)} sinnx dx n=1,2,...).
0

7. Show that when f(x) = 0, the solution obtained in Problem 6 can be put in the form (9),
Sec. 42.

8. Using a series of the form

u(x.1) = Agt) + 3 A, (0) cos @

n=1

and the expansion (see Example 1 in Sec. 8)

C - 1) @ O<x<o),

solve the following temperature problem for aslab 0 < x < ¢ with insulated faces:

w,(x, 1) = kuyo(x, 1) + ax? O<x<c,t>0),
uy(0,1) =0, uy(c,t) =0, u(x,0) =0,
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10.

where a is a constant. Thus, show that

, )t 4 = (=" n’r’k nmx
u(x,t) =ac {§+n7k21: e 1—exp| — = t cosT .

. The boundary value problem

du 192
Ez;ﬁ(m)_;_q(t) O<r<1,t>0),

u(l,t) =0, u(r,0) =0
for temperatures u = u(r, t) in a solid sphere with heat generated internally reduces to
Problem 2, Sec. 41, with k = 1, when q(¢) = qo.

(a) By writing v(r, ) = ru(r, t) and transforming the problem here into a new one for
v(r, t) and then using the solution of Problem 1 above, show that

00

2 =Dt ) 2@-1)
== 00 g (1) dr.
u(r, 1) - L sinnr [ e q(7)dr

0

(b) Show that when g(¢) = qo, the solution obtained in part (a) becomes

X1yl
u(r, t) = 2% =D (1 — e"’z”z') sin nr.

w3r n3
n=1

(¢) Use the Fourier sine series in the suggestion with Problem 2, Sec. 41, to put the
solution in part (b) in the form

1 2 = (1)
u(r,t) = ? [8 rd—r?) + = Z ( n3) e sinnnr] .
n=1

(This is the solution found in Problem 2, Sec. 41, when k = 1 there.)

Use the method of variation of parameters to solve the temperature problem

U (x,t) = g (x, 1) = b)) u(x,t) + qo O<x<mt>0),

u(0,t) =0, u(m,t) =0, u(x,0) =0,

where ¢ is a constant.” (See Problem 6, Sec. 27.)

oo

4 in(2n — 1 !
Answer: u(x,t) = naq((;) Z Sln;nn_ : )x /O 67(2n71)2([71)a(r) dr.

n=1

a(t) = exp {/ b(a)dcr} .
0

where

In finding an integrating factor for the ordinary differential equation that arises, it is useful to note
t . . . .
that ﬂ) b(o) do is an antiderivative of b(t).
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43. STEADY TEMPERATURES IN
RECTANGULAR COORDINATES

We now illustrate the use of the Fourier method in finding steady temperatures
u(x, y) in plates whose faces are insulated. According to Sec. 23, these temper-
atures must satisfy Laplace’s equation V>u = 0 in the interiors of the regions
occupied by the plates and are said to be harmonic there. The boundary value
problems in the following two examples are, in fact, Dirichlet problems (Sec. 31)
since each has prescribed values of u(x, y) along the entire boundary of the region
involved.

EXAMPLE1. Letu(x, y) beharmonicin the interior of a rectangular region
0<x<a,0<y<b,sothat
(1) U (X, y) +Uyy(x,y) =0 O<x<a0<y<b).
The boundary values are (Fig. 36)

(2) u@0,y)=0,  u(a,y)=0 0 <y<b),
3) u(x,0) =0, u(x, b) = f(x) 0 <x <a).

y

| -

b

u=20 Viu=0 u=0
70 | u=0 a X

FIGURE 36

With these boundary conditions, the function u(x, y) represents steady tem-
peraturesin a plate 0 < x < a,0 < y < bwhenu = f(x) on the edge y = b and
u = 0 on the other three edges. The function u(x, y) also represents the electro-
static potential in a space formed by the planes x =0, x =a,y =0,and y = b
when the space is free of charges and the planar surfaces are kept at potentials
given by conditions (2) and (3).

Separation of variables, with u = X(x)Y(y), transforms the homogeneous
conditions into the Sturm-Liouville problem

4) X" (x) +2X(x) =0, X(©0) =0, X(a) =0,
whose eigenvalues and eigenfunctions are (Sec. 35)
2
Ap = (n_rr) , X, (x) :sin@ n=12..),
a a

as well as the equations

(5) Y'() —AY() =0, Y0 =0.
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When X is a particular eigenvalue A, of the Sturm-Liouville problem (4), the
function Y(y) satisfying conditions (5) is found to be

Y(y) = Cl[exp(naiy> — exp(—naiy) ]

where C; denotes an arbitrary nonzero constant. Instead of writing C; = 1, as we
have always done in such cases, let us write C; = 1/2. Then

Y,(y) = sinh ”aﬂ n=12..).
Thus the function
o0
., nmy . nmux
6 ,y) = B, sinh — —_—
(6) u(x,y) nz:; ), sin p sin p

formally satisfies all of the conditions (1) through (3), provided that
nmx
7 B, h 7 sin 7 0 .
@) fx) = Z sin Sl p O<x<a)

We assume that f is piecewise smooth. Then series (7) is the Fourier sine series
representation of f(x) on the interval 0 < x < a if

smh— = / f(x)sm—dx n=1,2,...).

The function defined by means of equation (6), with coefficients

2 “ . hmx
(8) B, = m/o f(x) sim T dx (n= 1,2,.. D),

is, therefore, our formal solution.
If the boundary conditions (3) are changed to

9) u(x,0) =gx), ulx,b)=0 0 <x<a),
conditions (5) become
Y'(y) = AY(y) =0, Y()=0,

and so

nr nr(2b —y)
Yy) =G {exp Ty —exp —y}

a

where C is an arbitrary nonzero constant. Then, by writing
1 nmb
Ci=—expl— ),
‘=72 p( a >
we have

Y,(y) = sinh m
a
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Hence the solution of our modified boundary value problem involving condi-
tions (9) instead of conditions (3) is

(b y) mrx
(10) u(x,y) = ZB sinh Pt

where

2
(11) B, = W/o

This solution is, of course, expected since it can also be obtained by replacing y
by b — y in series (6) and f(x) by g(x) in expression (8).

g(x)sin m;—xdx n=1,2,...).

EXAMPLE 2. We consider here steady temperatures u(x, y) in a semi-
infinite plate x > 0,0 < y < 7, whose faces are insulated, when the edges are
kept at the temperatures shown in Fig. 37. The boundary value problem is, then,

(12) Uer (X, Y) + Uyy(x, y) =0, (x>00<y<mn),
(13) u(x,00=0, wulx,m)=0 (x> 0),
(14) u0,y) = f(y) 0<y<n).
y
u=20
o
u=f(y) Vi =0
70 | u=0 x
FIGURE 37

We agree that f is piecewise smooth and that u(x, y) is to be bounded. So there is

a positive constant M such that |u(x, y)| < M at all points in the plate. This bound-

edness condition serves as a condition at the missing right-hand end of the plate.
By substituting u = X(x)Y(y) into the homogeneous conditions (12) and

(13), we have the ordinary differential equation

(15) X"(x) —AX(x)=0

and the Sturm-Liouville problem

(16) Y'()+AY() =0, YO =0, Y(r)=0.

The eigenvalues and eigenfunctions of problem (16) are (Sec. 35)

A = n2,

Y.(y) = sinny n=1,2,...);
and, when 2 is any one of the eigenvalues 1,,,

X(x) = Cie™ + Cre™ (x > 0).
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Now e — oo as x — 00. So C; = 0; and, except for constant factors,

X, (x) =e ™ n=1,2..).
Consequently, the function
17) u(x,y) = Z B,e™"™* sinny
n=1

satisfies conditions (12) and (13)
Finally, since the nonhomogeneous condition (14) requires that

o0
f(y):ZB,,sinny 0O <y<m),
n=1
we know that

(18) B, = %/ﬂ f(y)sinnydy n=12,...).
0

Expressions (17) and (18) thus make up the solutions of our boundary value
problem.

PROBLEMS

1. The faces and edges x=0and x=n (0 <y <) of asquare plate 0<x<n,0<y<wmw
are insulated. The edges y=0 and y=x (0 <x <) are kept at temperatures 0 and
f(x), respectively. Let u(x, y) denote steady temperatures in the plate and derive the

expression
u(x,y) = Aoy + Z A, sinhny cos nx,
n=1
where
A ! ﬂf( )d and 2 ”f( )cosnx d
=3 X)ax = — X nx dx
0T x2 0 msinhnw [,
n=1,2,...).

Find u(x, y) when f(x) = ug, where u is a constant.
2. The faces and edge y = 0 (0 < x < 7) of a rectangular plate0 < x < 7,0 < y < y; are
insulated. The other three edges are maintained at the temperatures indicated in Fig. 38.

y‘
u=0
Yo
u=20 Viu=0 u=1

W77z

FIGURE 38
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By making the substitution u(x, y) = U(x, y) + ®(x) in the boundary value problem
for the steady temperatures u(x, y) in the plate and using the method described in
Example 2, Sec. 39, derive the temperature formula

(=1)" coshny .
ulx,y) = —1—22 ‘msmnx .

Suggestion: The series representation (Example 1, Sec. 5)

x_ZZ(

1 n+1

sin nx O<x<m)

is useful in finding U(x, y).

3. One edge of a square plate with insulated faces is kept at a uniform temperature u,
and the other three edges are kept at temperature zero. Without solving a boundary
value problem, but by superposition of solutions of like problems to obtain the trivial
case in which all four edges are at temperature u, show why the steady temperature
at the center of the given plate must be u,/4.

4. Suppose that in the plate described in Example 2, Sec. 43, there is a heat source de-
pending on the variable y and that the entire boundary is kept at temperature zero.
According to Sec. 23, the steady temperatures u(x, y) in the plate must now satisfy
Poisson’s equation

Uex (X, Y) + 1y, (x, y) +q(y) =0 (x>0,0<y<m).
(a) By assuming a (bounded) solution of the form

ulx,y) = Z B,(x) sinny

n=1

of this temperature problem and using the method of variation of parameters
(Sec. 42), show formally that

By =L — ey n=1.2...),
n
where g, are the coefficients in the Fourier sine series for g(y) on the interval
O<y<m.
(b) Show that when g(y) is the constant function g(y) = Q, the solution in part (a)
becomes

QZ 1—exp[—(Q2n—1)x]

on 17 sin(2n — 1)y.

u(x,y) =

Suggestion: In part (a), recall that the general solution of a linear second-order
equation y” 4+ p(x)y = g(x) is of the form y=y.+y,, where y, is any particular
solution and y. is the general solution of the complementary equation

y'+ px)y =01

5. Derive an expression for the bounded steady temperatures u(x, y) in a semi-infinite
slab0 < x < ¢, y > 0 whose faces in the planes x =0 and x = c are insulated and where
u(x,0) = f(x). Assume that f is piecewise smooth on the interval 0 < x < c.

TSee, for instance, the book by Boyce and DiPrima (2009, Sec. 3.5), listed in the Bibliography.
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44. STEADY TEMPERATURES IN
CYLINDRICAL COORDINATES

In this section, we solve two boundary value problems involving cylindrical coordi-
nates. The first is a Dirichlet problem, and the second involves steady temperatures
in a long rod part of whose surface is insulated.

EXAMPLE 1. Let u(p, ¢) denote a function of the cylindrical, or polar,
coordinates p and ¢ that is harmonic in the domain 1 < p <b,0 < ¢ <7 of the
plane z = 0 (Fig. 39). Thus, (Sec. 24)

(1) P71ty (0, §) + ity (0, §) + gy (0, ¢) =0 (1<p<b0<¢<n).
Suppose further that

(2) u(p,0) =0, u(p,m) =0 (I <p<b),
3) ul, ¢) =0, ub, ¢) = up 0 <¢<m),

where u is a constant.

FIGURE 39

Substituting u = R(p)® (¢) into the homogeneous conditions and separating
variables, we find that

(4) p’R"(p) + pR'(p) = *R(p) =0,  R(1)=0
and
(5) D" () + 1D (¢) =0, ®(0) =0, &) =0.

Except for notation, the problem in & is the Sturm-Liouville problem (4) in
Sec. 35 with ¢ = 7. The eigenvalues and eigenfunctions are

A = 12, ®,(¢) = sinng n=1,2,...).

The corresponding functions R,(p) are determined by solving the differential
equation

p’R"(p) + pR'(p) — n*R(p) =0 (1 <p<b),
where R(1) = 0. This is a Cauchy-Euler equation (see Problem 1), and the substi-
tution p = exps transforms it into the differential equation

d°R

2
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Hence
R=Ci ¥ +Ce™;
and because s = In p,

R(p) = C1 "™ 4 e = Cy p" + Cyp 7"

In view of the condition R(1) = 0, it follows that C; = —Cj. So, except for constant
factors, the desired functions of p are
Ru(p) =p" —p~" (n=1,2,..).

Formally, then,

w(p.¢) = B, (p" — p~")sinng

n=1

where, according to the second of conditions (3), the constants B, are such that
oo
uo =y B, (" —b")sin np 0 < ¢ <m).
n=1

Since this is in the form of a Fourier sine series representation for the constant

function ug on the interval 0 < ¢ < 7,
2 (7 2 1—- (D"
Bn(b"—b*")z—/ wosinng dgp = 20 L= D" n=12..).
0 T

T n

The complete solution of our Dirichlet problem is, therefore,

2up = p"—p " 1= (=D)"

u(p, $) = 7 gt bt — b—n ' n smng,
or
duy L p¥=1 — p=@n=D gin 2n — 1)é
‘ L . )
(6) u(p, §) = — 2 Pl _ponDh o1

EXAMPLE 2. Using cylindrical coordinates, let us derive an expression for
the steady temperatures u = u(p, ¢) in a long rod, with a uniform semicircular
cross section and occupying the region 0 < p < a,0 < ¢ < &, when it is insulated
on its planar surface and maintained at temperatures f(¢) on the semicircular
part (Fig. 40). The reader will find that the fundamental difference between this

u=f($)

W iiiiiiiiiiiiizzzziz
o a

FIGURE 40
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example and Example 1 is that the origin was not on the boundary in the first
example but it is in this one.
As in Example 1, u(p, ¢) satisfies Laplace’s equation

(7) P2 Upy (p, @) + pity(p, @) + Upg(p, §) =0,

but now in the domain 0 < p < a,0 < ¢ < 7. It also satisfies the homogeneous
conditions (see Example 2, Sec. 26)

(®) us(p,0) =0,  ug(p,m)=0 0 <p <a),
as well as the nonhomogeneous one
9 u(a, ¢) = f(¢) O <@ <m).

The function f is understood to be piecewise smooth and therefore bounded. We
assume further that |u(p, ¢)| < M, where M denotes some positive constant. The
need for such a boundedness condition is physically evident and has been only
tacitly assumed in most earlier problems. Here it serves as a condition at the origin,
which may be thought of as the limiting case of a smaller semicircle (compare with
Fig. 39 in Example 1) as its radius tends to zero.

Substituting u = R(p)®(¢) into the homogeneous conditions (7) and (8)
leads to the condition

(10) p*R"(p) + pR'(p) — AR(p) =0 0<p<a)

on R(p) and to the Sturm-Liouville problem

(11) D"(p) + AD(¢) =0, @'(0) =0, @'(7) =0,
whose eigenvalues and eigenfunctions are
=0 A =n (n=12,..)
and
Do(gp) =1, D, (¢p) = cosng n=1,2,...),

according to Sec. 35.
Equation (10) is a Cauchy-Euler equation, similar to the one in Example 1;
and with the substitution p = exps, Problem 1 tells us that it becomes
d’R
20
ds?
when A = X. So, for the eigenvalue A,
R=As+B=Alnp+ B O <p<a),

where A and B are constants. But since the product R(p)®(¢) is expected to be
bounded in the domain 0 < p < a, 0 < ¢ < 7 and since In p tends to —oo as p
tends to 0 through positive values, the constant A must be zero. Hence, except for
a constant factor,

Ro(p) = 1.
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When A = A, = n?* (n = 1,2,...), our boundedness condition requires that the
constant C, in the general solution

C
R(p)=C1p"+Czp’”=C1p"+p—j 0<p<a)

of equation (10) be zero. Hence we may write

Ry(p) = p" n=12..),

and the homogeneous conditions (7) and (8) are formally satisfied by the function

(12) u(p, ) = Ao+ Y _ Ay p"cosng,
n=1

where the constants A, (n =0, 1,2, ...) are yet to be determined.
In view of the nonhomogeneous condition (9),

flp) = A—FZ A,a") cosng 0<¢ <m).

n=1
Consequently,

(13) m=1fﬁmw and 4,
T Jo

/ f(¢) cosng d¢
n=1,2,...).

na”

The complete solution of our boundary value problem is, then, given by
series (12) with coefficients (13). This solution can, of course, be alternatively
written as

(14) u(p,¢) = / fa)dy + — Z(g) cosnd)/ f() cosnyr dy,

n=1 0
where the variable of integration ¢ is to be distinguished from the free
variable ¢.

PROBLEMS
1. If A, B, and C, are constants, the differential equation

Ax*y" + Bxy'+Cy =0

is called a Cauchy-Euler equation. Show that with the substitution x = exps (s = Inx),
it can be transformed into the constant-coefficient differential equation

dZ

AZY LB A) + Cy=0.
ds?

Suggestion: Use the chain rule to show that

, dy dy ds s dy

T dx  ds dx ¢ ds
and then

” ( /)/ —s dy/ -5 d -5 dy —2s dzy dy
= =e’ — =" —(e’*—=|=¢ — ——= .
Y Y ds ds ds ds? ds
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2. Let the faces of a plate in the shape of awedge 0 < p < a,0 < ¢ < « in the first quad-
rant (Fig. 41) be insulated. Find the steady temperatures u(p, ¢) in the plate whenu = 0
onthetworays¢ =0, =a (0 < p <a)andu = f(¢)onthearcp =a (0 < ¢ < ).
Assume that f is piecewise smooth and that u is bounded.

2 & 0 e . onmp [ . nmy
Answer: u(p, ¢) = ¥ E 2 smT/ f(‘(//)Slanlll.
0

n=1

FIGURE 41

3. Let p, ¢, and z be cylindrical coordinates. Find the harmonic function u(p, ¢) in the
domain 1 < p < b,0 < ¢ < /2 of the plane z = 0 when

u(l, ¢) =0, u, ¢) = f(¢) O<op<m/2)
and
uy(p,0) =0, uy(p, m/2) =0 1 <p<b).
Give a physical interpretation of this problem.
Answer: u(p, ¢) = Aplnp + i A, (0*" — p~) cos2ng,

=l
where

2 /2
AOZM/O f@)de

and

/2
A, = %_2’1)/ £(¢) cos 2ne do (n=1,2..).
0

m(b* —

45. A STRING WITH PRESCRIBED
INITTIAL CONDITIONS

In this section we examine the displacements in a string of finite length when three
different types of initial conditions are used.

(i) Prescribed Initial Displacements
Section 37 was devoted to solving the boundary value problem

(1) Ve (x, 1) = ayu(x, 1) O<x<c t>0),
2) y(0, 1) =0, y(c, 1) =0,
(3) Y(x» 0) - f(x)a Yt(x’ 0) = 0
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for the transverse displacements y(x, ¢) in a finite string that starts with displace-
ments y = f(x) andisinitially at rest. We recall that f was continuouson0 < x <¢
and that

f©0) = f(c) =0.
We obtained the solution
nnat
4 1) = B, sin — —_—
4) y(x, t) = Z s1n co o
where
2 C
5) B, — E/ foysin ™ dx n=1.2 ).
0

Solution (4) is easily written in a closed form that does not involve infinite
series. We can do this with the aid of the trigonometric identity

2 sinA cos B = sin(A+ B) + sin(A— B)

by first noting that
t 1 t —at
(6) sin nx cos nrat _ 2 {sin na(x + at) + sin nax —a )] .
c c 2 c c
Series (4) then becomes
11 , nn(x +at) mr(x — at)
(7) y(x, t) = 3 ;Bn sin ————= Z B, s ]

Next, we let F denote the odd periodic extension, with period 2c, of the function f.
That is (see Fig. 42),

F(x)= f(x) when0 <x <c
and
F(—x) = —F(x), F(x+2c) = F(x) for all x.
y
y=/x
\\l L=
—2\\__,/’6I C‘\\__,//;c X
y = Fx)

FIGURE 42

Under the assumption that the Fourier sine series representation
> nmx
X) = B, sin — 0<x<c
f) 2; 5 Sin — ( )

is valid when coefficients (5) are used, it follows from the fact that each of the
functions sin(nmx/c) is odd and periodic with period 2c that F(x) is represented
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for all x by the same series:
it nmx
®) Fx) = ZB" sin — (=00 < x < ).
n=1 ¢

Consequently, expression (7) can be written

9) y(x, ) = % [F(x +at) + F(x —at)].

(Compare with d’Alembert’s solution in Example 1, Sec. 30.) The form (9) of our
solution will be verified in Chap. 11 (Sec. 112).

(ii) Prescribed Initial Velocities

When, initially, the string is in its position of equilibrium y = 0 and has a prescribed
distribution of velocities g(x) parallel to the y axis, the boundary value problem
for the displacements y(x, t) becomes

(10) Vi (x, 1) = azyxx(x, 1) O<x<c, t>0),
(11) y(0, 1) =0, y(c, 1) =0,
(12) y(x, 0) =0, yi(x, 0) = g(x).

If the xy plane, with the string lying on the x axis, is moving parallel to the y axis
and is brought to rest at the instant + = 0, the function g(x) is a constant. The
hammer action in a piano may produce approximately a uniform initial velocity
over a short span of a piano wire, in which case g(x) may be considered to be a
step function.

As in Sec. 37, we seek functions of the type y = X(x) T(¢) that satisfy all of
the homogeneous conditions in the boundary value problem. The Sturm-Liouville
problem that arises is the same as the one in Sec. 37:

X" (x) + A X(x) =0, X(0) =0, X(c) =0.

We recall that the eigenvalues and corresponding eigenfunctions are

2
oy = (”_”) . X,(x) =sin 2% n=12,..).
Cc c

Since the conditions on 7T'(¢) are
T"(t) + 2a’T() =0, T(0) =0,

the corresponding functions of ¢ are, except for constant factors,

. hmat
T,(t) = sin

n=1,2,...).

Thus the homogeneous conditions in the boundary value problem are for-
mally satisfied by the function

o0
t
(13) y(x, t) = Z C, sin M sin 7 ,
C C

n=1
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where the constants C, must be determined. To find those constants, we use
expression (13) to write

. nma nmx nmnat
14 X, t) = —— C,, sin — cos ;
( ) i ( ) Z c c c

n=1

and, from this and the second of conditions (12), we see that

o0
nma . nmx
(15) g(x) 227 nsin —— 0<x<o).
n=
Because this is a Fourier sine series for g(x) on 0 < x < ¢, then,
2 C
@CF—/g(x)sin@dx n=1,2,..).
c ¢ Jo c
That is,
2 ¢ . nmx
(16) C,=— g(x)sin — dx n=12..).
nma Jo c

We can sum the series (13), with the aid of expressions (14) and (6), by
writing

yi(x, t) = =
C

1| < nma Cnn(x +at) = nma . nn(x — at)
Z[ZTCnsmf+ZTCnsm7

n=1 n=1

and noting how it follows from representation (15) that

Ve(x, t) = % [G(x + at) + G(x — at)]

where G is the odd periodic extension, with period 2c, of the function g. Then,
since y(x, 0) = 0, we have'

t t
v(x, t):l[/ G(x—i—at)dr—l—/G(x—ar)dt].
2o 0

After substituting s = x + ar in the first of these integrals and s = x — at in the
second, we arrive at the expression

1 x+at x—at
y(x, t) = —[ G(s)ds —/ G(s) ds},
2a X X

or

1 x+at
17) y(x, t) = —/ G(s) ds.

2a Jy—ai

(iii) Initial Displacements and Velocities both Specified
If points on the string are given both nonzero initial displacements and nonzero
initial velocities, so that

(18) y(x,0)= f(x) and  y(x, 0) =g(x),

See also the footnote with Problem 10, Sec. 42, regarding antiderivatives.
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the displacements y(x, ) can be written as the sum

x+at
(19) y(x, t) = 1 [F(x+at)+ F(x —at)]+ — G(s)ds

2 2a Jy-a
of the solutions (9) and (17) above. (Compare with Problem 2, Sec. 30.) To see
that this is so, let Y(x, ) and Z(x, t) denote those two solutions, respectively. The
principle of superposition in Sec. 33, applied to just two functions, ensures that
the sum

y(x, t)y=Y(x, t)+ Z(x, t)

satisfies the linear homogeneous conditions (1) and (2), which are the same as
conditions (10) and (11). Furthermore, in view of conditions (3) and (12),

yx, 0 =YX, 0)+ Z(x, 0) = f(x) + 0= f(x)
and
y(x, 0) =Y (x, 00+ Z(x, 0) =0+ g(x) = gx).

In general, the solution of a linear problem containing more than one non-
homogeneous condition can be written as a sum of solutions of problems each of
which contains only one nonhomogeneous condition. The resolution of the origi-
nal problem in this way, although not an essential step, often simplifies the process
of solving it.

PROBLEMS

1. A string is stretched between the fixed points 0 and 1 on the x axis and released at
rest from the position y = A sin x, where Ais a constant. Obtain from expression (9),
Sec. 45, the subsequent displacements y(x, t), and verify the result fully. Sketch the
position of the string at several instants of time.

Answer: y(x, t) = A sinnx cos mat.

2. Solve Problem 1 when the initial displacement there is changed to y = Bsin 2zx, where
B is a constant.

Answer: y(x, t) = Bsin2nx cos2nat.

3. Show why the sum of the two functions y(x, ¢) found in Problems 1 and 2 represents
the displacements after the string is released at rest from the position

y = Asinnx + Bsin2mux.

4. A string, stretched between the points 0 and 7 on the x axis and initially at rest, is
released from the position y = f(x). Its motion is opposed by air resistance, which is
proportional to the velocity at each point (Sec. 28). Let the unit of time be chosen so
that the equation of motion becomes

Ve (X, 1) = yur (X, 1) — 2 By (x, 1) O<x<mt>D0),

where f is a positive constant. Assuming that 0 < 8 < 1, derive the expression

o0
y(x,t) =e P Z B, <cos aut + aﬁ sin ant> sin nx,

n=1 "
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where

2 ya
a, = +/n*— B2, B,,:;/ f(x)sinnx dx n=12,..),
0

for the transverse displacements.

. Suppose that the string in Problem 4 is initially straight with a uniform velocity in the
direction of the y axis, as if a moving frame supporting the endpoints is brought to
rest at the instant + = 0. The transverse displacements y(x, ¢) thus satisfy the same
differential equation, where 0 < 8 < 1, and the boundary conditions

y0,8) = y(m, 1) =0, y(x,0) =0, Ye(x, 0) = vo.

Derive this expression for those displacements:

4vg s i sin(2n — 1x .

1) = — nl,
y(x, 1) - 2n—Da, sin ¢

n=1

where a, = \/(2n — 1)2 — g2,

. The ends of a stretched string are fixed at the origin and at the point x = 7 on the
horizontal x axis. The string is initially at rest along the x axis and then drops under
its own weight. The vertical displacements y(x, ¢) thus satisfy the differential equation
(Sec.28)

VX, 1) = @’y (x, 1) — g O<x<mt>0),

where g is acceleration due to gravity.

(a) Use the method of variation of parameters (Sec. 42) to derive the expression

_ 4g = sin2n — 1)x T
y(x, l) = ﬁ[z W COS(Zn — 1)6” — gx(ﬂ — x)]

n=

for those displacements.
(b) With the aid of the trigonometric identity

2sin A cosB = sin(A+ B) +sin(A — B),

show that the expression found in part (a) can be put in the closed form

yx,t) = e 3 —x(mr —X)

g [P(x +at) + P(x — at)
where the function P(x) is the odd periodic extension, with period 27, of the
function x(w — x) (0 < x < 7).

Suggestion: In both parts (a) and (b), the Fourier sine series representation

(Problem 5, Sec. 5)

8 — sin(2n — 1)x
x(n—x):;ZW (OEXSJT)

is needed. Also, for part (a), see the suggestion with Problem 4, Sec. 43.
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46. RESONANCE

A stretched string, of length unity and with fixed ends, is initially at rest in its
position of equilibrium. A simple periodic transverse force acts uniformly on all
elements of the string, so that the transverse displacements y(x, ¢) satisfy this
modified form (see Sec. 28) of the wave equation:

(1) Ve (X, 1) = e (x, t) + Asinwt O<x<1,t>0),
where Ais a constant. Equation (1) and the boundary conditions

2 y©0.0)=0,  yd,n=0,

©) y(x,00=0,  y(x 0 =0,

just described, make up a boundary value problem to which the method of varia-
tion of parameters (Sec. 42) can be applied.

We note from Sec. 37 that if the constant A were actually zero, the Sturm-
Liouville problem arising would have eigenfunctions sinnmx (n=1,2,...).
Hence we seek a solution of our boundary value problem having the form

4) y(x,t) = Z B, (t) sin nmx,

n=1

where the coefficients B, (¢) are to be determined. To do this, we need the Fourier
sine series representation

5) 1=ZWsmnnx O<x<1,
n=1

which is easily obtained by replacing x by 7x in the known [Problem 1(b), Sec. 5]
representation

21— (="
1=ZMSinnx O0O<x<m),
— nmw

Substitution of series (4) and (5) into the differential equation (1) enables us to
write

Z B, (t)sinnmx = Z[—(nn)an(t)] sinnwx
n=1 n=1
> 201 — (="
+ Asin wt —[ =D sin nmx,
— nm
or
. * 2A[l — (=1)"
Z[B,Z(f) + () B, (1)] sinnwx = Z M sin wt sinnw x.
] — nmw
Thus,
2A[1 — (="
(6) B/(t) + (nm)*B,(t) = 2A0 = EDT G n=1,2,...),

ni
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and conditions (3) yield the initial conditions

(7) B,(0)=0 and B/(0)=0 n=12..)
on B,(t).
When # is replaced by 2n in equations (6) and (7), we have
®) By, (1) + @nm)? Byu(1) = 0,
) B2,(0)=0,  B,,(0)=0.

Solving this initial value problem, we find that B,,(t) =0 (n = 1,2, ...). That is,
B, (¢) is identically equal to zero when n is even.

To find B, (t) when n is odd, we replace n by 2n — 1 in equations (6) and (7)
and write

(10) w, = 2n—Dn n=12...).
The initial value problem for Bj,_1(¢) is then
4A
(11) By, () + @>Bay_1(t) = — sin o,
n
(12) B,-1(0) =0, B, 1(0) =0.

We may now refer to Problem 3 below. In that problem, methods learned in an
introductory course in ordinary differential equations are used to solve the initial
value problem

(13) y'(t) + a’y(t) = bsinwt,
(14) y(0) =0, y'(0) =0,

where a and b are constants.
To be specific, if w # a,

b o .
(15) y(t) = ) (E sinat — smwt).
Thus, we see that if o # w, for any value of n (n = 1,2,...), the solution of
problem (11)-(12) is
4A
B,_1(t) = ﬁ<ﬁ sinwnt—sinwt) n=1,2...);
Wy (a) - wn) wy

and it follows from equation (4) that

o0 .
sin w,x )
16 (x, ) =44 —— _ (— sin w,t — sin a)t>.
(16) Y ;wn(wz—a)%) wn

It is also shown in Problem 3 that if w =a, the solution of differential equa-
tion (13), with conditions (14), is

b1
(17) y(@) = % (; sinat — t cos at>.
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Hence, when there is a value Nofn (n =1, 2, ...) such that w = wy,

(18) Bon_1(t) = % (i sin wyt —tCOSa)Nt>.
wy \WN

Because of the factor ¢ with the cosine function here, this means that series (4)
contains an unstable component. Such a phenomenon is called resonance. The
periodic external force is evidently in resonance with the string when the frequency
o of that force coincides with any one of the resonant frequencies (10). Those
frequencies depend, in general, on the physical properties of the string and the
manner in which it is supported.

PROBLEMS
1. The boundary value problem

VX, 1) = a® e (x, t) + Ax sin ot O<x<c,t>0),
0,0 = y(c, 1) =0, y(x,0) = y(x,0 =0

describes transverse displacements in a vibrating string. [Compare with equation (1),
Sec. 46, where the term that was A sin wt is now Ax sin wt.] Show that resonance occurs
when o has one of the values

nma

w, = — n=12,..).
c

2. Leta, b, and w denote nonzero constants. The general solution of the ordinary differ-
ential equation

y'(t) + a’y(t) = bsinwt

is of the form y = y. + y,, where ). is the general solution of the complementary
equation y”(t) + a?y(t) = 0 and y, is any particular solution of the original nonhomo-
geneous equation.’

(a) Suppose that w # a. After substituting
yp = Acoswt + Bsinot,

where Aand B are constants, into the given differential equation, determine values
of Aand B such that y, is a solution. Thus, derive the general solution

y() = Cycosat + Cysinat + sin wt

a? — w?

of that equation.
(b) Suppose that @ = a and find constants A and B such that

yp = At coswt + Bt sin wt

is a particular solution of the given differential equation. Thus obtain the general
solution

b
y(t) = Cycosat + Cysinat — 2—tcosat.
a

"For the method of solution to be used here, which is known as the method of undetermined coefficients,
see, for instance, the book by Boyce and DiPrima (2009) or the one by Rainville, Bedient, and Bedient
(1997). Both books are listed in the Bibliography.
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3. Use the general solutions derived in Problem 2 to obtain the following solutions of the
initial value problem

y'(t) + a’y(t) = bsin wt, y(0) =0, y'(0) = 0:

b
d sinat — sin wt when w # a,
w?—a?\a
(@) =
b <1 . )
— | —sinat —tcosat when w = a.
2a \ a

47. AN ELASTIC BAR

Boundary value problems for longitudinal displacements in elastic bars are similar
to problems for transverse displacements in a stretched string.

EXAMPLE. A cylindrical bar of natural length c is initially stretched by
an amount bc (Fig. 43) and starts its motion from rest. The initial longitudinal
displacements of its sections are then proportional to the distance from the fixed
end x = 0. At the instant ¢+ = 0, both ends are released and left free. The longitu-
dinal displacements y(x, t) satisfy the following boundary value problem, where
a’=E/s (Sec. 29):

(1) Vi (X, 1) = @’y (x, 1) O<x<ct>0),
(2) yx(07 [) = 09 Yx(c, [) = 09
(3) y(xvo)szv yt(xvo):()'

The homogeneous two-point boundary conditions (2) state that the force per unit
area on the end sections is zero.

x a» Y 1) be

(0] x=c x

FIGURE 43

The function y(x, t) can also be interpreted as representing transverse dis-
placements in a stretched string, released at rest from the position y(x, 0) = bx,
when the ends are looped around perfectly smooth rods lying along the lines x = 0
and x = c. In that case, a> = H/§; and the boundary conditions (2) state that no
forces act in the y direction at the ends of the string (see Sec. 28).

The products y = X(x) T(¢) satisfy all of the homogeneous conditions above
when X(x) is an eigenfunction of the problem

4) X"(x) + 2 X(x) =0, X'(0) =0, X'(@©)=0
and when, for the same eigenvalue A,

5) T'(t) + 2a’T(t) = 0, T'(0) = 0.
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Those eigenvalues are (Sec. 35)

2
=0 and i =(2) n=1,2,..),
c
with eigenfunctions
Xox) =1 and X, (x) = cos nex n=1,2,...).
c

The corresponding functions of ¢ are

t
T)=1 and  T() = cos 22 n=12.)
Formally, then, the generalized linear combination
ad nmx nnat
6 = —_—
(6) y(x, 1) A0+2Ancos - cos -
n=1
satisfies conditions (1) through (3), provided that
o0
@) bx=A0+ZAncos@ 0 <x<o).
c

n=1

The coefficients in this Fourier cosine series, which is actually valid on the closed
interval 0 < x < ¢, are

b C
Aoz—/xdx, _—/xcos—dx n=1,2,...).
¢ Jo
Consequently,
bc 2bc 1 —(=1)"
(8) A():?, An:—?T (n=1,2,...);
and we arrive at the solution
bc  4bc & 1 2n — Dnx 2n — Dmat
9) y(x,t) = T2 2 on 12 cos . cos . .

By a method already used in Sec. 45, we can put this series solution in closed
form, involving the even periodic extension P(x), with period 2c, of the function
bx (0 < x < ¢). To be specific, we know from the trigonometric identity

2cos AcosB = cos(A+ B) + cos(A— B)
that

nmx nnat nn(x + at) nn(x — at)
2 cos — cos =C0S ———— + oS ———.
c c

Hence expression (6) can be written

(10) ¥ ”— A0+ZA nn(x+m)+Ao+ZAnCOSM.

Cc
n=1

But series (7) represents P(x) for all values of x when the values (8) of the coef-
ficients A, (n =0, 1,2, ...) are used. Hence expression (10), with those values of
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A,,, reduces to

(11) y(x,t) = % [P(x +at) + P(x —at)].

This is the desired closed form of solution (9).

PROBLEMS

1.

2.

Show that the motion of each cross section of the elastic bar treated in Sec. 47 is periodic
in ¢, with period 2c/a.

From expression (11), Sec. 47, shows that y(0, r) = P(at) and hence that the end x = 0
of the bar moves with the constant velocity ab during the half period 0 < ¢ < c/a
(see Problem 1) and with velocity —ab during the next half-period.

. The end x = 0 of an elastic bar is free, and a constant longitudinal force F; per unit area

is applied at the end x = ¢ (Fig. 44). The bar is initially unstrained and at rest. Set up
the boundary value problem for the longitudinal displacements y(x, t), the conditions
at the ends of the bar being y,(0,¢) = 0 and y,(c,t) = Fy/E (Sec. 29). After noting
that the method of separation of variables cannot be applied directly, follow the steps
below to find y(x, 1).

I vexn

o

FIGURE 44

(a) By writing y(x,t) = Y(x,t) + Ax?, determine a value of A that leads to the new
boundary value problem
F 2
Y (x,t) = a* Yo, (x, t)—l——cog O<x<c,t>0),
¥:(0,1) =0, Yi(c,1) =0,

R
Y(x,0) = —ﬁ x2, Y,(x,0) = 0.

(b) Point out why it is reasonable to expect that the new boundary value problem in
part (a) has a solution of the form

= nmx
Y(x, t) = Aot A, —_
x, 1) O(HZ; (1) cos —
Then use the method of variation of parameters (Sec. 42) to find Y(x, ¢) and thereby
derive the solution
(=1t nmat nmx

(x, 1) = ] 3 +a’?) -2+ 12¢? io: cos cos —
Y 6¢cE w2 n? c c

n=1

of the original problem.
(¢) Use the trigonometric identity

2cos A cosB = cos(A+ B) + cos(A— B)
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and the series representation

2 2 X n
, € 4c (-1 nmx
X —?—{-? il nz COST (—CSXSC),
which follows from Example 1 in Sec. 8, to write the expression for y(x, ¢) in
part (b) as
K|, 2, Px+at)+ P(x —at)
t) = —— -
y(x, 1) eE [x +a )

where P(x) is the periodic extension, with period 2¢, of the function x? defined on
the interval —c < x < c.

4. Show how it follows from the expression for y(x, ¢) in Problem 3(c) that the end x = 0
of the bar moves with the following velocities:

90,0 =0 when 0<t < 2
2a F; 3
y(0,8) =vy = 4% when £<t<—c,
a a
3 5
(0, 1) = 2vy when > <t< —C,
a a

etc.

48. DOUBLE FOURIER SERIES

The Fourier method is readily adapted to boundary value problems that give rise
to so-called double Fourier series. This is illustrated below.

EXAMPLE. Let z(x, y, t) denote the transverse displacement at each point
(x, y) at time ¢ in a membrane that is stretched across a rigid square frame in the
xy plane. To simplify the notation, we select the origin and the point (z, 7) as
ends of a diagonal of the frame. If the membrane is released at rest with a given
initial displacement f(x, y) that is continuous and vanishes on the boundary of
the square, then (Sec. 29)

(1) it = az(zxx + Zyy)
in the three-dimensional domain0 < x < 7,0 <y <7, ¢t > 0 and

2) z(0, y,t) = z(mw, y,t) = 2(x,0,¢) = z(x, 7, t) =0,
(3) Z(x»y’o)zf(xa)’)’ Zz(x,yaO)ZO,

where 0 < x < m,0 < y < 7. We assume that the partial derivatives f;(x, y) and
fy(x, y) are also continuous.
Functions of the type z = X(x)Y(y) T(¢) satisty equation (1) if

0 X' Y

@ 2TO - X T Yoy

Separating variables again, this time in the second of equations (4), we have
Yy X

YO) X . °
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where u is another separation constant. So we are led to two Sturm-Liouville
problems,
X'(x)+ O —w)X(x) =0, X(0) =0, X)) =0
and
YD) +urY(y) =0, YO =0, Y@ =0,
and to the conditions
T'(t) +ra*T@t) =0,  T'(0)=0
onT.

We turn to the Sturm-Liouville problem in Y first since it involves only one
of the separation constants. According to Sec. 35, that problem has eigenvalues
w=n?(m=1,2,...)and corresponding eigenfunctions

Y,.(y) = sinmy m=1,2,...).
When A — u =n? (n=1,2,...), the eigenfunctions
X, (x) = sinnx n=1,2,..)
of the problem in X are also obtained. The conditions on 7 thus become
T"(t) + a*(m? +n>)T(t) = 0, T'(0) = 0,

wherem=1,2,...andn = 1,2, .... For any fixed positive integers m and n, the
solution of this problem in 7 is, except for a constant factor,

Ty (t) = cos(at\/m? + n?).

The formal solution of our boundary value problem is, therefore,

) 2(x, y,t) = Z Z B sin nx sinmy cos(at\/m? + n?),

n=1 m=1

where the coefficients B,,, need to be determined so that

(6) fx,y) = Z Z By, sin nx sin my

n=1 m=1

when 0 < x < and 0 < y < w. By grouping terms in this double sine series so as
to display the total coefficient of sin nx for each n, one can write, formally,

(7) flx,y) = z (Z B, sin my) sinnx.

n=1 \m=1

For each fixed y (0 < y < ), equation (7) is a Fourier sine series represen-
tation of the function f(x, y), with variable x (0 < x < ), provided that

o0 2 T
(8) Zansinmyz—/ f(x, y)sinnx dx n=1,2..).
T Jo

m=1
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The right-hand side here is a sequence of functions

9) F,(y) = %/nf(x, y) sinnx dx n=1,2,..)
0

of y, each represented by its Fourier sine series

Fn(y) = Z an Sinmy

m=1

on the interval 0 < y < 7 when
2 TT

(10) B,, = —/ F.(y)sinmydy m=1,2,...).
T Jo

Combining expressions (9) and (10), we find that
4

T T
/ sin my/ f(x,y)sinnxdxdy.
0 0
The solution of our membrane problem is now given by equation (5) with coeffi-
cients (11).

Since the numbers +/m? + n? do not change by integral multiples of some
fixed number as m and n vary through integral values, the cosine functions in
equation (5) have no common period in the variable ¢; so the displacement z is
not generally a periodic function of ¢. Consequently, the vibrating membrane, in
contrast to the vibrating string, does not usually produce a musical note. It can
be made to do so, however, by giving it the proper initial displacement. If, for
example,

Z(x,y,0) = Asinx siny
where Ais a constant, the displacements (5) are given by a single term:
z(x, y, 1) = Asinxsin ycos(av/2t).

Then z is periodic in ¢, with period 7+/2/a.

PROBLEMS

1. All four faces of an infinitely long rectangular prism, formed by the planes x =0,
x =a,y = 0,and y = b, are kept at temperature zero. Let the initial temperature
distribution be f(x, y), and derive this expression for the temperatures u(x, y, t) in the
prism:

u(x, y, t) = Z Z B, exp {—nzkz (Z_lz + %)} sin nalx sin n%’

n=1 m=1

where

4 b a
B = — / sin @/ f(x, y)sin nx dxdy.
ab J, b J a
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2. Write f(x, y) = g(x)h(y) in Problem 1 and show that the double series obtained there
for u reduces to the product

ux, y, t) =v(x, ) w(y, )

of two single series, where v and w represent temperatures in the slabs 0 <x < a and
0 < y < b with faces at temperature zero and with initial temperatures g(x) and A(y),
respectively.

3. Let the functions v(x, t) and w(y, ¢) satisfy the heat equation for one-dimensional flow:

v, = kvy,y, wy = kwy,.

Show by differentiation that their product u = vw satisfies the two-dimensional heat
equation

w = k(U + uyy).

Use this result to arrive at the expression for u(x, y, t) in Problem 2.

49. PERIODIC BOUNDARY CONDITIONS

The solutions of the boundary value problems in this chapter have been based on
the solutions of just two Sturm-Liouville problems, which lead to Fourier cosine
and sine series representations of prescribed functions. Although Chap. 8 is de-
voted to the theory and application of many other Sturm-Liouville problems, as
well as to the precise definition of such a problem, we conclude this chapter by
considering a third problem that arises in certain boundary value problems for
regions with circular boundaries:

(1) X'(xX) +2AX(x) =0, X(—n)=X(n), X(-n)=X().

We include it here since its solutions also lead to Fourier series representations, but
now involving both cosines and sines on the interval —7 < x < 7, and since most
of the general theory of Sturm-Liouville problems is not actually required. We
need accept only the fact, to be verified in Chap. 8 (Sec. 69), that each eigenvalue,
or value of A for which problem (1) has a nontrivial solution, is a real number. In
anticipation of Chap. 8, we continue to refer to such values of A as eigenvalues
and to the nontrivial solutions as eigenfunctions.

(i) The case A =0
When A = 0, problem (1) becomes

2) X'(x)=0, X(—7)=X@), X(-7n)=X(n).

It is easy to see that X(x) = Ax + B, where A and B are constants; and the two
boundary conditions require that A = 0. Since all of the conditions in problem
(2) are linear and homogeneous, we thus find that except for a constant factor,
Xx) =1.

(ii) The case \ > 0

When A > 0, we write » = a?(a > 0), so that problem (1) is

(3) X'(X)+a?X(x) =0, X(-7)=X(m), X (-n)=X(n).
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The general solution of this differential equation is, of course,
X(x) = Cicosax + Cysinax.

Now it is straightforward to show that in order for the boundary conditions to be
satisfied,

Cysinar =0 and Cysinam =0.

Since the constants C; and C, cannot both vanish if X(x) is to be nontrivial,
it follows that X(x) is nontrivial only when the positive number « is a positive
integer n. That is, A = n?> (n = 1,2, ...); and the corresponding general solution
of problem (1) is an arbitrary linear combination of the two linearly independent
eigenfunctions cos nx and sin nx.

(iii) The case A < 0
When A < 0, one can write problem (1) as

4) X'(x) —a’X(x) =0, X(—n)=X(@), X (-7)=X(n),
where A = a?(a > 0). The general solution of this differential equation is
X(x) = Cie** + CGye ™,
and the first boundary condition reveals that
Ci(e®™ — e™T) = Cy(e™ — =),
or
(5) (Cy — ) sinhar =0.
Likewise, it follows from the second boundary condition that
(6) (C1 4+ &) sinhar = 0.
Since sinh aw # 0, equations (5) and (6) tell us that
Ci—C =0 and C+GC =0.
Solving for C; and G, here, we have C; = 0 and G, = 0. So X(x) = 0, and this
solution is a trivial one.
So we may conclude from cases (i) and (ii) above that the eigenvalues and
corresponding eigenfunctions of problem (1) are
M=0, A =n n=1,2,..)
and
Xo(x) =1, X, (x) = A, cosnx + B, sinnx n=1,2,...),

where A, and B, are arbitrary constants.
We now illustrate the use of this Sturm-Liouville problem, involving periodic
boundary conditions.

EXAMPLE. Let u(p, ¢) denote the steady temperatures in a thin disk
p < 1, with insulated surfaces, when its edge p = 1 is kept at temperatures f(¢).
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The variables p and ¢ are, of course, polar coordinates, and u satisfies Laplace’s
equation V?u = 0. That is,

(7) P2tpy(p. @) + Pty (0. §) +Ugp(p. §) =0 (O <p<1,—m<¢<m),
where
(8) u(l, ¢) = f(¢) (—m <¢ <m).

Also, u and its partial derivatives of the first and second order are continuous
and bounded in the interior of the disk. In particular, u and its first-order partial
derivatives are continuous on the ray ¢ = = (Fig. 45).

FIGURE 45

If functions of the type u = R(p)®(¢) are to satisfy equation (7) and the
continuity requirements, then

) p’R"(p) + pR (p) — AR(p) = 0 O<p<l)
and
(10)  ®"(¢) + rD(¢) =0, O (—m) = P (), Q'(—m) = D' (n),

where ) is a separation constant. We now recognize that equations (10) constitute a
Sturm-Liouville problem in ®, with eigenvalues Ao = Oand A, =n’> (n = 1,2, ...).
The corresponding eigenfunctions are

Dy(p) =1 and ®,(p) = A,cosng + B,sinng (n=1,2,...).

Equation (9) is a Cauchy-Euler equation (see Problem 1, Sec. 44), and we know
from Example 2, Sec. 44, that its bounded solutions are

Ro(p) =1 when A =0

and

2

R, (p) = p" when A =n n=1,2..).
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By superposition, the generalized linear combination of the products

Ro(p)Po(9) =1

and

R, (p)®,(¢) = p"" (A, cosng + B, sinng) n=1,2,..)

is

o0
(11) u(p, p) = Ao +Zp"(An cosng + B, sinng).

n=1
Note that if we had multiplied the products R,(p)®,(¢) (n = 1, 2, ...) by arbitrary
constants, those constants would have been absorbed into the arbitrary constants
A, and B,.

The nonhomogeneous condition (8) evidently requires that the constants in

expression (11) be the same as in the Fourier series representation

flo) = % + ;(An cosng + B, sinng) (—m <x <m).
Thus,
1 s
(12) m=7/f@w
T J-n
and

1 [ 1 [
13 A= f@rcosnpds. &=;/f@mmw

n=12,...).

We assume that f is piecewise smooth.
The solution obtained in this example can be put in closed form with the aid
of the summation formula (Problem 3)

o0
acost —a
14 a*cosn = ————
(14) n; 1 —2acosé +a?

2
(-1<a<1.

To do this, we use the variable of integration ¢ in expressions (12) and (13):

1

Av=o— | fO)dy.
T J-x

Anzé/ﬂ f@)cosny dy, B =%/n f)sinnydy (m=1,2,...).
Since

A, cosng + B,sinng = % /rr f()(cosng cosnyr + sinng sinnyr) dyr

1 T
= ;/ fGp)cosn(g — ¥) dy,
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expression (11) tells us that

u(p, §) = / F) v + Z o fo/f) cosn(@ — ) dy
= E/ @) 1+2Zp”cosn<¢—w>] dy.
- n=1
Finally, in view of the summation formula (14),
o _ 1 2pcos(—y) —
1+2;p cosn(p — V) = [~ Zr005% — V) + 72
1—p?

1—2pcos(¢— )+ p2

and we arrive at Poisson’s integral formula'

1—-2pcos(p — ) +p

(15) u(p. §) = £ Sdy

2

for temperatures in the disk p < 1.

PROBLEMS

159

1. Using the cylindrical coordinates p, ¢, and z, let u(p, ¢) denote steady temperatures in
a long hollow cylinder a < p < b, —oo0 < z < co when the temperatures on the inner

surface p = a are f(¢) and the temperature of the outer surface p = b is zero.

(a) Derive the temperature formula

Inb-lnp — bZ"—p
= A)y——— — A, B,
u(p, ¢) b —Ina -I—Zl: (p) g — (A, cos n$ + B, sin ng),

where the coefficients A, and B,, including A, are given by equations (12) and

(13) in Sec. 49.

(b) Use the result in part (a) to show that if f(¢) = « + Bsin¢, where o and B are

constants, then

Inb—1Inp a b*—p?

u(p, ¢) = m"‘ﬂz : msmtﬁ
2. Solve the boundary value problem
U (x, 1) = kg (x,1) (-7 <x<mt>0),
u(—m,t) =u(m,t), Uy (—m,t) = uy(m, t), u(x,0) = f(x).

The solution u(x, t) represents, for example, temperatures in an insulated wire of length
27 that is bent into a unit circle and has a given temperature distribution along it. For

TThis and related formulas are obtained by complex-variable methods in the authors’ book (2009,

Chap. 12) that is listed in the Bibliography.
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convenience, the wire is thought of as being cut at one point and laid on the x axis
between x = —n and x = n. The variable x then measures the distance along the
wire, starting at the point x = —x; and the points x = —7 and x = 7 denote the same
point on the circle. The first two boundary conditions in the problem state that the
temperatures and the flux must be the same for each of those values of x. This problem
was of considerable interest to Fourier himself, and the wire has come to be known as
Fourier’s ring.

[o¢]
Answer: u(x, t) = Ag+ Z e"’zk’(An cosnx + B, sinnx),

n=1

1 T
Ao=g/ﬁﬂ f(x)dx

where

and
1 [~ 1 (7 .
An — f(x)cosnxdx’ an — f(x) sin nx dx (n:l, 25)
T Jx T J

3. By writing A= n6 and B = 0 in the trigonometric identity
2cos A cosB = cos(A+ B) + cos(A— B),

multiplying through the resulting equation by a” (-1 < a < 1), and then summing
each side from n = 1 to n = oo, derive the summation formula

i 2

Za”cosn@—m (-l<a<1
"~ 1—2acos6 + a? ’

n=1

used in Sec. 49. [One can readily see that this series is absolutely convergent by com-
paring it with the geometric series whose terms are a” (n = 1,2, ...).]



CHAPTER

6

FOURIER
INTEGRALS
AND
APPLICATIONS

In Chap. 2 (Sec. 15) we saw that a periodic function, with period 2c, has a Fourier
series representation which is valid for all x when it satisfies certain conditions
on the fundamental interval —c < x < c. In this chapter, we develop the theory
of trigonometric representations of functions, defined for all x, that are not peri-
odic. Such representations, which are analogous to Fourier series representations,
involve improper integrals instead of infinite series.

50. THE FOURIER INTEGRAL FORMULA

From Problem 9, Sec. 8, we know that the Fourier series corresponding to a func-
tion f(x) on an interval —c < x < ¢ can be written

1 /e 1, e nmw
(1) 2_6/_c f(s)ds+zn§' g f(s)COS[j(S—x)]ds,

and, from Theorem 1 in Sec. 15, we know conditions under which this series
converges to f(x) everywhere in the interval —c < x < c. Namely, it is sufficient
that f be piecewise smooth on the interval and that the value of f at each of
its points of discontinuity x be the mean value of the one-sided limits f(x +)
and f(x —).
Suppose now that f satisfies such conditions on every bounded interval
—c <x <c. Here ¢ may be given any fixed positive value, arbitrarily large but
finite, and series (1) will represent f(x) over the large segment —c < x < ¢ of the
x axis. But that series representation cannot apply over the rest of the x axis unless
f is periodic, with period 2¢, because the sum of the series has that periodicity.
161
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In seeking a representation that is valid for all real x when f is not periodic,
it is natural to try to modify series (1) by letting ¢ tend to infinity. The first term in
the series will then vanish, provided that the improper integral

/00 f(s)ds

exists. If we write Ao = m/c, the remaining terms take the form

1S ¢
(2) - ; A /_C f(s)cos[nAwx (s — x)] ds,
which is the same as
1 & b4
(3) - n; F.(nAa, x) Ao (Acx = Z)’
where
4) F.(a,x) = /C f(s)cosa(s — x)ds.

Let the value of x be fixed and c be large, so that A« is a small positive number.
The points nAx (n =1, 2, ...) are equally spaced along the entire positive « axis;
and, because of the resemblance of the series in expression (3) to a sum of areas
of rectangles used in defining definite integrals (see Fig. 46), one might expect the
partial sums of that series to approach

5) / Fo(e x) der,
0

or possibly

©) / Foole, x) der
0

as A tends to zero. As the subscript co in integral (6) indicates, however, the
function F,(«, x) changes with Aa because ¢ =7 /A«. Also, the limit of the series
in expression (3) as A« tends to zero is not, in fact, the definition of the improper
integral (5) even if ¢ could be kept fixed.

Fc(a, X)

o Aa 2Aa 3Ax a

FIGURE 46
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The above manipulations merely suggest that under appropriate conditions
on f, the function may have the representation

(7) f(x):%/oo/oo f(s)cosa(s —x)dsda  (—00 < x < 00).
0 —00

This is the Fourier integral formula for the function f, to be established rigorously
in Sec. 53.
Observe how it follows from the trigonometric identity

cosa(s — x) = cosas cosax + sin as sin ax

that
/ f(s)cosa(s —x)ds = / f(s)cosas ds cosax + / f(s)sinas ds sinax.

Hence formula (7) can be written in terms of separate cosine and sine functions
as follows:

(8) fx) = /OO[A(oz) cosax + B(w)sinax]da (—oo < x < 00),
0

where

9) Ala) = %/oo f(x)cosaxdx, B(a) = %/OO f(x)sinaxdx.

Expression (8), with coefficients (9), bears a resemblance to a Fourier series rep-
resentationon —w < x < 7.

A reader who wishes to accept the validity of Fourier integral representations
in order to proceed more quickly to physical applications can at this time skip to
Sec. 54 without serious disruption.

51. DIRICHLET’S INTEGRAL

Just as we prefaced the Fourier theorem in Sec. 12 with some preliminary theory,
we include here and in Sec. 52 background that is essential to our proof of a
theorem that gives conditions under which representation (7) in Sec. 50 is valid.
This section is devoted to the evaluation of an improper integral, known as
Dirichlet’s integral, that is prominent in applied mathematics. We show here that’

(1) /Oos‘iﬂdx=f.
0

Our method of evaluation requires us to first show that the integral actually
converges. We note that the integrand is piecewise continuous on every bounded
interval 0 < x < c. This is because that quotient is continuous everywhere except

TFor another approach, see, for instance, the book by Buck (2004). A method of evaluation involving
complex variables is given in the authors’ book (2009, pp. 279-280). Both books are listed in the
Bibliography.
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at x = 0, where I’'Hopital’s rule shows that its right-hand limit exists. Since

00 .t c -
sSin x . sSin x
—— dx = lim —dx

0 X oo Jy X

1 . c .
sin sin

lim (/—xdx+/—xdx>
c—>00 0 X 1 X

1 o; C o

sin x . sin x

/ —— dx + lim — dx,
0 x cC—>00 1 x

where c is any positive number, it suffices to show that the last limit here exists.
To accomplish this, we note that if

u=— and dv =sinxdx,
X
then
du=——dx and v = —cosx.
2

Hence integration by parts yields

¢ sinx €1 . —cosx € ¢ cosx
——dx = —sinxdx = - > dx,
1 X 1 X X 1 1 X

or
C - C
sin x cosc COS X
(2) —dx=———+cosl — S—dx.
1 X C 1 X
Because
cosc¢ 1 COS X 1
< - and — < =
c c X X

the first term on the right in equation (2) tends to zero as ¢ tends to infinity; and
the improper integral

o0 C
cos x . COS X
> dx = lim > dx
1 X cC—>00 1 X

is (absolutely) convergent. The limit of the left-hand side of equation (2) as c tends
to infinity therefore exists; that is, integral (1) converges.
Now that we have established that integral (1) converges to some number
L, or that
¢

lim / lax =1L,

c—oo Jo X
we note that, in particular,

(1+N)7T :
3) im [0 -1
N—oo 0 X

as N passes through positive integers. That is,

1
. sin (E + N) u
4) lim ——d

N—oo 0 u

u=1~L,
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X = (%+N>u

has been made for the variable of integration. Observe that equation (4) can be
written

where the substitution

(5) Al]im / gw)Dy(u)du = L,
— 00 0
where
2sin g
(6) g = —

and where Dy(u) is the Dirichlet kernel (Sec. 11)

sin(E + Nu)
(7) Dy (u) = Z—M
2 sin >
The function g(u), moreover, satisfies the conditions in Lemma 2, Sec. 11
(see Problem 1, Sec. 52); and g(0 +) = 1. So, by that lemma, limit (5) has the
value 7/2; and, by uniqueness of limits, L = 7 /2. Integration formula (1) is now
established.

52. TWO LEMMAS

The two lemmas in this section are analogues of the ones in Sec. 11, leading
up to a convergence theorem for Fourier series. The statement and proof of the
corresponding theorem for Fourier integrals appear in Sec. 53, where these lemmas
are needed.

Lemma 1. Ifafunction G(u) is piecewise continuous on an interval 0 < x <,
then
C

(1) lim G)sinrudu = 0. r >0

r—00 0

This is the general statement of the Riemann-Lebesgue lemma involving a
sine function. Lemma 1 in Sec. 11 is a special case of it, where ¢ = 7 and r tends
to infinity through the half-integers

1
r:§+N (N=1,2,),

rather than continuously as it does here. This lemma also holds when sin ru is
replaced by cos ru; and the proof is similar to the one below involving sin ru.

To verify limit (1), it is sufficient to show that if G(u) is continuous at each
point in an interval a < u < b, then

b
(2) lim / G)sinrudu = 0.
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For, in view of the discussion of integrals of piecewise continuous functions in
Sec. 1, the integral in limit (1) can be expressed as the sum of a finite number of
integrals of the type appearing in limit (2).

Assuming, then, that G(u) is continuous on the closed bounded interval
a < u < b, we note that it must also be uniformly continuous there. That is, for
each positive number ¢, there exists a positive number § such that

|Gu) — G(v)| < ¢

whenever u and v lie in the interval and satisfy the inequality |u — v| < 8." Writing
€0

- 2(b—a)’

where gy is an arbitrary positive number, we are thus assured that there is a positive

number § such that

&

3) IGw) — G)| < ﬁ whenever |u — v| < 8.
To obtain the limit (2), divide the interval ¢ < u < b into N subintervals of
equal length (b — a)/ N by means of the points a = ug, uy, ua, ..., uxy = b, where

Uy < up <upy < --- < uy,andlet N be so large that the length of each subinterval
is less than the number § in condition (3). Then write

b N u,
/ Gu)sinrudu = Z / G(u) sinrudu,
a n=1 * tn-1

or

b
/ G(u) sinru du

N Uy N Un
= Z / [Gw) — G(uy)]sinrudu + Z G(uy) / sin ru du,
n=1 v tn-1 n=1 Un—1

from which it follows that

b
4 / G(u)sinrudu
N Uy N Uy
<> |Gw) — Guy)| |sinrul du+ Y " |Guy)| / sinru dul.
n=1 v Un-1 n=1 Unp—1
In view of condition (3) and the fact that |sinru | < 1, it is easy to see that
U, b—
/unl |G(u) — G(uy)| |sinru| du < 72(;2 5 _N“ = 28_]0\, (n=1,2,...,N).

Also, since G(u) is continuous on the closed interval a < u < b, it is bounded there;
that is, there is a positive number M such that |G(u)| < M for all u in that interval.

TSee, for instance, the book by Taylor and Mann (1983, pp. 529-531), listed in the Bibliography.
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Furthermore,
- | cos ruy| + | cos ru, 1|

Un
/ sinrudu| <
Up—1

With these observations, we find that inequality (4) yields the statement

=

2
— n=1,2,...,N).
’

r

b
2MN
/ Gw)sinrudu| < 82—0 + —.
Now write
4MN
R =
&0
and observe that
2MN
< % whenever r > R.
r 2
Consequently,
b . &0 200)
Gw)sinrudu| < > + 5 = &0 whenever r > R;
a

and limit (2) is established.
Our second lemma makes direct use of the first one.

Lemma 2. Suppose that a function g(u) is piecewise continuous on every
bounded interval of the positive u axis and that the right-hand derivative g', (0)
exists. If the improper integral

5) /0 8| du

converges, then

o0

(6) lim g(w)

r—>0o0 0 u

sin r
“ du = %g(O +).

Observe that the integrand appearing in equation (6) is piecewise continuous
on the same intervals as g(u) and that when u > 1,

sin ru

= lg@)].

o

u
Hence the convergence of integral (5) ensures the existence of the integral in
equation (6).

We begin the proof of the lemma by demonstrating its validity when the
interval of integration is replaced by any bounded interval 0 < x < c. That is, we
first show that if a function g(u) is piecewise continuous on a bounded interval
0 < x < cand g’ (0) exists, then
sin ru b4

du = 0+).
L du 2g(+)

r—00

™) im [ gw
0
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To prove this, we write

/ e ™ G = 1)+ T (),
0 u

where

1Ir) = /C M sin ru du and J@r) = /Cg(O +) sin ru du.
0 u 0 u

Since the function

gu) —g0+)
u

Gu) =

is piecewise continuous on the interval 0 < x < ¢, where G(0 +) = g/, (0), we
need only refer to Lemma 1 to see that

®) lim 1(r) = 0.

r—0o0

On the other hand, if we substitute x = ru in the integral representing J(r), the
integration formula in Sec. 51 tells us that

(9) lim J(r) = g(0 +) lim / % dx = %g(O +).
r—00 r—0Q 0

Limit (7) is evidently now a consequence of limits (8) and (9).
To actually obtain limit (6), we note that

o0 sinru o0
/ gw) du| < / lg(w)| du,
c u 0

where we assume that ¢ > 1. We then write

(10) ’ / e 3™ gy~ T (0 +>’
0 u 2

/Cg(u) ST o +)‘ n /oo 19| du,
0 u 2 c

choosing c¢ to be so large that the value of the last integral on the right, which
is the remainder of integral (5), is less than ¢/2, where ¢ is an arbitrary positive
number independent of the value of . In view of limit (7), there exists a positive
number Rsuch that whenever r > R, the first absolute value on the right-hand side
of inequality (10) is also less than g/2. It then follows that

=

/°° @) sinrudu T 0 ) 8+8 .
—_ < — - =
A 2§ 272

whenever r > R, and this is the same as statement (6).
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PROBLEMS
1. Show that the function

2sin ;
gu) = )
u

used in equation (5), Sec. 51, satisfies the conditions in Lemma 2, Sec. 11. To be precise,
show that g is piecewise continuous on the interval 0 < x < 7 and that g/, (0) exists.
Suggestion: To obtain g, (0), show that

2sin & —u
8:(0) = lim —5—
u>0
Then apply ’'Hopital’s rule twice.
2. Prove Lemma 1 in Sec. 52, when sin ru is replaced by cos ru in integral (1) there.
3. Assume that a function f(x) has the Fourier integral representation (8), Sec. 50, which
can be written

f(x) = lim / [A(a) cos ax + B(w) sinax] da.
c=oo /o

Use the exponential forms (compare with Problem 8, Sec. 15)

ei9 + e—i@ ) eir‘) _ e—iH
cosfh = ———, sinf = —————
2 2i

of the cosine and sine functions to show formally that

f(x) = lim / C(a) ¢** da,
where
A(a) — i B(at) _ Ala) +iBa)

Cla) = — C(—a) 5

Then use expressions (9), Sec. 50, for A(x) and B(x) to obtain the single formula®

(a > 0).

C(a) = %/ F(x) e ™ dx (—00 < a < 00).

53. A FOURIER INTEGRAL THEOREM

The following theorem gives conditions under which the Fourier integral repre-
sentation (7), Sec. 50, is valid.*

Theorem. Let f denote a function that is piecewise continuous on every
bounded interval of the x axis, and suppose that it is absolutely integrable over

fThe function C(«) is known as the exponential Fourier transform of f(x) and is of particular impor-
tance in electrical engineering. For a development of this and other types of Fourier transforms, see,
for example, the book by Churchill (1972) that is listed in the Bibliography.

For other conditions, see the books by Carslaw (1952, pp. 315ff) and Titchmarsh (1986, pp. 13ff), both
listed in the Bibliography.
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the entire x axis, that is, the improper integral

/ | f(0)|dx

converges. Then the Fourier integral
1 oo oo
(1) — / / f(s)cosa(s — x) ds du
T Jo J-o
converges to the mean value
fxH)+ fx-)

@ .

of the one-sided limits of f at each point x (—oo < x < 00) where both of the one-
sided derivatives f|(x) and f’ (x) exist.

We begin our proof with the observation that integral (1) represents the limit
as r tends to infinity of the integral

(3) 1 /r/oo f(s)cosa(s —x)ds da = 1 [L(r, x) + J(r, x)],
T JoJ-c T
where

I(r,x) = /r/oof(s)cosa(s —x)ds da,
0Jx

J(r, x) :/r/x f(s)cosa(s — x)ds da.
0 J—o0

We now show that the individual integrals /(r, x) and J(r, x) exist; and, assuming
that f} (x) and f’ (x) exist, we examine the behavior of these integrals as r tends
to infinity.

Turning to I(r, x) first, we introduce the new variable of integrationu = s —x
and write that integral in the form

4) I(l”,x)=/r/OO f(x +u)cosaududa.
0.Jo
Since

| f(x 4+ u)cosau| < |f(x+u)l

and because

[o¢] o0 [o¢]
| e wian= [Cigonds < [ iroids
0 X 0o
the Weierstrass M-test for improper integrals applies to show that the integral
o0
/ f(x +u)cosaudu
0

converges uniformly with respect to the variable «. Consequently, not only
does the iterated integral (4) exist, but also the order of integration there can
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be reversed:"

I(r,x):/oo/r f(x+u)cosaudadu=/oof(x+u)
0o Jo 0

sin ru

du.

u

Now the function g(u) = f(x 4 u) satisfies the conditions in Lemma 2, Sec. 52
(compare with Sec. 12). So, applying that lemma to this last integral, we find that

(5) lim 1, x) = % Fx+).

The limit of J (7, x) as r tends to infinity is treated similarly. Here we make
the substitution u = x — s and write

J(r,x):/r/oof(x—u)cosaudud(x:/oof(x—u)
0Jo 0
When g(u) = f(x — u), the limit

(©) lim () = 2 f(x )

sin ru
du.

u

also follows from Lemma 2 in Sec. 52.

Finally, in view of limits (5) and (6), we see that the limit of the left-hand
side of equation (3) as r tends to infinity has the value (2), which is, then, the value
of integral (1) at any point where the one-sided derivatives of f exist.

Note that since the integrals in expressions (9), Sec. 50, for the coefficients
A(a) and B(w) exist when f satisfies the conditions stated in the theorem, the
form (8), Sec. 50, of the Fourier integral formula is also justified.

PROBLEMS

1. Verity that all of the conditions in the theorem in Sec. 53 are satisfied by the function f
defined by means of the equations

1 when |x| < 1,
o=

0 when |x| > 1,
and f(£1) = 1/2. Thus show that for every x (—oo < x < 00),
1 [ sina(l+x)+sine(l —x) 2 (% sinacosax
da = = ——d
0 0

fx)=— o.
T o bid o

2. Show that the function defined by means of the equations

Fx) = 0 when x <0,
] exp(—x) when x > 0,

fTheorems on improper integrals used here are developed in the book by Buck (2004), listed in the
Bibliography, as well as in most other texts on advanced calculus. The theorems are usually given
for integrals with continuous integrands, but they are also valid when the integrands are piecewise
continuous.
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and f(0) = 1/2 satisfies the conditions in the theorem in Sec. 53 and hence that

1 (= i
f(x):—/ —cosax+oz251nozx da (—00 < X < ).
T Jo 1+«

Verify this representation directly at the point x = 0.
3. Show how it follows from the result in Problem 2 that

exp(—|x|) = z cosax da (—00 < X < ).
T Jo 1+a?

4. Use the theorem in Sec. 53 to show that if

Fo) = 0 when x <0 or x > 7,
~ )] sinx when 0 <x <,

then

f(x):l/ cosozx—i—cosozt(rr—X)da (=00 < X < ).
T Jo 11—«

In particular, write x = /2 to show that

* cos(am/2) P bid
———da = —.
o 1—a? 2
5. Show why the Fourier integral formula fails to represent the function
fx)=1 (—00 < X < ).

Also, point out which condition in the theorem in Sec. 53 is not satisfied by that function.
6. Give details showing that the integral J (r, x) in Sec. 53 actually exists and that limit (6)
in that section holds.

7. Let f be anonzero function that is periodic, with period 2¢. Point out why the integrals

/ f(x)dx and / | f(x)|dx
fail to exist.

8. Let A(@) and B() denote the coefficients (9), Sec. 50, in the Fourier integral represen-
tation (8) in that section for a function f(x) (—oo < x < oco) that satisfies the conditions
in the theorem in Sec. 53.

(a) By considering even and odd functions of «, point out why

/ [A(e) cosax + B() sinax] da = 2 f(x)

oo

and

/ [B(@) cosax + A(x) sinax]da = 0.

o0

(b) By adding corresponding sides of the equations in part (a), obtain the following
symmetric form of the Fourier integral formula:

flx)= «/% [w g(a)(cos ax + sinax) do (—00 < X < ),

"This form is useful in certain types of transmission problems. See R. V. L. Hartley, Proc. Inst. Radio
Engrs., vol. 30, no. 3, pp. 144-150, 1942.
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where

(@) = L /OO f(x)(cosax + sin ax) dx
g - m - N

54. THE COSINE AND SINE INTEGRALS

Let f denote a function satisfying the conditions stated in the theorem in Sec. 53.
As pointed out in the final paragraph of that section, the Fourier integral repre-
sentation of f(x) remains valid when written in the form

@) fx) = /DO[A(a) cosax + B() sin ax] de,
0
where
(2) Ala) = %/oo f(x)cosaxdx, B(a) = %/oo f(x)sinax dx.

Also, in view of the theorem in Sec. 9, representation (1) is valid for any function f
that is absolutely integrable over the entire x axis and piecewise smooth on every
bounded interval of it.

Suppose now that f(x) is defined only when x > 0 and that

(i) f is absolutely integrable over the positive x axis and piecewise smooth on
every bounded interval of it;

(if) f(x) at each point of discontinuity of f is the mean value of the one-sided
limits f(x +) and f(x —).

The following theorem regarding Fourier cosine and sine integral formulas is anal-
ogous to Theorem 2 in Sec. 15, which ensures the convergence to f(x) of Fourier
cosine and sine series on an interval 0 < x < c¢. It is an immediate consequence
of the Fourier integral theorem in Sec. 53 and will be especially useful in our
applications.

Theorem. Let f denote a function that is defined on the positive x axis and
satisfies conditions (i) and (ii). The Fourier cosine integral representation

3) fx) = /OOA(a) cosax da,
0
where
4) Ala) = 2 /oof(x) cosax dx,
7T Jo

is valid for each x (x > 0); and the same is true of the Fourier sine integral
representation

(5) fx) = /OOB(a) sin ax do,
0
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where
A .
(6) B(a) = —/ f(x)sinax dx.
7 Jo
Note how representations (3) and (5) can also be written
2 o0 oo
(7 fx) = —/ cosozx/ f(s)cos as ds du
T Jo 0
and
2 [ * .
(8) fx) = —/ sin ax / f(s)sin as ds da,
7 Jo Jo
respectively.

To start the proof of the theorem, observe that if f is even, f(x)sinox is
odd in the variable x. The graph of y = f(x) sinwx is, therefore, symmetric with
respect to the origin. Hence B(x) = 0 in representation (1), which reduces to
equation (3). The function f(x) cosax is, moreover, even in x, and so the graph
of y= f(x) cosax is symmetric with respect to the y axis. Consequently, the co-
efficient A(«) in representation (1) takes the form (4). If, on the other hand, f is
odd, A(e) = 0; and similar considerations lead to representation (5).

Suppose now that f is defined only when x > 0, as in the statement of the
theorem. When the even extension is made, so that f is defined on the entire x
axis except at x = 0, integral (3) represents that extension for every nonzero x
and converges to f(0 +) when x = 0. Likewise, integral (5) represents the odd
extension of f(x) for every nonzero x and converges to zero when x = 0. So the
theorem here follows from the Fourier integral theorem in Sec. 53.

55. SOME EIGENVALUE PROBLEMS
ON UNBOUNDED INTERVALS

The integral representation (3) in the theorem in Sec. 54 is needed in various
applications involving the eigenvalue problem

(1) X'(x)+21Xx) =0, X'(0) =0, |X(x)|<M (x > 0),

where M is some positive constant. This is another kind of eigenvalue problem
which is basically different from the ones solved in Secs. 35 and 49. The difference,
to be described further in Chap. 8 (Sec. 68), is that the fundamental interval x > 0
here is unbounded. We accept the fact, which can be verified using complex-
variable methods, that the eigenvalues A in this and the other eigenvalue problems
in this chapter must be real numbers.

To solve problem (1), we consider the cases in which A is zero, positive, and
negative separately.

(i) The case A =0

When A = 0, the differential equation is X” = 0. Its solution is X(x) = Ax + B,
where A and B are arbitrary constants, and the condition X’(0) = 0 requires that
A = 0. Inasmuch as the function X(x) = B is bounded, we find that except for a
constant factor, X(x) = 1.
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(ii) The case A > 0
Here we write A = a?(a > 0), so that the general solution of the differential
equation is

X(x) = Cicosax + Gy sinax,

where the constants C; and C, are arbitrary. Since o # 0, the condition X’(0) =0
requires that C; = 0. So, except for a constant factor, X(x) = cos ax, where «
takes on all positive values. Note that the corresponding eigenvalues A = o are
continuous, rather than discrete.

(iii) The case A < 0

In this case, we write A = —a?(a > 0) and observe that the general solution of the
differential equation is X(x) = Cie** + Cye™**. The condition X’ (0) = 0 requires
that

a(C—G) =0,
or that C; = C;. Consequently,
X(x) = C1(e" + e ") = 2C) cosh ax,

and since cosh ax is unbounded on the half line x > 0, the constant C; must be
zero. So X(x) is identically equal to zero, and we find that the case A < 0 yields
no new eigenfunctions.

The eigenvalues and eigenfunctions of Problem 1 are, therefore,
(2) A =a?, X(x) = cosax (a > 0).

Although the eigenfunctions X(x) = cosax (« > 0) have no orthogonality prop-
erty, the Fourier cosine integral formula (3) in Sec. 54 gives representations of
functions f(x) on the interval x > 0 that are generalized linear combinations of
those eigenfunctions.

Likewise, it is straightforward to show (Problem 7) that

3) A =a? X(x) = sinax (a > 0)
are the eigenvalues and eigenfunctions of the problem
4) X'(0) 41X =0,  XO0)=0, |X)|<M (x > 0);

and formula (5) in Sec. 54 represents functions f(x) in terms of sin ox.
Finally, solutions of the eigenvalue problem

(5) X'(x)+1X(x) =0, | X(x)| < M (—00 < x < 00)

are found in Problem 8 and will be used in Sec. 59.

PROBLEMS

1. By applying the Fourier sine integral formula and the theorem in Sec. 54 to the function
defined by means of the equations

F) = 1 when 0 < x < b,
Y= 0 when x > b,
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and f(b) = 1/2, obtain the representation

2 [*1—cosha .

f(x):—/ ————sinaxda (x > 0).

T Jy o

2. Verify that the function exp(—bx), where b is a positive constant, satisfies the conditions
in the theorem in Sec. 54, and show that the coefficient B(«) in the Fourier sine integral
representation of that function is

2 ~ —bx ; 2 o
B(a) = ;/0 e P sinaxdx = X
Thus, prove that
2 (% asinax
—bx __
e —;A 052—_|_b2da (b>0,x>0)
3. Verify the Fourier sine integral representation
x 2 [ * ssinas
m:;A Slnax[) mdsda (b>0,x20)
by first observing that according to the final result in Problem 2,
* s sinas T pe
A mds=§e (b>0,0[>0)

Then, by referring to the expression for B(«) in Problem 2, complete the verification.
Show that the function x/(x*> 4+ b?) is not, however, absolutely integrable over the
positive x axis.

4. Asalready verified in Problem 2, the function exp(—bx), where b is a positive constant,
satisfies the conditions in the theorem in Sec. 54. Show that the coefficient A(x) in the
Fourier cosine integral representation of that function is

A 2 b
A(a) = ;/{; e—bx cosax dx = ; . oﬂ—_}-b2
Thus prove that
2b [ cosax
—bx __
e —;\/O mdd (b>0,X20)

5. By regarding the positive constant b in the final equation obtained in Problem 4 as
a variable and then differentiating each side of that equation with respect to b, show
formally that

4 [ cosax
(1+X)€_x:;\/0 mda (sz)

6. Verify that the function e * cos x satisfies the conditions in the theorem in Sec. 54,
and show that the coefficient A(«) in the Fourier cosine integral representation of that
function can be written

1 [ 1 [
Ala) = — / e *cos(a + Dxdx + — / e *cos(a — Dxdx.
T Jo T Jo
Then use the expression for the corresponding coefficients in Problem 4 to prove that

2 [Ca?+2
e”‘cosx:—/ O:——’_cosaxdoc (x > 0).
T J, ot+4
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7. In Sec. 55, show that the solutions of the eigenvalue problem (4) are as stated there.
8. Show that the eigenvalues of the eigenvalue problem

X' (x) +1X(x) =0, | X(x)| < M (=00 < x < 00),

where M is a positive constant, are A = ? (¢ > 0) and that the corresponding eigen-
functions are constant multiples of unity when o = 0 and arbitrary linear combinations
of cos ax and sin ax when o > 0. (Compare with the solutions of the eigenvalue problem
in Sec. 49.)

56. MORE ON SUPERPOSITION
OF SOLUTIONS

In Sec. 33 we showed that if u;, uy, . . . are solutions of a given linear homogeneous
differential equation or boundary condition, then so is any generalized linear
combination

o0
u= E Cnlly
n=1

of those functions, provided that needed differentiability and continuity conditions
are satisfied. We thus had the basis of the technique for solving boundary value
problems in Chap. 5. Another important version of that principle of superposition
is illustrated in the following example, where superposition consists of integration
with respect to a parameter « instead of summation with respect to an index n. It
will enable us to solve certain boundary value problems in which Fourier integrals,
rather than Fourier series, are required.

EXAMPLE. Consider the set of functions u = ¢~*” sin a.x, where each func-
tion corresponds to a value of the parameter « (@ > 0) and where « is independent
of x and y. Each function satisfies Laplace’s equation

(1) Uy (X, J’)+Myy(X, Y)ZO (x >0,Y>0)
and the boundary condition
) u(,y) =0 (y>0).

These functions are bounded in the domain x > 0, y > 0 (Fig.47) and are obtained
from conditions (1) and (2) by the method of separation of variables when that
boundedness condition is included (Problem 1, Sec. 57).

We now show that their superposition of the type

oo
(3) ulx,y) = / B(a) e ™ sinax do (x>0,y>0)
0
also represents a solution of the homogeneous conditions (1) and (2) which is

bounded in the domain x > 0, y > 0 for each function B(«) that is bounded and
continuous on the half-line ¢ > 0 and absolutely integrable over it.
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u=20 Viu=0

o
o u=f(x) X

FIGURE 47

To accomplish this, we use tests for improper integrals that are analogous
to those for infinite series.” The integral in equation (3) converges absolutely and
uniformly with respect to x and y because

4 | B(a) e sinax| < | B(a)| (x>0,y>0)

and because B(«x) is independent of x and y and absolutely integrable from zero
to infinity with respect to «. Moreover, since

oo

5) u(x. )l < / " | Bla) e sinax| da < / |B(@)] da,
0 0

u is bounded. It is also a continuous function of x and y (x > 0, y > 0) because of
the uniform convergence of the integral in equation (3) and the continuity of the
integrand. Clearly, u = 0 when x = 0.

When y > 0,
ou a e o g
—_— = — B —oY ¢ — ~ B —ay o .
(6) ax  ox Jo (o) e™* sinax da /0 o [B(a) e sin ax] da;

for if | B(e)| < Bp and y > yp, where )y is some small positive number, then the
absolute value of the integrand of the integral on the far right does not exceed
By o exp (—a)p), which is independent of x and y and integrable over the semi-
infinite interval 0 < @ < oo. Hence that integral is uniformly convergent. Integral
(3) is then differentiable with respect to x, and similarly for the other derivatives
involved in the laplacian operator V2 = 3%/9x> + 8%/3y?. Therefore,

@) Viu = / B(a) V(e ' sinax) da = 0 (x>0,y>0).
0

Suppose now that the function (3) is also required to satisfy the nonhomo-
geneous boundary condition

®) u(x,0) = f(x) (x >0,

See the book by Kaplan (2003, pp. 447ff) or the one by Taylor and Mann (1983, pp. 682ff), both listed
in the Bibliography.
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where f is a given function satisfying conditions (i) and (ii) in Sec. 54. We need to
determine the function B(«) in equation (3) so that

9) fx) = /OOB(a) sin ax do (x > 0).
0

This is easily done since representation (9) is the Fourier sine integral formula in
the theorem in Sec. 54 when

(10) B(a) = %/oc f(x)sinax dx (o > 0).
0

We have shown here that the function (3), with B(«) given by equation (10),
is a solution of the boundary value problem consisting of equations (1), (2), and
(8), together with the requirement that u be bounded.

57. STEADY TEMPERATURES IN A
SEMI-INFINITE STRIP

Here we let u(x, y) denote the bounded steady temperatures in a semi-infinite
strip x > 0,0 < y < 1 whose left-hand and bottom edges are insulated and whose
top edge is kept at the temperatures shown in Fig. 48. The boundary value problem
satisfied by the temperature function u(x, y) is evidently

(1) Uy (X, y) + uyy(x, y) =0 x>0,0<y<1),
(2) uy(0,y) =0, uy(x,0)=0,
(3) ux,1) =e™,

along with the boundedness condition |u(x, y)| < M, where M is some positive
constant.

FIGURE 48

When u = X(x)Y(y) and the method of separation of variables is applied to
the homogeneous conditions (1) and (2), we have the eigenvalue problem
4) X'(x) +2X(x) =0, X'(0)=0, [X(x)|< M (x > 0),
where M; is some positive constant, as well as the conditions
(5) Y'(x) —AY(x) =0, Y'(0)=0 O<y=<D.
The eigenvalues and eigenfunctions of problem (4) are (see Sec. 55)

r=a?,  X(x)=cosax (o > 0),
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and the general solution of the corresponding differential equation
Y'(y) —a?Y(y) =0 O<y<D
is
Y(y) = Gie® + Ge ™™,

where the constants C; and C, are arbitrary. The condition Y’(0) = 0 tells us that
a(Cy — &) = 0; and when « > 0, we find that C; = Cy. Hence

Y(y) = Ci(e*” + e™*) = 2C; coshay (a > 0),

where C; is nonzero. By writing C; = 1/2, one can see that any constant multiple
of Y(y) = cosh oy satisfies the homogeneous conditions (5) and that

(6) X(x)Y(y) = cosax coshay (o > 0).

So the generalized linear combination (see Sec. 56)
@ ulx,y) = / A(a) cosax coshayda = / [A(@) coshay] cos ax da
0 0

satisfies the homogeneous conditions (1) and (2) in our temperature problem.
The nonhomogeneous condition (3) is satisfied once A(x) is determined. To
accomplish this, we note how it follows from the theorem in Sec. 54 that

oo
e = / [A(«) cosha] cos ax da
0
if

2 oo
(8 A(x) cosha = —/ e “cosaxdx.

T Jo
The easiest way to evaluate this last integral is to refer to Problem 4, Sec. 55,
according to which equation (8) becomes

2 1
Al ho=—  ———
(o) cosh @1

Consequently, the formal solution of our temperature problem is

2 /°° cos ax coshay
0

©) ux, y) = T (@? + 1) cosh o *

PROBLEMS

1. Give details showing how the functions e=*” sin x (o > 0) arise by means of separation
of variables from conditions (1) and (2), Sec. 56, and the condition that the function
u(x, y) there be bounded when x > 0, y > 0.

2. (a) Substitute expression (10), Sec. 56, for the function B(x) into equation (3) of that

section. Then, by formally reversing the order of integration, show that the solution
of the boundary value problem treated in Sec. 56 can be written

_y [" ! !
B A A s R e e
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(b) Show that when f(x) = 1, the form of the solution obtained in part (a) can be
written in terms of the inverse tangent function as

2 (X
u(x,y) = ;tan (;)

3. A semi-infinite string, with one end fixed at the origin, is stretched along the positive
half of the x axis and released at rest from a position y = f(x) (x > 0). Derive the
expression

2 o0 [o¢]
y(x,t) = — / cosaat sinax/ f(s)sinas ds da
T Jo 0

for the transverse displacements. Let F(x) (—oo < x < oo) denote the odd extension
of f(x), and show how this result reduces to the form

1
y(x, 1) = 3 [F(x 4+ at) + F(x — at)].
[Compare with solution (9), Sec. 45, of a string problem treated in that section.]
4. Find u(x, y) when the boundary conditions in Sec. 57 are replaced by the conditions
u: (0, y) =0, uy(x,1) = —u(x, 1), u(x,0) = f(x),

where

) = 1 when 0 <x <1,
f&) = 0 when x > 1.

Interpret this problem physically.

2 /°° acosha(l — y) +sinha(l — y)
0

Answer: u(x,y) = — - sin o cos ax do.
’ T a?cosha + asinha

5. Find the bounded harmonic function u(x, y) in the semi-infinite strip0 <x <1,y > 0
that satisfies the conditions

uy(x,0) =0, u(0,y) =0, u,(1,y) = f(y).

2 oo
Answer: u(x,y) = — / / f(s)cosas ds da.
T Jo 0

6. Solve the following boundary value problem for steady temperatures u(x, y) in a thin
plate in the shape of a semi-infinite strip when heat transfer to the surroundings at
temperature zero takes place at the faces of the plate:

o
sinh ax cos ay
a cosha

U (X, Y) + Uyy (X, y) = bu(x, y) =0 (x>00<y<1),
ue(0,y) =0 O<y<D,
u(x,0) =0, ulx,1) = f(x) x>0,
where b is a positive constant and

£ 1 when 0 <x <c,
X) =
0 when X >c.

2 ™ sinac cosax sinh(y\/oz2 + b)
Answer: u(x,y) = — - do
T Jo asinh a2 +b
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58. TEMPERATURES IN A
SEMI-INFINITE SOLID

The face x = 0 of a semi-infinite solid x > 0 is kept at temperature zero (Fig. 49).
Let us find the temperatures u(x,¢) in the solid when the initial temperature
distributionis f(x), assuming for now that f is piecewise smooth on each bounded
interval of the positive x axis and that f is bounded and absolutely integrable from
x =0tox = oo.

u(x, 0) = f(x)

FIGURE 49

If the solid is considered as a limiting case of a slab 0 < x < ¢ as c increases,
some condition corresponding to a thermal condition on the face x = ¢ seems to
be needed. Otherwise, the temperatures on that face may be increased in any
manner as ¢ increases. We require that our function u be bounded; that condition
also implies that there is no instantaneous source of heat on the face x = 0 at the
instant ¢t = 0. Then

(1) u(x, 1) =kt (x, 1) (x>0,t>0),
) u,t) =0 (t >0,
(3) u(x,0) = f(x) (x >0,

and |u(x, t)| < M, where M is some positive constant.

Linear combinations of functions u= X(x)7(t) will not ordinarily be
bounded unless X and T are themselves bounded. Upon separating variables,
we thus have the conditions

4) X" (x) + 1 X(x) =0, X(0) =0, | X(x)| < M, (x> 0)
and
() T'(t) +2kT@t) =0,  |T(t)| <M, (t >0),

where M, and M, are positive constants. As stated in Sec. 55, the eigenvalue
problem (4) has continuous eigenvalues A = o, where a represents all positive real
numbers, and X(x) = sin ax are the eigenfunctions. In this case, the corresponding
functions

T@t) =e " (a>0)

are bounded. The generalized linear combination (see Sec. 56)

(6) u(x,t) = / B(a) ek sin ax da
0
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of the functions X(x)7(¢) will formally satisfy all the conditions in the boundary
value problem, including condition (3), if B(«) can be determined so that

(7) fx) = /OOB(oc) sin ax do (x > 0).
0

As in Sec. 56, we note that representation (7) is the Fourier sine integral
formula (5), Sec. 54, for f(x) if

2 [o.¢]
(8) B(a) = —/ f(x)sinax dx (o > 0).
T Jo
Our formal solution (6), with B(«) defined by equation (8), can also be written
2 o0 o0
9) u(x, ) = —/ ekt sinozx/ f(s)sinas ds da.
7 Jo 0
One can simplify this result by formally reversing the order of integration,

replacing 2sinas sinax by cosa(s — x) — cosa(s + x), and then applying the
integration formula (Problem 10)

*  la 1 /m b?
(10) /0 e cosabda = iﬁexp(—@> (a > 0).

Equation (9) then becomes

1 o0 (s — x)? (s + x)?
11 u(x,t) = W/O f(s) {exp{— 1 ]—exp[— A }}ds,

or

1 o (s — x)2
u(x,t) = 2——nkt/o f(s) exp{— Ak ]ds

1 o0 (s + x)?
v ) Tt e

when ¢ > 0. By writing
s =x+20Vkt and s = —x+ 20kt

in these last two integrals, respectively, we have this alternative form of ex-
pression (11):

1 oo
(12) ux,t) = — f(x+20+kt) e do
N —x/@2Vkt)
1 o0
- f(—x+20vkt)e " do.
NN

Our use of the Fourier sine integral formula in obtaining solution (9) suggests
that we apply the theorem in Sec. 54 in verifying that solution. The forms (11) and
(12) suggest, however, that the condition in the theorem that | f(x)| be integrable
from zero to infinity can be relaxed in the verification. More precisely, when s is
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kept fixed and ¢ > 0, the functions

1 (s £x)?
el 25

satisfy the heat equation (1). Then, under the assumption that f(x) is continu-
ous and bounded when x > 0, it is possible to show that the function (11) is
bounded and satisfies the heat equation when xy < x < x; and fy < ¢t < t;, where
X9, X1, tp, and #; are any positive numbers. Conditions (2) and (3) can be verified by
using expression (12). By adding step functions to f (see Problem 2), we can allow
f to have a finite number of jumps on the half-line x > 0. Except for special cases,
detailsin the verification of formal solutions of this problem are, however, tedious.
If f(x) = ug, where uy is a constant, it follows from equation (12) that

[Z4) o0 2 o _ 2
(13) ulx,t) = — / e"da—/ e " do ).
VT \J_xevi x/ ki)
In terms of the error function
2 X
(14) erf(x) = 7 /0 e do,

expression (13) can be written
X
15 ulx,t) =uperf| — |.
(> (0=t (2% )
The verification of this is not difficult, since exp (—o?) is an even function of o.
Note that because (see Problem 9)

(16) / e do = YT ,
) 2

erf(x) tends to unity as x tends to infinity. Thus, if f(x) = uo, the temperatures
u(x, t) in the solid tend to uy when x tends to infinity, as would be expected.

PROBLEMS
1. Verify that when x > 0 and ¢ > 0, the function [see expression (14) in Sec. 58]
u(x,tr) = erf(L>
2kt

satisfies the heat equation u, (x, t) = ku,,(x, t) as well as the conditions
u+, t) =0, ulx, 04+) =1, and lu(x, )| < 1.
2. Show that if

0 when 0 < x < ¢,
f(x) =
1 when X >c,

expression (12), Sec. 58, reduces to

u(x t)—lerf ety —1erf cr
2 wWhkt) 27 \2vkt )

Verify this solution of the boundary value problem in Sec. 58, when f is this function.
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3. (a) The face x = 0 of a semi-infinite solid x >0 is kept at a constant temperature
uy after the interior x > 0 is initially at temperature zero throughout. By writ-
ing u(x,t)=U(x,t)+ ®(x) (compare with Example 2, Sec. 39), where ®(x) is
to be bounded for x > 0, and referring to solution (15), Sec. 58, of the spe-
cial case of the boundary value problem noted there, derive the temperature

formula
u(x,t)—u 1—erf ——
‘ 2\/ kl '

(b) Use equations (14) and (16) in Sec. 58 to rewrite the solution in part (a) as

u(x,t) = % e do.
ﬁ x/@Vkt)

4. Replace the constant temperature u, in Problem 3 by a time-dependent temperature
F(t), where F(t) is continuous and differentiable when ¢t > 0 and F(0) = 0. Then
use the solution obtained in part (b) of Problem 3, together with the special case of
Duhamel’s principle described in Sec. 27, to derive the solution

x " F@o) ox { x? ]
Wk Jo i P % -0
of the temperature problem here.

5. (a) Thefacex = 0of asemi-infinite solid x > Oisinsulated, and the initial temperature
distribution is f(x). Derive the temperature formula

u(x,t) =

o0

1
ux,t) = —— f(x—{—ZU«/E)e"I2 do
VT —x/@Vkt)

1 o0
+— / f(—x+20Vki) e do.
\/7? x/(2Vkt)

(b) Show that if the function f in part (a) is defined by means of the equations

F) = 1 when 0 < x < c,
= 0 when X > c,

then

u(x,t) = 1erf ctx + 1erf ez
2 2kt 2 Wkt )

6. Let a semi-infinite solid x > 0, which is initially at a uniform temperature, be cooled
or heated by keeping its boundary at a uniform constant temperature (Sec. 58). Show
that the times required for two interior points to reach the same temperature are
proportional to the squares of the distances of those points from the boundary
plane.

7. Verify that for any constant C, the function

32 x?
x,t) = Cxt/“exp| ——
v(x, 1) 1 Ny
satisfies the heat equation v, = kv,, when x > 0 and ¢ > 0. Also, verify that for those

values of x and ¢,

v(0+,6)=0 and v(x,0+) =0.
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Thus show that v(x, t) can be added to the solution (9) found in Sec. 58 to form other so-
lutions of the problem there if the temperature function is not required to be bounded.
Note that v is unbounded as x and ¢ tend to zero (this can be seen by letting x vanish
while t = x?).

8. Let u = u(x, y,t) denote the bounded solution of the two-dimensional temperature
problem indicated in Fig. 50, where

w, = k(U + uyy) x>0,0<y<1,t>0),

and let v = v(x,¢) and w = w(y, t) denote the bounded solutions of the following
one-dimensional temperature problems:

v = Kvyy, v(0,1) =0, v(x,0)=1 (x>0, >0),
w, = kwy,, w,t) =w(,t) =0, w(y,0) =1 O<y<1,t>0).
y
u=0
1
u=20 u(x,y,0)=1
_0| =0 x
FIGURE 50

(a) With the aid of the result obtained in Problem 3, Sec. 48, show that u = vw.

(b) By referring to the solution (15), Sec. 58 of the temperature problem there and to
the temperature function found in Example 1, Sec. 40, write explicit expressions
for v and w. Then use the result in part (@) to show that

o0

S S DT ol n — 1k,

4
ulx, y,t) = ;erf( 1

X
2kt
9. Use the following method to show that

/ e"’z do = ﬁ,
o 2

as stated in Sec. 58. Do this by denoting the integral by I, writing

12:/ e"‘zdx/ e’yzdy:/ / e’("z”z)dxdy,
0 0 o Jo

and then evaluating this iterated integral by switching to polar coordinates.
10. Derive the integration formula (10), Sec. 58, by first writing

n=1

y(x) = / e~ cos ax da (a > 0)
0
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and differentiating the integral to find y’(x). Then integrate the new integral by parts
to show that 2ay’(x) = —xy(x), point out why

1 /=
y(0) = E\/;

(see Problem 9), and solve for y(x). The desired result is the value of y when
x=>b'

59. TEMPERATURES IN AN
UNLIMITED MEDIUM

For an application of the general Fourier integral formula in Sec. 50, we now derive
expressions for the temperatures u(x, ¢) in a medium that occupies all space, where
the initial temperature distribution is f(x). We assume that f(x) is bounded and,
moreover, that it satisfies conditions under which it is represented by its Fourier
integral formula. The boundary value problem consists of a boundedness condition
|u(x, t)| < M and the conditions

(1) u(x, t) = kg (x, t) (—o0 <x <00, t >0),
(2) u(x,0) = f(x) (—00 < X < 00).

Writing u= X(x)T(¢t) and separating variables, we have the eigenvalue
problem

X" (x) + 1 X(x) =0, | X(x)| < My (—00 < X < 00),

whose eigenvalues are A = o? (@ > 0) and whose eigenfunctions are constant
multiples of unity when o = 0 and arbitrary linear combinations of cos ax and
sinax when @ > 0 (Problem 8, Sec. 55). The solutions of the differential equation

') +2kT@) =0, [T < M, (>0
that arise are constant multiples of
T(t) = ek (@>0).
Our generalized linear combination of the products u = X(x) 7T(¢) is then

3) u(x,t) = / e~k [A(@) cos ax + B(a) sin ax] da.
0

The coefficients A(x) and B(x) are to be determined so that the integral here
represents f(x) (—oo < x < oo) when ¢ = 0. According to equations (8) and (9)
in Sec. 50 and our Fourier integral theorem (Sec. 53), the representation is valid if

Ala) = %/oo f(x)cosaxdx, B(a) = %/OO f(x)sinaxdx.

T Another derivation is indicated in the authors’ book (2009, pp. 161-162), listed in the Bibliography.
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Thus
4) u(x,t) = l /OO ek /OO f(s)cosa(s — x)ds da.
0 —00

T

If we formally reverse the order of integration here, the integration formula
(10) in Sec. 58 can be used to write equation (4) as

2
5) u(x,t) = 2«/_/ f(s)exp{ (s kt) ] (t > 0).
An alternative form of this is
(6) u(x,t) = % /: flx+ 20\/5)6"’2 do.

[Compare with expression (12), Sec. 58.]

Forms (5) and (6) can be verified by assuming only that f is piecewise con-
tinuous over some bounded interval |x| < ¢ and continuous and bounded over
the rest of the x axis, or when |x| > c. If f is an odd function, u(x, t) becomes the
function found in Sec. 58 for positive values of x.

PROBLEMS

1. Let the initial temperature distribution f(x) in the unlimited medium in Sec. 59 be
defined by means of the equations

f) = 0 when x < 0,
V= 1 when x > 0.

Show that

1 1
u(x,t):i—l— erf(2\/_)

Verify this solution of the boundary value problem in Sec. 59 when f is this function.
2. Derive this solution of the wave equation y, = a?y,, (—o0 < x < oo, t > 0), which
satisfies the conditions y(x, 0) = f(x) and y;(x,0) = 0 when —oc0 < x < oc:

1 o0 [o¢]
y(x,t) = — / cos omt/ f(s)cosa(s — x)ds da.
0 0 —00
Also, reduce the solution to the form obtained in Example 1, Sec. 30:

1
yx,t) = 3 [f(x+at)+ f(x —ab)].

3. Find the bounded harmonic function u(x, y) in the strip —oo < x < 00,0 <y < b
such that u(x,0) = 0 and u(x,b) = f(x) (—o0o0 < x < 00), where f is bounded and
represented by its Fourier integral.

1 [ sinh *©
Answer: u(x,y) = — / s%n *y / f(s)cos a(s — x) ds da.
0 —o0

T sinh ab



CHAPTER

7

ORTHONORMAL
SETS

In this chapter, we provide a brief introduction to the theory of so-called orthonor-
mal sets of functions. The chapter will not only clarify underlying concepts behind
the several types of Fourier series that we have encountered but will also lay the
foundation for finding other series representations that are needed in chapters to
follow.

60. INNER PRODUCTS
AND ORTHONORMAL SETS

Let f and g denote any two functions that are continuous on a closed bounded
interval a < x < b. Dividing that interval into N closed subintervals of equal length
Ax = (b —a)/N and letting x; denote any point in the kth subinterval, we recall
from calculus that

b N
/ gy dx =" fx) glu) Ax

k=1

when N is large, the symbol = here denoting approximate equality. That is,

b N
M / f) gy dx =" axby
a k=1

where
ar = f(xp) vV Ax and br = g(xp) vV Ax.

The left-hand side of expression (1) is, then, approximately equal to the inner
product of two vectors in N-dimensional space when Nislarge. The approximation

189
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becomes exact in the limit as N tends to infinity.” This suggests defining an inner
product of the functions f and g:

b
2) (f.g = / fx)g(x)dx.

The integral here is, of course, well defined when f and g are piecewise continuous
on the fundamental interval a < x < b. Equation (2) can, therefore, be used to
define an inner product of any two functions f and g in the function space C,(a, b)
that was introduced in Sec. 1.

The function space Cp,(a, b), with inner product (2), is analogous to ordinary
three-dimensional space. Indeed, the following counterparts of familiar properties
of vectors in three-dimensional space clearly hold for any functions f, g, and % in
Cp(a, b):

©) (f.9) =@ D,
“4) (f.g+h =8+ h,
®) (cf.g) =c(f 8.
where c is any constant, and
(6) (f./)=0.
The analogy is continued with the introduction of the norm
(7) Il =(fH'?
of afunction fin Cp(a, b). According to equation (2), the norm of f can be written
b 1/2
®) Ifll = { / [fF dx} :
The norm of the difference of two functions f and g,
b 12
) If—gll = {/ [f(x) =g dX} :

is a measure of the area of the region between the graphsof y = f(x) and y = g(x)
(Fig. 51). To be specific, the quotient
If—sl* _ 1 /b >
= _— d
- b_al. [f(x) —g(0)]"dx
is the mean, or average, value of the squares of the vertical distances | f(x) — g(x)|
between points on those graphs over the intervala < x < b. The quantity || f — g2

is called the mean square deviation of one of the functions f and g from the other.
Two functions f and g in C,(a, b) are orthogonal if (f, g) =0, or

b
(10) / F)g(x) dx =0,

See the book by Lanczos (1966, pp. 210ff), listed in the Bibliography, for an elaboration of this idea.
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where it is understood that neither function is identically equal to zero on the
fundamental interval a < x < b. We have carried the analogy of C,(a, b) to three-
dimensional space too far to preserve the original meaning of the geometric ter-
minology used here. The orthogonality of two functions f and g signifies nothing
about perpendicularity. It says only that the product fg assumes both positive
and negative values on the fundamental interval in such a way that equation (10)
holds.
Consider now a set of functions

(11) Y (x) n=1,2,..)

in Cp(a, b) that are mutually orthogonal, so that (¥, ¥,,) = 0 when m # n. We
say that {y,,(x)} is an orthogonal set; and, assuming that none of the functions
¥, (x) has zero norm (see Problem 4, Sec. 61), we have the normalized functions

Yn(x)

12 n(X) = =1,2,..)),
(12) n(0) = ol (n )
whose norms ||¢,| are unity. One can show that ||¢,|| = 1 for all values of n by
writing

Ym  Yn ) (Ym> ¥n)

13 ms On) = , =
(13) (@ B (Illﬂmll 1 ¥nll Wmll ¥l
and nothing from this that

- W) vl
19" = @ @) = Gl ~ vl

Because the set {{,,(x)} is orthogonal, it follows from equations (13) that {¢,(x)}
is too. The set {¢, (x)} is, then, orthonormal in the sense that it is orthogonal and
each function in it has norm unity. Observe that such a set is also characterized by
the equations

0 when m # n,

b
(14) (Dm» ) = /a DPm(X) P (x) dx = {1 when m = n.

61. EXAMPLES

We present here three examples of orthonormal sets of functions. These sets are
related to the various types of Fourier series introduced in Chap. 1 and will serve
to illustrate much of the theory of those series that appears in the present chapter.
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EXAMPLE 1. We recall from Sec. 4 that for positive integers m and n,

T ) 0 when m # n,
(1) /0 sin mx sin nx dx = {n/z when m — 1.

Evidently, then, the set of sine functions
Yn(x) = sinnx n=12..)

is orthogonal on the interval of 0 < x < m; and the norm ||y, || of each of these

functions is
™ 12
. T
¥l = {/ sin’nx dx} =/,
0 2

Hence, the corresponding orthonormal set {¢,(x)} consists of the functions

2) dn(x) = \/gsinnx n=1,2,...).

It is sometimes more convenient to index an infinite orthogonal or orthonor-
mal set by starting with n = 0, rather than n = 1. This is the case in Examples 2
and 3 below.

EXAMPLE 2. The functions

1 2
3) Po(x) = T $n(x) =/ —cosnx (n=1,2,..)
constitute a set {¢,(x)} (n = 0, 1, 2, ...) that is orthonormal on the same interval
0 < x < 7 as in Example 1.

To verity this, we start with the observations that

2 ¥ 2 : T
(¢Oa¢n)=£/COSHXdX=£ {Smm] =0 n=12,..)
T Jo 4 n 0
and
2 L[
lgoll” = (¢, o) = — | dx=1.
7 Jo
Next, we let m and n denote positive integers and recall from Sec. 2 that

i _ /0 when m # n,
4) /0 cos mx cos nx dx = {71/2 whotl 7 — 1.

This tells us that for distinct positive integers m and n,
(Pm> Gn) = % /Oncos mx cosnx dx =0
and that
16,7 = @n 0 =~ [ cosnrcosnrdr =1 (=12,

The verification that the set (3) is orthonormal is now complete.
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EXAMPLE 3. The set {¢,(x)} (n =0, 1,2, ...) consisting of the functions
1 1 1 .
(5)  ¢ox)=—= ban-1(X) = —=cosnx,  ¢(x) = —=sinnx

Nz Ned N

n=1,2,...)
is orthonormal on the interval —7 < x < 7.

Steps needed in the verification are as follows. Simple integration reveals
that

1 ™ 1 ™
, Po1) = — cosnxdx =0 and , Oon =—/ sinnxdx =0
(¢0, P2n-1) T /_ i (9o, $2n) N

n=1,2,..)

and that

1 T
loll? = E/ dr = 1.

The remaining steps depend on integration formulas (1) and (4), together
with the observations that

/Tr f(x)dx:Z/n f(x)dx
—7 0

when a given continuous function f is even and

/ﬂ f(x)dx =0

when it is odd.
To be specific, for distinct positive integers m and n,

1 [~ 2 [T
(D2m-1, Pon_1) = — COSMX COSnx dx = — cosmxcosnxdx =0
T ) g T Jo

and

g

1 i ) 2 (7. .
(Do2ms Pon) = — sinmx sinnx dx = — sin mx sinnx dx = 0.
T ) T Jo

Also, for any positive integers m and n,

¥

1
(D2m—1, P2n) = —/ cosmx sinnx dx = 0.
T

-7

Finally, we know from equations (4) and (1) that whenn =1,2,...,

1 [ 2 [T
lpaml®> = ;/ cos’ nx dx = —/ cos’nxdx =1
0

. T

and

1 [" 2 [T
lp2nll* = ;/ sin® nx dx = —/ sin® nxdx = 1.
0

_x T
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PROBLEMS

1. Show that the functions v (x) = 1 and ¥,(x) = x are orthogonal on the interval
—1 < x < 1, and determine constants A and B such that the function

Y3(x) =1+ Ax + Bx?

is orthogonal to both v and ¢, on that interval.
Answer: A=0, B= -3.

2. Suppose that two continuous functions f(x) and v (x), with positive norms, are linearly
independent on an interval @ < x < b; that is, one is not a constant times the other. By
determining the linear combination f+ A of those functions that is orthogonal to v,
on the fundamental interval a < x < b, obtain an orthogonal pair v, ¥, where

(f, ¥1)
1112

Interpret this expression geometrically when f, ¥, and v, represent vectors in three-
dimensional space.
3. In Problem 2, suppose that the fundamental interval is —7 < x < 7 and that

Vo (x) = fx) -

V1(x).

f(x) = cosnx + sinnx and Y (x) = cosnx,

where n is a fixed positive integer. Show that the function v, (x) there turns out to be
Y (x) = sinnx.

Suggestion: One can avoid evaluating any integrals by using the fact that the set
in Example 3, Sec. 61, is orthogonal on the interval —7 < x < 7.
4. Verify the following two statements, regarding functions f in the space C,(a, b):
(a) if f(x) = 0, except possibly at a finite number of points, in the intervala < x < b,
then || f|l = 0;
(b) conversely, if || f|| = 0, then f(x) = 0, except possibly at a finite number of points,
in the interval a < x < b.
Suggestion: In part (b), use the fact that a definite integral of a nonnegative con-
tinuous function over a bounded interval has positive value if the function has a positive
value somewhere in that interval.

5. Verify that for any two functions f and g in the space C,(a, b),

1 [b gt
5 / / [f(0)g(y) —g) fD P dxdy =1 fI*lIgl” — (f. )
Thus, establish the Schwarz inequality
[l <1 fllgll

which is also valid when f and g denote vectors in three-dimensional space. In that case,
it is known as Cauchy’s inequality.

6. Let f and g denote any two functions in the space C,(a, b). Use the Schwarz inequality
(Problem 5) to show that if either function has zero norm, then (f, g) = 0.

7. Prove thatif f and g are functions in the space C,(a, b), then

If+gllh=1fI+ gl

If f and g denote, instead, vectors in three-dimensional space, this is the familiar triangle
inequality, which states that the length of one side of a triangle is less than or equal to
the sum of the lengths of the other two sides.
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Suggestion: Start the proof by showing that
If+gI*=1fI*+2(f & +llgl,

and then use the Schwarz inequality (Problem 5).

62. GENERALIZED FOURIER SERIES

Let f be any given function in C,(a, b), the space of piecewise continuous func-
tions defined on the interval @ < x < b. When an orthonormal set of functions
on(x) (n=1,2,...)in Cp(a, ) is specified, it may be possible to represent f(x) by
a linear combination of those functions, generalized to an infinite series that con-
verges to f(x) at all but possibly a finite number of points in the intervala < x < b:

(1) F@ =) cadn®) (a <x<b).
n=1

This is analogous to the expression for any vector in three-dimensional space in
terms of three mutually orthogonal vectors of unit length, such as i, j, and k.

In order to discover an expression for the coefficients ¢, in representation (1),
if such a representation actually exists, we use the index of summation m, rather
than n, to write

(2) F@) =) cmem(x) (a <x<b).
m=1

We also assume that after each of the terms here is multiplied by a specific ¢, (x),
the resulting series is integrable term by term over the interval a < x < b. This
enables us to write

b 00 b
/ F(x) ¢u(x) dx = Zcm/ Om(x) dn(x) dx,
a m=1 a

or
(3) (fv On) = Z Cmn (P Gn)-
m=1

But (¢, ¢n) = 0 for all values of m here except when m = n, in which case
(> dn) = ll#al> = 1. Hence equation (3) becomes (f, ¢,) = cn, and ¢, is
evidently the inner product of f and ¢,,.

As indicated above, one cannot be certain that representation (1), with co-
efficients ¢, = (f, ¢), is actually valid for a specific f and a given orthonormal
set {¢,,}. Hence, we write

(4) @~ cngn(x) (a <x<b),
n=1
where the tilde symbol ~ merely denotes correspondence when

b
5) en = (f. ) =/ F) () dx (n=1.2..).
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To strengthen the analogy with vectors, we recall that if a vector A in three-
dimensional space is to be written in terms of the orthonormal set {i, j, k} as

A = aii + mj + ask,

the components can be obtained by taking the inner product of A with each of
the vectors of that set. That is, the inner product of A withiis ay, etc.

The series in correspondence (4) is the generalized Fourier series, with respect
to the orthonormal set {¢,}, for the function f on the interval a <x <b. The
coefficients ¢, are known as Fourier constants.

The generalized Fourier series that we shall encounter will always involve
orthonormal sets and functions f in a space of the type C,(a, b), or subspaces
of it; and we say that representation (1) is valid for functions f in a given space
if equality holds everywhere except possibly at a finite number of points in the
fundamental intervala < x < b.

Representation (1) will not, however, always be valid even in some very
restricted function spaces. We may anticipate this limitation in the following way.
If just the two vectors i and j make up an orthonormal set in three-dimensional
space, any vector A thatis not parallel to the xy plane fails to have a representation
of the form A = aji 4 a;j. In particular, the nonzero vector A = k is orthogonal
to both i and j, in which case the components a; = k-i and a; = k- j would both
be zero. Similarly, an orthonormal set {¢,(x)} may not be large enough to write
a generalized Fourier series representation. To be specific, if the function f(x) in
correspondence (4) is orthogonal to each function in the orthonormal set {¢,,(x)},
we find that the Fourier constants ¢, = ( f, ¢,,) are all zero. This means, of course,
that the sum of the series is the zero function, whose norm is zero. Consequently,
if f hasa positive norm, the series is not a valid representation on the fundamental
interval.

An orthonormal set {¢,(x)} is closed in C,(a, b), or a subspace of it, if there
is no function f in the space, with positive norm, that is orthogonal to each of the
functions ¢, (x). Thus, according to the preceding paragraph, the following two
statements, which are equivalent, are true:

(i) if an orthonormal set {¢,(x)} is not closed in C,(a, b), or a subspace of it,
then representation (1) cannot be valid for every function f in that space or
subspace;

(i) if representation (1), with respect to a given orthonormal set {¢, (x)}, is valid
for every function fin C,(a, b), or asubspace of it, then the set must be closed
in that space or subspace.

63. EXAMPLES

This section is devoted to familiar examples of generalized Fourier series, namely
Fourier sine and cosine series on the fundamental interval 0 < x < 7 and Fourier
series involving both sines and cosines on —7 < x < 7m. These special cases of
series (4), Sec. 62, will be based on the examples in Sec. 61.
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EXAMPLE 1. We saw in Example 1, Sec. 61, that the sine functions

(1) ¢n(x) = \/gsinnx n=12,..)

constitute an orthonormal set on the interval 0 < x < x. The generalized Fourier
series correspondence (4), Sec. 62, for a function f(x) in C,(0, 7) is then

f(x)Nch\/gsinnx 0 <x<m),
n=1

cnz(f,qbn)z\/g/onf(x)sinnxdx n=1,2,...).

2
b, =cu\/ — n=1,2,..),
T

we have the Fourier sine series correspondence (Sec. 4)

where

Upon writing

2) fx) ~ Zb,, sinnx 0 <x<m),

where

3) b, = %/ f(x)sinnx dx n=12..).
T Jo

EXAMPLE 2. Let f be any function in C,(0, 7). We know from Example 2
in Sec. 61 that the set {¢,(x)} (n =0, 1,2, ...) consisting of the functions

4) Po(x) = % Pu(x) = \/gcosnx n=12,..)

is orthonormal on the interval 0 < x < m. The correspondence

(5) flo) ~ Zc,, ¢n(x) 0<x<m),
which is correspondence (4), Sec. 62, w1th the summation starting from n = 0,
becomes
ad /2

f(x)~%+;cn ;cosnx 0 <x <m).

Moreover,
1 T
C0=(f,¢0)=—/ f(x) dx, cn="(fdn) =1/ = / f(x) cos nx dx
NE)
n=1,2,..).
By writing
2
a0=26—0, a, =cCu\| — n=1,2,..),
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we thus arrive at the Fourier cosine series correspondence (Sec. 2)

(6) f(x)waz—o—i—;ancosnx 0 <x<m),
where
2 T
@) a, = —/ f(x)cosnx dx n=0,1,2,...).
T Jo

We know from the discussion of the convergence of Fourier cosine and
sine series just after Example 1 in Sec. 14 and also from Theorem 2 in Sec. 15
that correspondence (6) yields a valid representation for each function f in the
subspace C;, (0, m) of C, (0, m) consisting of all piecewise smooth functions defined
on 0 < x < m. It follows, then, from statement (if) at the end of Sec. 62 that the
set (4) is closed in C},(0, ).

But if the function ¢y(x), for instance, is not included with the rest of the
functions (4), the resulting set

(8) On(x) = \/gcosnx n=12,..)

is not closed because ¢ (x) is orthogonal to each of the functions in that smaller
set. Statement (i) near the end of Sec. 62 thus tells us that the functions ¢o(x) is
needed in series (5) in order to provide valid representations for all functions f in
C;,(O, 7). Hence ap must, in general, be included in the Fourier cosine series (6).

EXAMPLE 3. In Example 3, Sec. 61, we saw that the functions

1 1 1.
9 dox) = —= $2m-1(x) = —=cosnx, $on(X) = ——= sinnx

V2r’ NEd
n=12,..)

form an orthonormal set on the fundamental interval —7 < x < m. The general-
ized Fourier series corresponding to a function f(x) in C,(—m, m) is, therefore,

Z CnPn(x) = coPo(x) + Z [c2n—1 P2n—1(x) + 2 P20 (X)].

n=0 n=1
That is,
(10) fx) ~ 2 i (62n1 cosnx + 2L sin nx) (—m <x<m)
V2r S\ VT Jr
where
1 T
co = (/, = — x) dx
0= (f, 60) m/_ﬂf( )
and

g

1
1= (f,pan-1) = W f(x) cosnx dx n=12,..),

1 T
o = (f, o2m) = ﬁ/ f(x)sinnx dx n=12,...).
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So if we write

199

Co Con—1 Con
ag =2 , a, = , b, = n=12,..),
L= N N )
correspondence (10) becomes (see Sec. 6)
(11) f(x) ~ ud + Z(an cos nx + b, sin nx) (=7 <x <),
2 n=1
where
1 T
(12) a, = —/ f(x)cosnx dx n=0,1,2,..)
T Jn
and
1 (7 )
(13) b, = —/ f(x)sinnx dx n=1,2..).
T Jn
PROBLEMS

1. Let {¢,(x)} (n = 1,2,...) denote an orthogonal, but not necessarily orthonormal,

set on a fundamental interval @ < x < b. Show that the correspondence between a
piecewise continuous function f(x) and its generalized Fourier series with respect to
the orthonormal set

Yn(X)

Il

¢rz(x) = (n=1,2,)

can be written

_
Iyl

FE~Y yavax)  where
n=1

. State why the orthonormal set (8) in Example 2, Sec. 63, is closed in the space of
all functions f that are piecewise smooth on the interval 0 < x < = and satisfy the

condition
/ f(x)dx =0.
0

Suggestion: Refer to statement (i) at the end of Sec. 62.
. In the space of continuous functions on the interval a < x < b, prove that if two
functions f and g have the same Fourier constants with respect to a closed (Sec. 62)
orthonormal set {¢,,(x)}, then f and g must be identical. Thus show that f is uniquely
determined by its Fourier constants.

Suggestion: Note that (f — g, ¢,) = 0 for all values of n when

(fv ¢n) = (g’ ¢n)

for all n. Then use the definition of a closed orthonormal set to show that || f — g|| = 0.
Finally, refer to the suggestion with Problem 4, Sec. 61.

. Let {¢,(x)} be an orthonormal set in the space of continuous functions on the interval
a < x < b, and suppose that the generalized Fourier series for a function f(x) in that
space converges uniformly (Sec. 17) to a sum s(x) on that interval.
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(a) Show that s(x) and f(x) have the same Fourier constants with respect to {¢,(x)}.
(b) Use results in part (a) and Problem 3 to show that if {¢,(x)} is closed (Sec. 62),
then s(x) = f(x) on the intervala < x < b.

Suggestion: Recall from Sec. 17 that the sum of a uniformly convergent series of
continuous functions is continuous and that such a series can be integrated term by term.

64. BEST APPROXIMATION IN THE MEAN

Since the material in this and the next two sections is not essential for subsequent
chapters, the reader may at this time pass directly to Chap. 8 without loss of
continuity.

Let f be afunctionin C,(a, b) and {¢,(x)} (n = 1,2, ...) an orthonormal set
in that space. We consider here the first N functions ¢; (x), ¢2(x), ..., ¢n(x) of the
orthonormal set and let ®y(x) denote any linear combination of them:

(1) Dy(x) =y1 91 (X)) +y202(x) + -+ - + YN on(X).

The norm

b 172
I~ oyl = { [ - avwr dx}

is a measure of the deviation of the sum ®y from a given function f in C,(a, b)
(see Sec. 60). Let us determine values of the constants y,, (n = 1,2,..., N) in
expression (1) that make || f — ®yl||, or the quantity

b
2 E=|f—ovl*= / [f(x) — dv(0)] dx,

as small as possible. The nonnegative number E represents the mean square error
in the approximation by the function ®y to the function f, and we seek the best
approximation in the mean.’

We start with the observation that

N 2 N N 2
(f - cI)N)2 = (f_ ZVnd’n) = fz _2fzyn¢n+ <Zyn¢n> .
n=1 n=1

n=1

(g mbn)z = (é Vm¢>m> (nz: Mm)

N
Z Vm¢m> Vn®n

>
(

N
Z men¢m¢n> ’

m=

But

M= 1M

—_

"The approximation sought here is also called a least squares approximation.
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and this enables us to write

N
(f—on)? =1+

N
(Z VmVn¢m¢n> —2Yn f¢n‘| .

m=1
Integrating each side here over the interval a < x < b and then using the relations

0 when m # n,
1 when m=n

b
/ ¢m(x) ¢n(x) dx = {
and

b
/ F) ¢n(x) dx = ¢y,

where ¢, are Fourier constants (Sec. 62), we arrive at the following expression for
the error E, defined by equations (2):

= fI? +Z = 2¥nCn).

If we complete the squares in the terms being summed here and write

Ve = 2¥nCn = (V7 = 2Cuyn + ) — i = (vn — €a)* — C2

this expression for E takes the form

N N
©) E=|fIP+) m—c)* =) ¢
n=1 n=1

In view of the squares in the first summation appearing in equation (3), the smallest
possible value of E is, then, obtained when y, = ¢, (n = 1,2,..., N), that value
being

N
4 E=|fIP=) c.
n=1
We state the result as a theorem.

Theorem. Letc, (n = 1,2,...) be the Fourier constants for a function f in
Cy(a, b) with respect to an orthonormal set {¢,(x)} (n = 1,2,...) in that space.
Then, of all possible linear combinations of the functions ¢1(x), ¢2(x), ..., pn(x),
the combination

c1P1(x) +c2¢a(x) + -+ cnPn(x)

is the best approximation in the mean to f(x) onthe fundamentalintervala < x < b.
In that case, the mean square error E is given by equation (4).

This theorem is analogous to, and even suggested by, a corresponding result
in three-dimensional space. Namely, suppose that we wish to approximate a vector
A = aji + a2j + ask by a linear combination of just the two basis vectors i and j.
If we interpret A and any linear combination y,i+ y»j as radius vectors, it is
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geometrically evident that the shortest distance d between their tips occurs when
y1i + y»j is the vector projection of A onto the plane of i and j. That projection
is, of course, the vector a;i + ayj (see Fig. 52), the components a; and a, being the
inner products of A with i and j, respectively.

A
k
d
o) )
\\ //
i N /
\\ /
77777777:&/ ai + a,j
Yli + sz
FIGURE 52

EXAMPLE. We recall from Example 3, Sec. 63, that when the orthonormal
set of functions

$o(x) = \/% $om-1(x) = % cosnx, Pon(x) = % sin nx

n=1,2..)

in C,(—m, m) is used, the generalized Fourier series

(5) D cadn(®) =copo(®) + Y _ [can1bm1(x) + b)) (-7 <x <)

n=0 n=1

corresponding to a function f in C,(—m, ) is the ordinary Fourier series

o0
(6) il + Z(an cosnx + b, sin nx) (-7 <x <m),
2 n=1
where
Co Con—1 Con
ap = 2——, a, = , b, = n=1,2,...).
0 m n ﬁ n ﬁ ( )

The above theorem now tells us that of all possible linear combinations of the
functions ¢, (x) (n =0,1,2,...,2N), the partial sum

2N N
D endn(x) =codo) + Y [can-1 $2n-1(X) + con p2n(¥)]

n=0 n=1

of series (5) is the best approximation in the mean to f ontheinterval -7 < x < 7.
That is, the partial sum

N

(7) Sn(x) = L;—O + Z(an cosnx + b, sinnx) (-7 <x <m)
n=1

of series (6) is the best approximation of all linear combinations of the 2N + 1

functions 1, and cosnx,sinnx (n=1,2,..., N).
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65. BESSEL’S INEQUALITY AND
PARSEVAL’S EQUATION

Because the mean square error E, defined by equations (2) in Sec. 64, is non-
negative, we know from expression (4) there that

N

IFIP=> >0 (N=1,2,..),
n=1
or
N
1) S <IfIP (N=1.2...).
n=1

This is Bessel’s inequality for the Fourier constants c,. The following important
theorem is an immediate consequence of it.

Theorem 1. Ifc, (n = 1,2, ...) are the Fourier constants for a function f in
Cy(a, b) with respect to an orthonormal set in that space, then
(2) lim ¢, = 0.

n—0o0

Our proof of this theorem is similar to an argument in Sec. 10, based on a
special case of inequality (1) (see Problem 3, Sec. 66), showing that the coefficients
a, in a Fourier cosine serieson 0 < x < 7 tend to zero as n tends to infinity. We start
here with the fact that since || f I1? is independent of N, the sums of the squares
c2 on the left-hand side of inequality (1) form a sequence that is bounded and
nondecreasing as N increases. Such a sequence must converge; and since it is the
sequence of partial sums of the series whose terms are c,% (n=1,2,...),that series
must converge. Finally, because the nth term of a convergent series tends to zero
as n tends to infinity, limit (2) is established.

We turn now to a modification of inequality (1) in which the inequality is
actually an equality. A sequence of functions sy(x) (N = 1,2,...) in Cy(a, b)
is said to converge in the mean to a function f(x) in Cy(a, b) if the mean square
error (Sec. 64)

b
3) E=|f—sylP = / [F(0) — sy dx

in the approximation by sy to f tends to zero as N tends to infinity. That is, con-
vergence in the mean occurs when

(4) lim [ f = syl =0.
Sometimes condition (4) is also written
5) Lim. sy() = f(0),

where the abbreviation “l.i.m.” stands for limit in the mean.
It should be emphasized that statement (5) is not the same as the statement

(6) Jim sy = f(x) (a <x <b),
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even if a finite number of points in the interval are ignored.” In fact, neither of the
statements (5) and (6) implies the other, as the following example and Problem 5,
Sec. 66 will show.

EXAMPLE. Consider the sequence of functions sy(x) (N = 1,2,...) in
C,(0, 1) that are defined by means of the equations (see Fig. 53)

1
0 hen 0 <x < —,
when 0 <x < &
sn(x) = ¢ /N when — <x < 2
N N N’
2
0 when — <x <1.
N
sy(x)
VN + —
|
o
' |
' |
' |
' |
' |
S .
o l ; 1 x
N N
FIGURE 53

It evidently converges to zero at each point x in the interval 0 < x < 1 since
sn(0) = 0 for all N and since sy(x) = 0 when 0 < x < 1 and N is so large that
2/N < x. Hence, the sequence sy(x) (N = 1,2, ...) converges pointwise to the
function f(x) = 0(0 < x < 1). It does not, however, converge in the mean to that
function. This is seen by writing
1 2/N
If = swll? = / svePdx = [ Ndx=1
0 1/N

and referring to definition (4) in Sec. 65 of convergence in the mean.

Let sn(x) denote the partial sums of a generalized Fourier series (Sec. 62)
corresponding to some function f on a fundamental interval a < x < b:

N
(7) SN =Y Cn ().
n=1

T An example of a sequence of functions that converges in the mean to zero but diverges at each point
of the interval is given in the book by Franklin (1964, p. 408), listed in the Bibliography.
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This is the linear combination ® y(x) in Sec. 64, when y,, = ¢, there. If condition (4)
is satisfied by each function fin our function space C,(a, b), or possibly a subspace
containing the orthonormal set {¢, (x)}, we say that {¢,, (x)} is complete in that space
or subspace.’ Thus each function f(x) can be approximated arbitrarily closely in
the mean by some linear combination of the functions ¢, (x) of a complete set,
namely the linear combination (7) when N is large enough.

According to equation (4), Sec. 64, the mean square error in the approxima-
tion by sy(x) to f(x) is

N
(8) If=snl>=1£17 = c

n=1

Hence, when {¢,(x)} is complete, it is always true that
) doa=IfIr.
n=1

Equation (9) is known as Parseval’s equation. It identifies the sum of the squares
of the Fourier constants for f, with respect to the orthonormal set {¢,(x)}, as the
square of the norm of f.

Conversely, if each function f in the space satisfies Parseval’s equation, the
set {¢,(x)} is complete in the sense of mean convergence. This is because, in view
of equation (8), limit (4) is merely a restatement of equation (9). We now have a
theorem that provides an alternative characterization of complete sets.

Theorem 2. A necessary and sufficient condition for an orthonormal set
{pn(x)} (n = 1,2,...) to be complete is that for each function f in the space con-
sidered, Parseval’s equation

o0
(10) > a=IfIP
n=1
where c,, are the Fourier constants ¢, = ( f, ¢y), is satisfied.

Each of the theorems in this section will be illustrated in Sec. 66, with appli-
cations to ordinary Fourier series.

66. APPLICATIONS TO FOURIER SERIES

In Example 3, Sec. 61, we saw that the functions

1 1 1 .
1) ¢ox) = — ¢om_1(x) = — cosnx, @2, (x) = —sinnx

NS Nea Ned
n=1,2,..)

In the mathematical literature, including some earlier editions of this text, the terms complete and
closed are sometimes applied to sets that we have called closed (Sec. 62) and complete, respectively.
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form an orthonormal set on the fundamental interval —7 < x < . The Fourier
constants ¢, (n = 0, 1,2, ...) in the generalized Fourier series for a function f in
C,(—m, m) with respect to this set were then used in Example 3, Sec. 63, to define
the constants

Co Con—-1 Con
2 ap =2 , a, = , b, = n=1,2,..).
That gave rise to the Fourier series correspondence
oo
3) fx) ~ a2_0 + Z(a,, cosnx + b, sin nx) (=T <x <m),
n=1
where
1 e
4 a,,:—/ f(x)cosnx dx n=0,1,2,..)
T J-n
and
1 T
(5) b,,:—/ f(x)sinnx dx n=1,2,...).
T J-n
Bessel’s inequality (1), Sec. 65, involving 2N + 1 terms in the sum there, is
N
G+ (B +) < IfIP (N=1,2,...);
n=1

and, in view of relations (2), this is the same as (compare with Problem 4, Sec. 11)

2 N b4
1
©) SRR | treopas (N=1.2...).
Theorem 1 in Sec. 65 tells us, moreover, that
(7 lim a, =0 and lim b, = 0.

Limits (7) were obtained directly in Sec. 10, where a, and b,, were also the co-
efficients in the Fourier cosine and sine series for certain functions related to f.
(See Problems 2 and 3, where the Bessel inequalities appearing in Sec. 10 are
derived from orthonormal sets.)

We now prove a theorem that follows from Theorem 2 in Sec. 65 and states
that the orthonormal set (1) is complete in the space consisting of functions satis-
fying the same conditions as in the lemma in Sec. 16, as well as in the theorems in
Secs. 17 and 19.

Theorem. The orthonormal set (1) is complete in the space in which each
function f has these properties:

(i) f is continuous on the interval —m < x < m;

(i) f(=m) = f(m);

(iii) its derivative f' is piecewise continuous on the interval —mw < x < 7.
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Observe that, just as Bessel’s inequality in Sec. 65 becomes inequality (6)
when the set (1) is used, Parseval’s equation (10) in Sec. 65 becomes

@®) % +Z a2+ b?) = / [T

Hence, once we show that the coefficients (4) and (5) actually satisfy equation (8),
the theorem here is proved.

The fact that equation (8) is satisfied is an easy consequence of the theorem
in Sec. 17, which tells us that for the functions f in the space considered here
the series in correspondence (3) converges uniformly to f(x) on the interval
- <x <m:

9) fx) = 112_0 + Z(an cos nx + by, sin nx) (=7 <x <m).
n=1

Now a uniformly convergent series of continuous functions can be integrated term
by term (Sec. 17). Hence we may multiply each term in equation (9) by f(x) itself,
thus leaving the series still uniformly convergent, and then integrate over the
fundamental interval:

/ [f@)] dx
_ %/Z f(x)dx+; [a,,/z f(x)cosnxdx—i—b,,/jr f(x)sinnxdx].

In view of expressions (4) and (5), the integrals on the right here can be written
in terms of a, and b,; and we find that

/_ [f0)]? dx

Since this is the same as Parseval’s equation (8), the proof is finished.

The theorem above is readily modified so as to apply to the orthonormal sets
leading to Fourier cosine and sine series on the interval 0 < x < w. More specifi-
cally, the set of normalized cosine functions in Example 2, Sec. 61, is complete in
the space of continuous functions f, on the interval 0 < x < &, whose derivatives
f’ are piecewise continuous. When the normalized sine functions in Example 1,
Sec. 61, are used to obtain a sine series, the conditions f(0) = f(xr) = 0 are also
needed in order for the set to be complete.

The function space in the theorem is quite restricted. It can be shown that
Parseval’s equation (8) holds for any function f whose square is integrable over
the interval —7 < x < 7.7

2 ]

a
=7z ?0+Z(aﬁ+b,21) :

n=1

See, for instance, the book by Tolstov (1976, pp. 54-57 and 117-120), which is listed in the
Bibliography.
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PROBLEMS

1.

2.

Use Theorem 2 in Sec. 65 to show that an orthonormal set {¢,(x)} is closed (Sec. 62) in
a given function space if it is complete in that space.
Apply Bessel’s inequality (1), Sec. 65, to the orthonormal set (Example 1, Sec. 61)

dn(x) = \/zsinnx n=12..)
T

2< = / [fOF (N=1,2,..))
:1

in C,(0, 7) to show that

when fisin C,(0, 7) and b, are the coefficients in its Fourier sine series.

. Leta, (n = 0,1,2,...) be the usual coefficients in the Fourier cosine series for a

function f in C,(0, 7). By referring to the orthonormal set (Example 2, Sec. 61)

1 2
Po(x) = ﬁ, Pn(x) = \/;cosnx n=12,..)

and using Bessel’s inequality (1), Sec. 65, show that

_+Z / [FOT (N=1,2,..).

. (a) Use the same steps as in Example 3, Sec. 61, to verify that the set of functions

¢()(.;’C) - ) ¢2Vl (.X) Ccos ) ¢2Vl(x) Sln
Y 2C \/— C \/— &
(n 11 25 . )

is orthonormal on the interval —c < x < c. (This set becomes the one in that ex-
ample when ¢ = 7.)

(b) By proceeding as in Example 3, Sec. 63, show that the generalized Fourier series
corresponding to a function f(x) in C,(—c, ¢) with respect to the orthonormal set
in part (a) can be written as an ordinary Fourier series on —c < x < ¢ (Sec. 15),
with the usual coefficients a, and b,.

(c) Derive Bessel’s inequality

+Z a,+b;) <—/ [f)) d (N=12...)

for the coefficients a,, and b, in part (b) from the general form (1), Sec. 65, of that
inequality for Fourier constants. [Compare with inequality (6), Sec. 66.]
Suggestion: Inpart (a),some integrals to be used can be evaluated by writing
7

X =—S
Cc

in integrals (1) and (4), Sec. 61.
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5. Letsy(x) (N =1,2,...) be a sequence of functions defined on the interval 0 < x < 1
by means of the equations
0 when x =1,

ey N

—_ N =

sn(x) =
1 when x # 1,

2|z~

z,...,

Show that this sequence converges in the mean to the function f(x) = 11in C,(0, 1)
but that for each positive integer p,

1
lim SN(—> =0.
N—oo p

Suggestion: Observe that

SN(%) =0 when N > p.



CHAPTER

3

STURM-LIOUVILLE
PROBLEMS

AND
APPLICATIONS

We turn now to a careful presentation of the basic theory of Sturm-Liouville
problems and their solutions. Once that is done, we shall illustrate the Fourier
method in solving physical problems that involve eigenfunctions not encountered
in earlier chapters.

67. REGULAR STURM-LIOUVILLE
PROBLEMS

In Chap. 5, we found solutions of various boundary value problems by the Fourier
method. Except in Sec. 49, the method always led to the need for a Fourier cosine
or sine series representation of a given function. The cosine and sine functions
in the series were the eigenfunctions of one of the following two Sturm-Liouville
problems on an interval 0 < x < ¢:

(1) X'(x)+2Xx) =0, X0 =0, X()=0,
) X'(x) + 2 X(x) = 0, X(0) =0, X(c) = 0.

When applied to many other boundary value problems in partial differential
equations, the Fourier method continues to involve a Sturm-Liouville problem
consisting of a linear homogeneous ordinary differential equation of the type

(3) [r(x) X' ()] + [gx) + 1p(x)] X(x) =0 (a<x<b),
together with a pair of separated boundary conditions

(4) @ X@) +aX'(@) =0, by X(b)+ b X'(b) = 0.
210
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The interval a < x < b is understood to be bounded. We agree, moreover, that
ay and a, are not both zero and that the same is true of the constants b; and b».
Values of the parameter A and corresponding nontrivial solutions X(x) are to be
determined.

The parameter A appears in a Sturm-Liouville problem only as indicated
above. That is, the real-valued functions p, ¢, and r in the differential equation (3)
are independent of A, and the real numbers ay, ay, b1, b, in boundary conditions (4)
are also independent of A. The Sturm-Liouville problem is said to be regular when'

(i) p,q,r,andr’ are continuous on the closed interval a < x < b;
(ii) p(x) >0andr(x) > 0whena <x <b.

EXAMPLES. Problems (1) and (2) are regular Sturm-Liouville problems.
Other examples, to be solved later in this chapter, are

X'(x)+2X(x)=0 0<x <o),
X'(0)=0, hX()+ X'(c) =0,
where & denotes a positive constant, and
[¥* X' ()] + 2 X(x) =0 (1<x<b),
X(1) =0, X(b) =0,
as well as
[x X' ()] + %X(x) =0 1<x<b),
X' 1 =0, X(b) =0.

As was the case with problems (1) and (2), a value of A for which problem
(3)-(4) has a nontrivial solution is called an eigenvalue; and the nontrivial solution
is called an eigenfunction. Note that if X(x) is an eigenfunction, then so is C X(x),
where C is any nonzero constant. It is understood that for X(x) to be an eigen-
function, X(x) and X'(x) must be continuous on the closed interval a < x < b.
Such continuity conditions are usually required of solutions of boundary value
problems in ordinary differential equations.

The set of eigenvalues of problem (3)—(4) is called the spectrum of the prob-
lem. The spectrum of a regular Sturm-Liouville problem consists of an infinite
number of eigenvalues Ap, Ay, ... . We state this fact without proof, which is quite
involved.* In special cases, the eigenvalues will be found; and so their existence
will not be in doubt. When eigenvalues are sought, however, it is useful to know

TPapers by J. C. F. Sturm and J. Liouville giving the first extensive development of the theory of this
problem appeared in vols. 1-3 of the Journal de mathématique (1836-1838).

¥For verification of statements in this section that we do not prove, see the book by Churchill (1972,
Chap. 9), which contains proofs when a; = b, = 0 in conditions (4), and the one by Birkhoff and Rota
(1989). Also, extensive treatments of Sturm-Liouville theory appear in the books by Ince (1956) and
Titchmarsh (1962). These references are all listed in the Bibliography.
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that they are all real and hence that there is no possibility of discovering oth-
ers in the complex plane. The proof that the eigenvalues must be real is given in
Sec. 69, and we agree that they are to be arranged in ascending order of magnitude,
sothat A,, <A, (n=1,2,...). It can be shown that A, — co asn — oo.

68. MODIFICATIONS

Although we are mainly concerned in this chapter with the theory and applica-
tion of regular Sturm-Liouville problems, described in Sec. 67, certain important
modifications are also of interest in practice. We mention them here since some of
their theory is conveniently included in the discussion of regular Sturm-Liouville
problems in Sec. 69.

A Sturm-Liouville problem

1) [r) X' ()] + [g(x) + 1p(0)] X(x) =0 (a <x <b),
(2) a1 X(a) + azX’(a) =0, b1 X(b) + bzX/(b) =0
is said to be singular if

(i) atleast one of the regularity conditions stated in Sec. 67 fails to be satisfied;
(i) or the interval on which the problem is defined is unbounded.

Note that the problem is singular if, for instance, the function g has an infinite
discontinuity at an end point of the intervala < x < b. Also, itis singular if p(x) or
r(x) vanishes at an endpoint. When r (x) does this, we drop the boundary condition
at the endpoint in question. Note that the dropping of the boundary condition at
x = a is the same as letting both of the coefficients a; and a; in that condition be
zero; a similar remark can be made when the condition at x = b is to be dropped.
Finally, we recall that eigenvalue problems involving unbounded intervals have
already been encountered in Sec. 55 of Chap. 6.

EXAMPLE 1. One singular Sturm-Liouville problem to be studied in
Chap. 9 consists of the differential equation

2
[x X' ()] + (—% + Ax) X(x)=0 0 <x <o),

where n =0, 1,2, ..., and the single boundary condition X(c) = 0. Observe that
the functions p(x) = x and r(x) = x both vanish at x = 0 and that the function
q(x) = —n?/x has an infinite discontinuity there when # is positive.

EXAMPLE 2. The differential equation

[A—xHX ()] +21X(x) =0 (-1 <x <1,

with no boundary conditions, constitutes a singular Sturm-Liouville problem.
Here the function r(x) = 1 — x? vanishes at both ends x = %1 of the interval
—1 < x < 1. This problem is the main one that is solved and used in Chap. 10.

The singular problems in Chap. 6 had continuous spectra, consisting of either
all nonnegative or all positive values of A, and it will turn out that the problems in
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Examples 1 and 2 just above have the discrete spectra of regular Sturm-Liouville
problems, where the eigenvalues may be indexed with nonnegative or positive in-
tegers. As already indicated in Sec. 67, the nature of the spectrum of any particular
problem will be determined by actually finding the eigenvalues.

Finally, in addition to singular problems, another modification of prob-
lem (1)-(2) occurs whenr (a) = r(b) and conditions (2) are replaced by the periodic
boundary conditions

(3) Xa@) = X(b), X' = X'(b).

EXAMPLE 3. The problem
X'(x) + 2 X(x) =0, X(—7) = X(n), X' (—m) = X'(m),

already solved in Sec. 49, has periodic boundary conditions.

69. ORTHOGONAL EIGENFUNCTIONS

AND REAL EIGENVALUES
As pointed out in Sec. 67, a regular Sturm-Liouville problem always has an infi-
nite number of eigenvalues A1, A, ... . In this section, we shall establish the or-

thogonality of eigenfunctions corresponding to distinct eigenvalues. The concept
of orthogonality to be used here is, however, a slight generalization of the one
originally introduced in Sec. 60. To be specific, a set {y,(x)} (n = 1,2, ...) is or-
thogonal on an interval a < x < b with respect to a weight function p(x), which is
piecewise continuous and positive on that interval, if

b
/ POV ()Y (x)dx =0 when m # n.

The integral here represents an inner product (v, ¥,,) with respect to the weight
function. The set is normalized by dividing each v, (x) by |||, where

b
1l = (o W) = / P[0 dx

a

and where it is assumed that ||, || # 0. This type of orthogonality can, of course,
be reduced to that in Sec. 60 by using the products «/p(x)¥,(x) as functions of the
set. In Sec. 73, we shall illustrate how expansions of arbitrary functions in series of
such normalized eigenfunctions follow from our earlier discussion of generalized
Fourier series (Sec. 62).

The following theorem states that eigenfunctions associated with distinct
eigenvalues of a regular Sturm-Liouville problem

@) [rx) X' (x0)] + [gx) + Ap(x)] X(x) =0 (a <x <b)),
2) o X@a)+a X' (a) =0, b1 X(b) +b, X' (b) =0

are orthogonal on the interval a < x < b with respect to the weight function p(x),
where p(x) is the same function as in equation (1). In presenting the theorem, we
relax the conditions of regularity on the coefficients in the differential equation (1)
so that the result can also be applied to eigenfunctions that are found for some of
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the modifications of regular Sturm-Liouville problems mentioned in Sec. 68. We
retain all of the conditions for a regular problem, stated in Sec. 67, except that
now g may be discontinuous at an endpoint of the interval a < x < b and p(x)
and r (x) may vanish at an endpoint. That is,

(i) p,r,and r’ are continuous on the closed interval @ < x < b, and ¢ is contin-
uous on the open interval a < x < b;

(ii) p(x) >0andr(x) >0whena <x <b.

Theorem 1. If ), and X, are distinct eigenvalues of the Sturm-Liouville prob-
lem (1)—(2), then corresponding eigenfunctions X,,(x) and X,(x) are orthogonal
with respect to the weight function p(x) on the intervala < x < b. The orthogonality
also holds in each of the following cases:

(a) when r(a) = 0 and the first of boundary conditions (2) is dropped from the
problem;

(b) when r(b) = 0 and the second of conditions (2) is dropped,
(¢) when r(a) = r(b) and conditions (2) are replaced by the conditions

X@) = X(b), X'(a) = X(b).

Note that both cases (a) and (b) here may apply to a single Sturm-Liouville
problem (see Example 2, Sec. 68).
To prove the theorem, we first observe that

rX,) + qXm = —AmpXom, rX,) + gXn = =2 pX,

since each eigenfunction satisfies equation (1) when A is the eigenvalue to which
it corresponds. We then multiply each side of these two equations by X,, and X,,,,
respectively, and subtract:

()‘m - )"n)pXan = Xm(rX;L)/ - XH(FX;,"),.
Since the right-hand side of this last equation can be written
(X (rX )" + X, X )] = [Xa(rX,) + X, (r X)),
or
d [Xn(r X)) — X, (r X )]
dx m n n m’1
it follows that
d
(3) ()‘m - )Ln)pXan = d_ [r(XmX; - XnX;n)]
X

The function g has now been eliminated, and the continuity conditions on
the remaining functions allow us to write

b
(4) o — ) / PXu Xy dx = [r(x) AW)].,
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where A(x) is the determinant

X X0 / /
&) Ax) = X, X () = Xn(0) X, (x) — X, (x) X, (x).
That is,
b
(6) (Am—kn)/pXan dx =r(b)Ab) —r(a)A(a).

The first of boundary conditions (2) requires that
a1 Xm(a) + a X, (a) = 0,
a1 Xy(a) + ax X, (a) = 0;

and for this pair of linear homogeneous equations in a; and a, to be satisfied by
numbers a; and a,, not both zero, it is necessary that the determinant A(a) be zero.
Similarly, from the second boundary condition, where b; and b, are not both zero,
we see that A(b) = 0. Thus, according to equation (6),

b
(7) A — An) / PXan dx =0;

and since A, # A,, the desired orthogonality property follows:

b
(8) / P(X) X (%) X, (x) dx = 0.

If r (@) = 0, property (8) follows from equation (6) even when A(a) # 0 or
when a; = a, = 0, in which case the first of boundary conditions (2) disappears.
Similarly, if 7 (b) = 0, the second of those conditions is not used.

If r(a) = r(b) and the periodic boundary conditions (Sec. 49)

X(a) = X(b), X'(a) = X'(b)
are used in place of conditions (2), then A(a) = A(b). Hence,
r(b)A(b) =r(a)A(a);
and, again, property (8) follows. This completes the proof of Theorem 1.

EXAMPLE 1. The eigenfunctions of the regular Sturm-Liouville problem
X'x)+2X(x)=0 0 <x <o),
X(0) =0, X)) =0
are (Sec. 35)
Xn(x)zsin? n=1,2,...).

The theorem tells us that any two distinct eigenfunctions X,,(x) and X, (x) are
orthogonal on the interval 0 < x < ¢ with weight function p(x) = 1:

(9) / sin@sin?dxﬂ) (m # n).
0
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We recall that the value of this integral was established directly when ¢ = in
Problem 9, Sec. 5.

EXAMPLE 2. Eigenfunctions corresponding to distinct eigenvalues of the
regular Sturm-Liouville problem
A
[xX' ()] + —X(x) =0 1<x<b),
X
X)) =0, Xb)=0
are, according to the theorem, orthogonal on the interval 1 < x < b with weight

function p(x) = 1/x. In Problem 1 the eigenfunctions are actually found, and the
orthogonality is verified.

The following theorem is an immediate consequence of Theorem 1.

Theorem 2. If) is an eigenvalue of the Sturm-Liouville problem (1)—(2), then
it must be a real number. The same is true in cases (a), (b), and (c), that were treated
in Theorem 1.

We begin the proof by writing the eigenvalue as A = o + i, where « and g
are real numbers. If X denotes a corresponding eigenfunction, which is nontrivial
and may be complex-valued, conditions (1) and (2) are satisfied. Now the complex
conjugate of A is the number A = o — if; and if

X(x) = u(x) +iv(x),
then
X=u—iv and X =u +iv.

Also, the conjugate of a sum or product of two complex numbers is the sum or
product, respectively, of the conjugates of those numbers. Hence, by taking the
conjugates of both sides of the equations in conditions (1) and (2) and keeping
in mind that the functions p, g, and r are real-valued and that the coefficients in
conditions (2) are real numbers, we see that

rX') + (@ +ip) X =0,
a1 X@) +a, X' (a) =0, b1 .X(b) + b X' (b) =0.

Thus, the nontrivial function X is an eigenfunction corresponding to A.

If we assume that 8 # 0, then A # A; and Theorem 1 tells us that X and X
are orthogonal on the interval a < x < b with respect to the weight function p(x),
even in cases (a), (b), and (c):

b
(10) / p(x) X(x) X(x) dx = 0.

But p(x) > Owhena < x < b. Moreover,

XX=u>+v*=|XP>0
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when a < x < b; and | X|? is not identically equal to zero since X is an eigen-
function. So integral (10) has positive value, and our assumption that 8 # 0 has
led us to a contradiction. Hence, we must conclude that 8 = 0, or that X is real.

PROBLEMS

1. (a)

(b)

After writing the differential equation in the regular Sturm-Liouville problem
A
[xX'(x)] + ;X(x) =0 1 <x<b),
X(1) =0, X)) =0

in Cauchy-Euler form (see Problem 1, Sec. 44), use the substitution x = exps to
transform the problem into one consisting of the differential equation
d*x
— +2X=0 (0<s <Inb)
ds?

and the boundary conditions
X=0 when s=0 and X=0 when s=Inb.

Then, by simply referring to the solutions of the Sturm-Liouville problem (4) in
Sec. 35, show that the eigenvalues and eigenfunctions of the original problem here
are

I = a2, X, (x) = sin(e, In x) n=1,2,..),

n

where o, = nr/Inb.
By making the substitution

Inx
~ b
in the integral involved and then referring to Problem 9, Sec. 5, give a direct veri-
fication that the set of eigenfunctions X (x) obtained in part (a) is orthogonal on
the interval 1 < x < b with weight function p(x) = 1/x, as ensured by Theorem 1
in Sec. 69.

N

2. Note that the differential equation

rX)Y +@+rip)X=0

in a Sturm-Liouville problem can be put in the form

LIX]+rpX =0,

where £ is the differential operator defined by means of the equation

LIX] = X') +gX

Show that the identity

d [r(XY —YX')],

XYY -Y@uX) = I
X

which is obtained by the steps leading up to equation (3) in Sec. 69, can be written

XL[Y]-YL[X]= %[r(XY’ —YX")].

This is called Lagrange’s identity for the operator L.
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3. (a) Suppose that the operator £ in Problem 2 is defined on a space of functions
satisfying the conditions

a1 X(a) +a X'(a) =0, b1 X(b) + b, X'(b) =0,

where a; and a, are not both zero and where the same is true of b; and b,. Use
Lagrange’s identity, obtained in Problem 2, to show that

(X, LIY]) = (L[X], Y),

where these inner products are on the interval a < x < b with weight function
unity.
(b) Let A,, and %, denote distinct eigenvalues of a regular Sturm-Liouville problem
whose differential equation is (see Problem 2)
LIX]+rpX=0.

Use the result in part (a) to prove that if X,, and X, are eigenfunctions corre-
sponding to A,, and %, then

(pva Xn) =0.

Thus show that X,, and X,, are orthogonal on the interval a < x < b with weight
function p, as already demonstrated in Sec. 69.

70. REAL-VALUED EIGENFUNCTIONS

In the study of ordinary differential equations, problems in which all boundary
data are given at one point are called initial value problems. We begin here by
stating without proof a fundamental result from the theory of such problems."

Lemma 1. Let P and Q denote functions of x that are continuous on an
interval a < x < b. If xy is a point in that interval and A and B are prescribed
constants, then there is one and only one function y, which is continuous together
with its derivative y’ when a < x < b, that satisfies the differential equation

y'(xX) + Px)y' (x) + Q(x)y(x) =0 (a <x <b)
and the two initial conditions

y(xo) = A, y'(x0) = B.

Note that y” = — Py’ — Qy, and so y” is continuous when a < x < b. Also,
since any values can be assigned to the constants Aand B, the general solution of
the differential equation has two arbitrary constants.

Suppose now that Xand Y are two eigenfunctions corresponding to the same
eigenvalue A of the regular Sturm-Liouville problem

(6] X' +(@+rpX=0 (a<x<b),
(2) a1 X(a) + LZQX/(LI) =0, b1 X(b) + bzX’(b) =0.

A proof can be found in, for instance, the book by Coddington (1989, Chap. 6), which is listed in the
Bibliography.
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As stated in Sec. 67, the functions p, q, r, and r' must be continuous on the interval
a < x < b;also, p(x) > 0andr(x) > Owhena < x < b. The above lemma enables
us to prove the following one, which shows that X and Y can differ by, at most, a
constant factor.

Lemma 2. If X and Y are eigenfunctions corresponding to the same eigen-
value of a regular Sturm-Liouville problem, then

3) Y(x) = CX(x) (a<x=<b),

where C is a nonzero constant.

According to thislemma, a regular Sturm-Liouville problem cannot have two
linearly independent eigenfunctions corresponding to the same eigenvalue. For
certain modifications of regular Sturm-Liouville problems, however, it is possible
to have an eigenvalue with linearly independent eigenfunctions (see Sec. 49).

We let X(x) and Y(x) be as stated in the hypothesis of Lemma 2 and start
the proof by observing that in view of the principle of superposition of solutions
for linear homogeneous ordinary differential equations, the linear combination

4) Z(x) =Y (@) X(x) — X'(a)Y(x)

satisfies the differential equation

(%) rZY +(@q+rp)Z=0 (a < x < b);
in addition, Z’(a) = 0. Since X and Y satisfy the conditions

a1 X(@a) +a X'(a) =0,
a1Y(a) + ayY'(a) =0,

where a; and a; are not both zero, and since Z(a) is the determinant of this pair
of linear homogeneous equations in a; and a,, we also know that Z(a) = 0.
According to Lemma 1, then, Z(x) = 0 when a < x < b. That is,

(6) Y(@Xx)— X (@Y(x) =0 (a <x<b).

Since eigenfunctions cannot be identically equal to zero, it is clear from relation (6)
that if either of the values X’(a) or Y’(a) is zero, then so is the other.
Relation (3) now follows from equation (6), provided that X’(a) and Y’(a)
are nonzero. That is,
Y'(a)
X'(a)
Suppose, on the other hand, that X'(a) and Y'(a) are zero. Then X(a) and
Y(a) are nonzero since, otherwise, X(x) and Y(x) would be identically equal to
zero, according to Lemma 1; and zero is not an eigenfunction. So, although equa-

tion (6) cannot be used, the procedure that we have applied to Z(x) may now be
used to show (Problem 13, Sec. 72) that the linear combination

(7) W(x) = Y(a) X(x) — X(a)Y(x)

Y(x) =

X(x) (@ <x<b).

is zero when a < x < b and hence that relation (3) still holds.
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Itfollows from Lemma 2 that each eigenfunction of aregular Sturm-Liouville
problem can be made real-valued by multiplying it by some nonzero constant. We
state this important result as a theorem.

Theorem. Each eigenfunction of a regular Sturm-Liouville problem can be
made real-valued by multiplying it by an appropriate nonzero constant.

To show this, we first recall from Theorem 2 in Sec. 69 that the eigenvalue A
to which X corresponds must be real. So if we make the substitution X = U + iV,
where U and V are real-valued functions, in problem (1)—(2) and separate real and
imaginary parts, we find that U and V are themselves eigenfunctions corresponding
to A. Hence, by Lemma 2, there is a nonzero constant g such that V = gU. Here
B is real since U and V are real-valued, and we may conclude that

X=U+ipU=(1+ip)U.

That is, X can be expressed as a nonzero constant times a real-valued function.
Since
1
U= — | X
1+iB

71. NONNEGATIVE EIGENVALUES

We know from Theorem 2 in Sec. 69 that each eigenvalue of a regular Sturm-
Liouville problem

(1) rXY +@+rp)X=0 (a <x <b),
2) s X@a) +a X' (a) =0, b1 X(b) +b,X'(b)=0

the theorem is now proved.

must be real. The theorem in this section is an additional aid in determining
eigenvalues since it often eliminates the possibility that there are negative ones.

Theorem. Let ) be an eigenvalue of the regular Sturm-Liouville problem
(1)=(2). If the conditions

q(x) <0(a<x<b) and aay <0, b1by >0

are satisfied, then A > 0.

Since we are considering a regular Sturm-Liouville problem, we assume that
the functions p, g, r, and r’ are continuous when @ < x < b and that p(x) > 0
and r(x) > 0 on that closed interval. We start our proof by letting X denote
a real-valued eigenfunction (see the theorem in Sec. 70) corresponding to the
eigenvalue A in the statement of the theorem here. Equation (1) is thus satisfied,
and we multiply each term of that equation by Xand integrate each of the resulting
terms from x = a to x = b:

b b b
(3) /X(rX’)’dx +/qX2 dx +A/ pX?dx =0.

a a
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After applying integration by parts to the first of these integrals, one can write
equation (3) in the form

b b b
(4) X / pX?dx = / (—gX?) dx + / r(X")?dx

a

+r(a)X(a) X' (a) — r(b) X(b) X'(b).

Let us now assume that the conditions stated in the theorem are satisfied.
Since —q(x) >0 and r(x) >0 when a < x < b, the values of the two integrals
on the right in equation (4) are clearly nonnegative. As for the third term on the
right, we note that if a; =0 or a; =0 in the first of conditions (2), then X'(a) =0
or X(a) = 0, respectively. In either case, the third term is zero. If, on the other
hand, neither a; nor a, is zero, then

r(a)[a1 X(a)]

2
r@) X)X (@) = > 0.

—aiay
Similarly, —r (b) X(b) X’ (b) > 0; and it follows that all the terms on the right-hand
side of equation (4) are nonnegative. Consequently,

b
A / pO[X)]dx = 0.

But this integral has a positive value, and so A > 0.

EXAMPLE. Example 1 in the next section is concerned with finding the
normalized eigenfunctions of this regular Sturm-Liouville problem:

X' +2X=0, X'(0)=0, hX(c) + X'(c)=0,

where 4 is a positive constant. This is, of course, a special case of the Sturm-
Liouville problem (1)-(2), where

gx)=0, 0<x<o) and aja; =0, bibp = h > 0.

According to the theorem just proved, the eigenvalues of the Sturm-Liouville
problem in this example are all nonnegative.

72. METHODS OF SOLUTION

We turn now to two examples that illustrate methods to be used in finding eigenval-
ues and eigenfunctions. The basic method has already been touched on in Secs. 35
and 49, where simpler Sturm-Liouville problems were solved. That basic method
is illustrated further in our first example here. Our second example illustrates how
it is sometimes possible to transform a given Sturm-Liouville problem into one
whose solutions are already known.

EXAMPLE 1. Let us solve the regular Sturm-Liouville problem
@) X +2X=0 0O<x<o),
(2) X'(0)=0, hX(c)+ X'(c) =0,

where £ is a positive constant.
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We know from Theorem 2 in Sec. 69 that any eigenvalue of this problem is a
real number, and we recall from the example at the end of the preceding section
that every such eigenvalue must be nonnegative. So we need only treat the cases
A =0and A > 0 here.

(i) The case \ =0

If A = 0, the general solution of equation (1) is X(x) = Ax + B where Aand B
are constants; and it follows from boundary conditions (2) that A= 0 and B = 0.
But eigenfunctions cannot be identically equal to zero. Consequently, the number
A = 0is not an eigenvalue. This leaves only the possibility that A > 0.

(ii) The case \ > 0
If A > 0, we write A = o (@ > 0). The general solution of equation (1) this time is

X(x) = Cicosax + C; sin ax.
It reduces to
3) X(x) = Cj cosax

when the first of boundary conditions (2) is applied. The second boundary condi-
tion then requires that

4) Ci(hcosac — asinac) = 0.

If the function (3) is to be nontrivial, the constant C; must be nonzero. Hence
the factor in parentheses in equation (4) must be equal to zero. That is, if there
is an eigenvalue » = «? (¢ > 0), the number o must be a positive root of the
equation

(5) tanac = —.

Figure 54, where the graphs of

y =tanac and y=—
o

are plotted, shows that equation (5) has an infinite number of positive roots
o1, 00,03, ... where Ay < Opol n=1,2,...);

they are the positive values of « for which those graphs intersect. The eigenvalues
are, then, the numbers A, = a2 (n = 1,2, ...). We identify them by simply writing

h
(6) Ap = afl where tana,c = — (o, > 0).
n
Note that the dashed vertical lines in Fig. 54 are equally spaced 7 /c units
apart. Also, as n tends to infinity, the numbers «,, tend to be the positive roots of
the equation tan ec = 0, which are the same as the positive roots of sinac = 0. In
fact, the numbers «,c are approximately (n — 1) when n is large. The first few
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FIGURE 54
positive roots x1, x, X3, ... of the equationT
a
tanx = — (a = ho)
X

have been tabulated for various values of the constant @, and it follows from
equation (5) that
X X2 X3

o] = ) o) = —, a3 = —,
C C C

In view of the discussion just above,

) o = {(n—l)n

n c

2
} when 7 is large,

where the symbol = denotes approximate equality. This is in agreement with the
statement made earlier in Sec. 67 that if A, are the eigenvalues of a regular Sturm-
Liouville problem, arranged in ascending order of magnitude, then it is always
true that A,, — oo as n — oo.

Expression (3) now tells us that except for constant factors, the correspond-
ing eigenfunctions are X,(x) = cosa,x (n = 1,2, ...). Let us put these eigenfunc-
tions in normalized form (Sec. 60), the form that we shall need in the applications.
To accomplish this, we note that since the functions X),(x) are orthogonal on the
interval 0 < x < ¢ with weight function unity, according to the theorem in Sec. 69,

C 1 C 1 . 2 i
X112 =/O cos’a,x dx = 5/0 (1 + cos 2a,x) dx = E(c+ M)

20,

The trigonometric identity

sin 2a,¢ = 2 8in a,¢ COS o, C

TRoots of this and the related equation tanx = ax, arising elsewhere in this chapter, are tabulated
in, for example, the handbook edited by Abramowitz and Stegun (1972, pp. 224-225). They can also
be found in the book edited by Ozisik (2003, pp. 481-482), as well as the one by Carslaw and Jaeger
(1986, pp. 491-492). These references are all listed in the Bibliography.
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and the expression
1 sin «,,¢

o, hcosa,c’

which is equivalent to the second equation in statement (6), now enable us to put
|| X,|I? in the form

(7) 1 X2 = 1<c n sin? anc) _ he + Sinzanc.

2 h 2h

Note that this last expression is obviously positive since & and ¢ are positive.
Dividing each X, (x) by || X, ||, we arrive at the normalized eigenfunctions

/ 2h
(8) $n(xX) = | ————5—— cosapx n=12..).
hc + sin“a,,¢

The solutions of a given Sturm-Liouville problem sometimes follow from
the solutions of a problem related to it. This has already been indicated in Prob-
lem 1(a), Sec. 69, and the next example illustrates the method more fully.

EXAMPLE 2. We consider here the problem
A
9) (xX')/—i—;X:O 1 <x<b),

(10) X'(1)=0, hX(b)+ X'(b) =0,

where /4 is a positive constant.
Since equation (9) can be put in the Cauchy-Euler form (see Problem 1,
Sec. 44)

X"+ xX' + 21X =0,

the substitution x = exp s transforms it into the equation

2
(11) %{JMX:O (0 <s <Inb).
Also, since
dx dXx _
dx ds
the boundary conditions (10) become
(12) Z—i( =0 when s =0, (hb) X + Z—f =0 when s = Inb.

Hence, by referring to Example 1, we see immediately that the eigenvalues of
problem (11)—(12), and therefore of problem (9)-(10), are the numbers

hb
2

e where tan (o, Inb) = — (a0, > 0).
Op

(13) An =«

The corresponding eigenfunctions are evidently

X,, = cosa,s = cos(u, In x) n=1,2,...).
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From equations (9) and (11), we know that the weight functions for the
eigenfunctions X,, = cos(«, In x) and X,, = cos«,s are 1/x and 1, respectively. The
value of the norm || X, || is, however, the same regardless of whether we think of X,
as a function of x or s. This is because, with the substitution x = exps (s = Inx),
the values of the two integrals

bq Inb
/ — cos?(ay, In x)dx, / cos’a,s ds
1 X 0

are found to be the same. So, if we replace ¢ by In b and 4 by kb in expression (7),
we see that for this problem,
hbInb + sin®(a, In b)
2hb '
The normalized eigenfunctions are, therefore,

I X1 =

2hb
14 n(X) = nl =1,2,...).
(4 Pnl) \/hblnb—i—sinz(an inp) S0 )

PROBLEMS

In Problems 1 through 5, solve directly (without referring to any other problems) for the

eigenvalues and normalized eigenfunctions.
1. X" +1X=0, X(0) =0, X' =0.
2n—1
Answer: A, = a2,  ¢,(x) =2sina,x n=1,2,...); a,= %

2. X"+x1X=0, X(0) =0, A XD+ X' 1) =0 (h>0).

/ 2h
Answer: h, = a2,  ¢u(x) = m sina,x (n=1,2,...);

o
tana, = ——  (ay > 0).

h
32X +2X=0, X(©0)=0  X()=0.

2 2n—1
Answer: dy =02,  ¢u(x) = \/jcosoenx n=1,2,..); o,= (HZJ
P c

4. X"+21X=0, X(0) =0, X1H-X'1)=0.
Suggestion: The trigonometric identity
1
1+tan’> A
is useful in putting || X,,|| in a form that leads to the expression for ¢, (x) in the answer

below.
\/2(e2 +1)

n

cos’ A=

Answer: =0, A, =a2, ¢o(x) =~3x, ¢,(x) = sin o, x

n=1,2,..);tana, = a, (o, > 0).
5. X"+A2X=0, hX0)—X'0)=0 (h=>D0), X1 =0.

2
Answer: h, = a2,  ¢u(x) = m sina,(1—-x) (n=1,2,...);

tana, = —% (a,, > 0).
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6. In Problem 1(a), Sec. 69, the eigenvalues and eigenfunctions of the Sturm-Liouville
problem

A
XY +-X=0, X1) =0, X(b) =0
X
were found to be
Ap = a?, X,.(x) = sin(a, Inx) n=1,2,...),

where «, = nx/In b. Show that the normalized eigenfunctions are

Pn(x) = i sin(a,, In x) n=1,2,...).
\/ Inb

Suggestion: The integral that arises can be evaluated by making the substitution

Inx
S=mT—

and then referring to the integration formula established in Problem 9, Sec. 5.
7. Find the eigenvalues and normalized eigenfunctions of the Sturm-Liouville problem

X" +1X=0, X(0) =0, X'(c)=0

by making the substitution s = x/c and referring to the solutions of Problem 1.

2 2n—1
Answer: , = a2, ¢u(x) = \/jsina,,x n=1,2,..); a,= M
c 2c
8. (a) Show that the solutions obtained in Problem 2 can be written
N R 2(e2 +h?) Lo
n=qy, Pn(x) = a—ﬁ+h2+hsmanx n=12,..),

where «, cosa, = —hsina, (a, > 0).
(b) By referring to the solutions of Problem 1, point out why the solutions in part (a)
here are actually valid solutions of Problem 2 when % > 0, not just when 4 > 0.

Suggestion: The trigonometric identity in the suggestion with Problem 4 is useful
in part (a) here as well.
9. Use the solutions obtained in Problem 3 to find the eigenvalues and normalized eigen-
functions of the Sturm-Liouville problem

A
XY +ZX=0,  X(D)=0.  X(b)=0.

Answer:

[ 2 2n—-Drm
= 2 = —_— = N = ——-
Ap = at, ¢n(x) = b cos(a,Inx) (n=1,2,...); o, b

10. By making an appropriate substitution and referring to the known solutions of the
same problem on a different interval in the section indicated, find the eigenfunctions
of the Sturm-Liouville problem

(@) X'+2X=0, X(-m)=0, X'(m)=0 (Sec.35);
(b) X" +1X=0, X(—¢)=X(), X'(=¢)=X'(c) (Sec.49).



SEC.73 EXAMPLES OF EIGENFUNCTION EXPANSIONS 227

Answers: (a) 1, cos w n=1,2,...);
(b) 1, cos @, sin nx n=1,2,..)).
c c

11. (a) By making the substitutions
Y 1

X=— d A=- ,
X an 4+M

transform the regular Sturm-Liouville problem
XY +2X=0, X1 =0, X(b) =0,
where b > 1, into the problem
@YY +Ey=0,  Y)=0. Y®)=0.

(b) Obtain the eigenvalues and normalized eigenfunctions of the new problem in part
(a) by referring to Problem 6. Then substitute back to show that for the original
problem in part (@), the eigenvalues and normalized eigenfunctions are

1 2
A = g T, @n(x) =

where o, = n/Inb.
12. Find the eigenfunctions of each of these Sturm-Liouville problems:
(@) X"+1X=0, X(0) =0, A XH)+X' 1) =0 (h<-1)
() (XY +rxX=0, X(1) =0, X(e) = 0.

Answers: (a) Xo(x) = sinh apx, where tanh oy = —% (ag > 0),

xlnbsm(anlnx) n=1,2,..),

X,(x) =sina,x (n=1,2,...), where tana, = —%" (o, > 0);

b) X,(x) = % sin(nm In x) n=1,2,...).

13. Give details showing that the function W(x) defined by equation (7), Sec. 70, is iden-
tically equal to zero on the intervala < x < b.

73. EXAMPLES OF EIGENFUNCTION
EXPANSIONS

We now illustrate how generalized Fourier series representations (Sec. 62)
[o¢]

(1) F@ = cadnx) (a<x<b)
n=1

are obtained when the functions ¢,,(x) (n = 1, 2, .. .) are the normalized eigenfunc-
tions of specific Sturm-Liouville problems. We have, of course, already illustrated
the method when the eigenfunctions are the ones leading to Fourier cosine and
sine series on the interval 0 < x < 7, as well as Fourier serieson —7 < x < 7
(see Sec. 63). For other sets of normalized eigenfunctions ¢, (x) (n =1, 2,...), we
shall use the expression

b
2 %=umw=/mmﬂmmqu n=12..)
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for the coefficients ¢, in expansion (1) that was found in Sec. 62 when the weight
function p(x) was unity.

Except for a few cases in which it is easy to establish the validity of an
expansion by transforming it into a known Fourier series representation, in this
book we do not treat the convergence of series (1). We merely accept the fact that
results analogous to the Fourier theorems in Secs. 12 and 13 exist when specific
eigenfunctions are used. Such results are often obtained with the aid of the theory
of functions of a complex variable.” Proofs are complicated by the fact that explicit
solutions of the Sturm-Liouville differential equation with arbitrary coefficients
cannot be written.

EXAMPLE 1. According to Problem 6, Sec. 72, the Sturm-Liouville
problem

A
(xX") + )—CX=0, X1) =0, Xb)=0
has eigenvalues and normalized eigenfunctions

[2
Ap = a2, () = msin(anlnx) n=12,...),

where «,, = nr/Inb. Since the orthogonality of the set {¢,(x)} (n = 1,2,...) is
with respect to the weight function p(x) = 1/x, the coefficients in the expansion

(3) 1= ciu(x) (1<x<b)
n=1

2 b1 .
= (f,n) = E~/l ;sm(anlnx)dx.

Making the substitution s = In x here and noting that

are

cos(ay, Inb) = cosnm = (—1)",

we readily see that

b 1 Inb 1= (="
/ —sin(o, In x) dx =/ sina,s ds = #
1 X 0 Uy
Thus,
2 1—-(D"
Cn = ET n=1,2,...),

and expansion (3) becomes

4 i sin(ay,—1 In x)

Q2n—1

4) 1= 1 <x<b).

TThe theory of eigenfunction expansions is extensively developed in the volumes by Titchmarsh (1962,
1958) that are listed in the Bibliography.
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The validity of this representation is evident if we introduce the variable

O2n—1 Inx
5 —enl
) 2n—1
and note that
2n—-Drn
6 = —————.
(6) o1 D

Equation (4) then becomes the known Fourier sine series expansion

4 & sin(@n — 1)s
7 1=— i
) ”nz:: 2n—1

O<s<m)

that was found in Problem 1(b), Sec. 5, and the validity of representation (4) is
established since it is just a different form of expansion (7).

EXAMPLE 2. The eigenvalues and normalized eigenfunctions of the
Sturm-Liouville problem
X' +1X=0, X(0) =0, X' (c)=0
are (Problem 7, Sec. 72)

2
Ap = a2, bu(x) = \/gsina,,x n=12,..),

where
2n—-Drm
T 2¢O
The weight function is p(x) = 1, and we may find the coefficients in the expansion

n

x:chqbn(x) O<x<o)
n=1

by writing

2 [ 2 [ xcosayx sina,x]€
Cn=(f,¢n)=\/j xsinoyxdx =4/ — |— At 2” )
¢ Jo c oy o 0

Since
b4 b4 . . T
cos o,c = cos|nw — — ) = cosnmw cos — + sinnmw sin — =0
2 2 2
and
. . T . b4 . T il
sina,c = sin{nw — — ) = sinnx cos — — cosnumr sin — = (—1)"",
2 2 2
we find that

2 -1 n+1
an\/j'( )2 (n=1,2,...).
c o
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Hence,

2 & (—1ynH
(8) XZEZ( )2 sin o, x 0 <x<eo).

After putting expansion (8) in the form

8¢ o (=1t sin 2n — Dnx © )
X=— <x<c
2 — 2n —1)2 2c ’

we see from Problem 7, Sec. 15, that it is actually valid on the closed interval
—c¢ < x < c. Furthermore,

9) sina,(x + 2¢) = —sina,x n=12,..)
since
sin o, (x + 2¢) = sin(a,x + 2ca,,) = sin o, x cos 2ca, + COS o, X Sin 2ca,
and
cos2ca, = cos(n — D = (=) 1 = —1, sin2ca, = sin(2n — 1) = 0.

In view of equation (9), then, series (8) converges for all x; and if H(x) denotes the
sum of that series for each value of x, it is clear that H(x) represents the triangular
wave function defined by means of the equations (see Fig. 55)

(10) H(x) = x (—c<x <o),
(11) H(x +2c) =—H(x) (—o0 < x < ).

Thus H(x) is an antiperiodic function. It is also periodic, with period 4c, as is seen
by writing

Hx+4c)=HXx+2c+2c) =—H((x+2c) = H(x).
Note, too, that
HQ2c—x)=—-—Hx —2c)=—H(x +2c) = H(x).

H(x)

NN

1 1
—3c —2c —c o c 2c 3¢ 4c 5¢

—c +

FIGURE 55

We conclude with an example in which the series obtained is a sine series that
cannot be transformed into an ordinary Fourier sine series. We must, therefore,
accept the representation without verification.
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EXAMPLE 3. We consider here the eigenvalues and normalized eigenfunc-
tions of the Sturm-Liouville problem
X' +1X=0, X(0) =0, X1H-X'1)=0.
According to Problem 4, Sec. 72, they are

M=0 A =0d n=1,2,..)
and
\/2(e2 +1
¢o(x) = +/3x, Pn(x) = ¥ sin o, x n=12,..),

n

where tan o, = «, (¢, > 0), the weight function being unity. The coefficients in
the representation

f(X) =00 ¢0(x) + ch ¢n(x) (O <X < 1)

n=1

of a piecewise smooth function f(x) are

1
co=(f,¢o) = x/g/o xf(x)dx

and
2(05,2, +1) g1
chn=(fipp) = ———— [ f(x)sino,xdx n=1,2,...).
Uy 0
Consequently,
(12) f(x) = Box + Z B, sina,x,
n=1
where

1 2 2 1 1
(13) By = 3/ xf(x)dx and B, = L;I—)/ f(x)sin o, x dx
0 oy 0

n=1,2,...).
PROBLEMS

1. Use the normalized eigenfunctions in Problem 3, Sec. 72, to derive the representation

2 o (=1t
1=- n 0 s
C; o COS QX O<x<o)
where
@2n—-Drm
oy = ——.
2c
2. Derive the expansion
1 2 i sin o, x © )
=- —_— <Xx <o),
c ay,
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where
2n—-Drm
aﬂ = 2C ’
using the normalized eigenfunctions in Problem 7, Sec. 72.
. Use the normalized eigenfunctions in Problem 2, Sec. 72, to derive the expansion

cos o,
I_than(h+cos2a,,) sin o, 0<x<1),

where tano, = —a,/h (a, > 0).
. Using the normalized eigenfunctions in Problem 3, Sec. 72, when ¢ = 7, show that

4 L (=1t
nz—xzz—z( )3 COS pX 0 <x <),
o

b
n=1 n

where o, = 2n — 1) /2.
. (a) Use the normalized eigenfunctions in Problem 7, Sec. 72, to obtain the expansion

4 S sin @, x
2e—x) = — E 0 )
x(2c — x) c O<x<o

3
oy

n=1
where
2n—-Drm
Oy =
(b) Show how it follows from the result in Problem 5, Sec. 8, that the series found in

part (a) converges for all x and that its sum is the antiperiodic function
(see Example 2, Sec. 73) Q(x) that can be described by means of the equations

Ox)=x2c—x) O=<x<20), Ox+2c)=—-0(x) (—00 <x < 00).

. Using the normalized eigenfunctions in Problem 2, Sec. 72, derive the representation

2+ h — Cos a,
X (1— —x> =4h E 3(h T costan) sin o, x O<x<1),
where tanw,, = —a,,/ h (a, > 0).

Suggestion: In the simplifications, it is useful to note that
—hsina, = a, COS a,.
. Use the normalized eigenfunctions in Problem 1, Sec. 72, to show that

(— )"

— w?

sin wx = 2w cos w E sina),,x O<x<1),

n=1

n

where

2n—1
Wy = % and ® # w, for any value of n.

Suggestion: The trigonometric identity
2sinA sinB = cos(A — B) — cos(A+ B)

is useful in evaluating the integrals that arise.
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8. Find the Fourier constants ¢, for the function f(x) = x (1 <x < b) with respect to the
normalized eigenfunctions in Problem 6, Sec. 72, and reduce those constants to the
form

e [l 4 (=11 B
Cyp = 2Inb m (n_1,2,)

Suggestion: The integration formula

s

. e (sinax — acosax)

e*sinax dx = > ,
1+a

derived in calculus, is useful here.
9. Let f be a piecewise smooth function defined on the interval 1 < x < b.

(a) Use the normalized eigenfunctions in Problem 6, Sec. 72, to show formally that if
o, = nr/Inb, then

fx) = Z B, sin(a, In x) (1 <x<b),
n=1
where
2 ("1
B,=— - in(a, 1 =1,2,..).
lnb/l xf(x)sm(a nx)dx (n )

(b) By making the substitution x = exp s in the series and integral in part (a) and then
referring to Theorem 2 in Sec. 15, verify that the series representation in part (a)
is valid for all points in the interval 1 < x < b at which f is continuous. (Compare
with Example 1, Sec. 73.)

10. Suppose that a function f, defined on the interval 0 < x < ¢, is piecewise smooth there.
(a) Use the normalized eigenfunctions (Problem 7, Sec. 72)

2
Pp(x) = \/;sina,lx n=1,2,...),

where
_ (@n—-Drm
a" - 26 L)
to show formally that
f(@) =" Bysina,x 0<x <o),
n=1
where
2 [ .
B, =~ [ f(x)sina,xdx n=1,2,...).
¢ Jo

(b) Note that according to Problem 6, Sec. 15, the series in part () is actually a Fourier
sine series for an extension of f on the interval 0 < x < 2c. Then, with the aid of
Theorem 2 in Sec. 15, state why the representation in part (a) is valid for each
point x (0 < x < ¢) at which f is continuous.

11. (@) Use the normalized eigenfunctions

Pn(x) = V2 sina,x n=1,2,..),
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where
2n—-Drm
Ay = f’
in Problem 1, Sec. 72, to show formally that

1 0 -1 n+1
x<1_§xz> 2421:( O()3 in o, x 0<x<1).

(b) According to Problem 10, the series in part (a) here is a Fourier sine series on the
interval 0 < x < 2. With the aid of Theorem 2 in Sec. 15, show that the series just
obtained in part (a) converges for all x and that its sum is the antiperiodic function
(see Example 2, Sec. 73) Q(x) that is described by means of the equations

Ox) = x(l — %x2> (-1<x<1), Ox+2)=—-0x) (—00 <x < o).

74. A TEMPERATURE PROBLEM IN
RECTANGULAR COORDINATES

In this and the remaining sections of the chapter, we shall illustrate how the Fourier
method can be applied to boundary value problems that lead to Sturm-Liouville
problems other than the ones arising in Chap. 5. As was the case in Chap. 5, we
seek only formal solutions of our boundary value problems.

Let u(x, t) denote temperatures in a slab 0 < x < 1 (Fig. 56), initially at
temperatures f(x), when the face x = 0 is insulated and surface heat transfer
takes place at the face x = 1 into a medium at temperature zero (see Sec. 26). The
boundary value problem to be solved is evidently

(1) U (x, 1) = ke (x, 1) O<x<1,t>0),
2) u(0,1) =0, uy(1,t) = —hu(l,1), u(x,0) = f(x),

where / is a positive constant.

~—

u(x, 0) = f(x) 0°

2 AT

0 x=1

FIGURE 56

Writing u= X(x)T(t) and separating variables, we arrive at the Sturm-
Liouville problem

3) X'(x)+2Xx) =0, X0 =0, hX1+X1)=0,
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along with the condition 7’(t) + AkT(¢t) =0. The eigenvalues and normalized
eigenfunctions of problem (3) are, according to Example 1, Sec. 72,

2h
An :Olz, Xn :¢,,(x) = mcosanx (n: 1,2,...),
n

where tan «,, = h/a, (o, > 0). The corresponding functions of ¢ are, moreover, con-
stant multiples of

T,(t) = exp(—alkt) n=1,2,...).
Hence, the formal solution of our temperature problem is
4 u(x,r) = Z Y €Xp(—apkt) G (x),
n=1
where, in order that u(x,0) = f(x) (0 < x < 1),
5) Yo = (fin) = / J(X) u(x) dx = / f(x) cosa,x dx
\/ h + sin? oy

n=1,2..).

Observe that series (4), when the expression for the normalized eigenfunc-
tions ¢, (x) of problem (3) is used, is

ulx,t) = Z < iz )/n) exp(—ajkt) cos a,x.

ot h + sin“«,,

Hence the solution just obtained can be written

(6) u(x,t) = Z Ay exp(—apkt) cosay,x,
n=1
where
(7) A, = 7/ f(x)cosa,x dx n=12..).
h + sina,,

It is easy to show that solution (6), with coefficients (7), also satisfies the
boundary value problem

(8) u(x, 1) = kit (x, 1) (-1<x<1,t>0),
9) u(—1,1t) = hu(-1,1), uy(1,t) = —hu(l, 1) @t >0,
(10) u(x,0) = f(x) (-1 <x<1),

when f is an even function, or when f(—x) = f(x) (—1 < x < 1). For we already
know that u satisfies the heat equation and the second of boundary conditions (9).
Since the cosine function is even, it is clear from expression (6) that u is even in
x; and its partial derivative u, is odd in x. Hence the first of boundary conditions
(9) is also satisfied:

u (=1, = —u,(1,t) = hu(l,t) = hu(-1, ).
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Finally, we already know that u(x, 0) = f(x) when 0 < x < 1; furthermore, when
—1 < x < 0, the fact that u and f are even in x enables us to write

ux,0) =u(—x,0) = f(—x) = f(x).

The boundary value problem (8)-(10) is, of course, a temperature problem
foraslab —1 < x < 1 with initial temperatures (10) and with surface heat transfer
at both faces into a medium at temperature zero (Fig. 57). The solution of problem
(8)—(10) when f is not necessarily even is obtained in the problems.

e

- —
0 u(x, 0) = /() 0°
- —
T
- —_
x=-1 x=1
FIGURE 57
PROBLEMS'

1. Show that when f(x) =1 (0 < x < 1) in the boundary value problem (1)-(2) in Sec. 74,
the solution (6)—(7) there reduces to

sina
u(x,t) =2h 1 exp (—a’kt) cosa,x,
(. 1) Zoz,,(h+sm Za) p( " )

where tan o, = h/a, (o, > 0).
2. Use the normalized eigenfunctions of the Sturm-Liouville problem

X" +rX=0, X(0) =0, X'(r) =0
to solve the boundary value problem

u;(x,t) = ku,, (x,t) O<x<mt>0),
u(0,1) =0, u(m,t) =0, u(x,0) = f(x).

Show that the solution can be written

d 2n — 1)? n—1
u(x,t)=ZBaneXp[_(n J )kt] sin(n2 >

n=1

"The eigenvalues and (normalized) eigenfunctions of any Sturm-Liouville problem that arises have
already been found in Sec. 72 or in the problem set with that section.
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where

Boy1 = z/ f(x)sin w
7/, 2

(The solution in this form was obtained in another way in Example 2, Sec. 40.)

dx n=1,2,...).

3. Give a full physical interpretation of the following temperature problem, involving a
time-dependent diffusivity, and derive its solution:

A+ u(x, t) = U (x, 1) O<x<1,t>0),
u(0,t) =0, u,(1,t) =0, u(x,0) =1.
n 2n—1
Answer: u(x,t) =2 Z sin o, x a1+ t)—“n where o, = %
n=1 &7

4. (a) Give a physical interpretation of the boundary value problem
u,(x,t) = ke (x,t) O<x<1,t>0),
u©0,0=0,  wu(l,0)=—-hul,0), w0 = f(x),

where 4 is a positive constant. Then derive the solution

u(x, ) = Z B, exp(—aﬁkt) sin a,x,

n=1
where tan o, = —a,/h («, > 0) and
B, = m/ f(x)sina,x dx n=1,2,...).

(b) Use an argument similar to the one at the end of Sec. 74 to show that the solution
found in part (a) formally satisfies the boundary value problem (8)-(10) in that
section when the function f there is odd, or when

f=x)=—f(x) (-1 <x<1).

5. Use the following method to solve the temperature problem (see Fig. 57 in Sec. 74)

u (x, 1) = ke (x, 1) (-l<x<1,t>0),
u,(—1,1t) = hu(—1,1), uc(1,t) = —hu(l,t) (t > 0),
u(x,0) = f(x) (-1<x<1)

when the function f is not necessarily even or odd, as it was in condition (10), Sec. 74,
and Problem 4(b), respectively.

(a) Show that if v(x, 7) is the solution of the problem when f(x) is replaced by the

function
Gy = £ +2f(—x)

and if w(x, 1) is the solution when f(x) is replaced by
Heo = 7@ _2f(_X)’

then the sumu(x, ) = v(x, t) + w(x, t) satisfies the above boundary value problem.
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(b) After noting that the functions G and H in part (a) are even and odd, respectively,
apply the result there, together with results in Sec. 74 and Problem 4, to show that

u(x,t) = Z A, exp(—a,zlkt) CoS oy X + Z B, exp(—ﬂﬁkl‘) sin B,x,

n=1 n=1
where

tano, = n (an > 0), tan B, = _b (B > 0)
o h

n

and

h

n=— . 5
h + sin’a,

1 1
[1 f(x)cosa,x dx, B, = h—}—c#oszﬂ,, [1 f(x)sin B,x dx.

Suggestion: In part (b), write

1 1 1
/ G(x) cosa,x dx = % [/ f(x)cosa,x dx + / f(=s)cosay,s ds}
0 0

0

and
1 1 1 1
/ H(x)sin B,x dx = 5 {/ f(x)sin B,x dx — / f(—s)sin B,s ds} ,
0 0 0

where G(x) and H(x) are the functions appearing in part (a). Then make the sub-
stitution x = —s in the second integrals on the right-hand sides of these equations.

75. STEADY TEMPERATURES

In this section, we treat two steady temperature problems.

EXAMPLE 1. Let u(x, y) represent a function that is harmonic inside a
square whose edges are of unit length:

(1) U (X, y) +Uyy(x,y) =0 OD<x<1,0<y<1).
The function is to satisfy the boundary conditions

2) u(x,0) =0, uy(x,1) = —hu(x, 1) O0O<x<1),
where £ is a positive constant, and

(3) u(0,y) =0, ul,y) = f(y) O<y<.

This can be thought of as a problem in steady temperatures in a long rod with
a square cross section. The temperatures on three of its surfaces are as shown
in Fig. 58, and there is surface heat transfer into a medium at temperature zero
through the fourth surface.

We start the solution of this boundary value problem by substituting the
product u = X(x)Y(y) into conditions (1) and (2) and writing

(4) Y')+2Y(y) =0, YO0 =0, hY(1)+Y'(1)=0,
(5) X'(x) —AX(x) =0,  X(0)=0.
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b 4%

u=0 Vu=0 u=fy

FIGURE 58

Problem 2, Sec. 72, tells us that the eigenvalues and normalized eigenfunctions of
the Sturm-Liouville problem (4) are

, 2h

An =ty Yi=d(y) = m:sina,,y n=12,..)
where tan o, = —a,/h (a, > 0). When A = aﬁ, it follows from conditions (5) that
the corresponding functions of x are constant multiples of

X, (x) = sinh a,,x n=1,2,...).
Thus,
oo
(6) u(x,y) =Y yusinha,x gu(y),

n=1

where the y,, are constants whose values are to be found.
Now the second of conditions (3) is satisfied when

FO) =" yusinha, ¢u(y) 0<y<D,
n=1
and so
. ! 2h 1 .
yasinha, = (f, ¢n) = /0 FOou(y)dy = htcosa, /0 f(y)sina,ydy
n=1,2,...).
That is,

2h 1 2h 1
7 =G : ina,yd =1,2,..)).
@ my sinh a,, h+cosza,,/0 f)sinayydy — (n )

Finally, if we rewrite series (6) as

- 2h - ,
ulx,y) = Z myn sinh o, x sin,, y,
n=1

equation (7) enables us to express our solution in the form

o]

sinh o, x .
8 YY) = B,—
®) ux,y) =Y B sinayy

n=1
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where

9) B, = 7/ f)sina,ydy n=1,2,...).

h+ cos?a,

EXAMPLE 2. Here u(x, y) denotes the bounded steady temperatures in a
semi-infinite slab, bounded by the planes x =0, x =7, and y =0 (Fig. 59), whose
faces are subject to the following conditions. The face in the plane x = 0 is insu-
lated, the face in the plane x = 7 is kept at temperature zero, and the flux inward
through the face in the plane y = 0 (see Sec. 26) is a prescribed function f(x).
The boundary value problem for this slab is

(10) U (X, y) +uyy(x,y) =0 O<x<my>D0),
(11) uc0,) =0,  u(r,y)=0 (y >0,
(12) —Kuy(x,0) = f(x) 0 <x<m),

where K is a positive constant.

<

N\\}

S (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

bt s
J&)

FIGURE 59

By assuming a product solution # = X(x)Y(y) of conditions (10) and (11)
and separating variables, we find that

(13) X'(x) + 1 X(x) =0, X'(0) =0, X(@@)=0
and that Y(y) is to be a bounded solution of the differential equation
(14) Y'(y) —2Y(y) = 0.

According to Problem 3, Sec. 72, the eigenvalues and normalized eigenfunctions
of the Sturm-Liouville problem (13) are

/2
Anzaz, X, = ¢n(x) =/ — cosa,x n=12..),
b
where o, = (2n—1)/2. Also, when A = o2, the general solution of equation (14) is

Y(y) = Cre®? + Cre™ 7.
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In order that this solution be bounded, we need C; = 0; and the needed bounded
solutions of equation (14) are constant multiples of the functions

Ya(y) = exp(—any) (n=12,...).
Consequently,
(15) u(x,y) =Y ynexp(—cny) ¢n(x).
n=1

where the coefficients y, here are to be determined.
Applying the nonhomogeneous condition (12) to expression (15), one can
see that the constants y,, must be such that

[0}

F) = (Kynan) n(x) 0 <x <m).
n=1
That is,
2 T
(16) Ky, = (f, ¢n) = \/i/ £(x) cos a,x dx n=1,2..).
T Jo
Finally, it follows from expressions (15) and (16) that
1 e exp(—a,y)
17) u(x,y) = X ; A, ” COS QX
where
2 T
(18) A, = —/ f(x)cosa,x dx n=12..).
T Jo

Since &, = (2n — 1)/2, equations (17) and (18) can, of course, be written in
the form

2 A, 2n—1)y n—1x
(19) u(x,y) = e ; 1 exp{ 5 } cos ————,
where
2 (7 2n—1
(20) A = —/ Frycos DY 4y n=1,2,..).
T Jo 2
PROBLEMS'
1. Solve the boundary value problem
U (X, Y) +Uyy(x,y) =0 O<x<a,0<y<b),
u0,y) =0, ux(a,y) = —hu(a, y) O<y<b),
u(x,0) =0, u(x,b) = f(x) 0 <x <a),

"The footnote with the problem set for Sec. 74 applies here too.
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where /4 is a positive constant, and interpret u(x, y) physically.

/ f(s)cosays ds,

COS 00, X sinha,y

Answer: u(x, y) =2h Zl ha + sin’a,a  sinha,b

where tano,a = h/a, (a, > 0).

2. A bounded harmonic function u(x, y) in the semi-infinite strip x > 0,0 < y < lis to
satisfy the boundary conditions

u(x,0) =0, uy(x, 1) = —hu(x, 1), u(0, y) = uy,

where i (h > 0) and u are constants. Derive the expression

oo

1 —cosa,
u(x,y) = 2huy Z

- m Xp(—ot,,x)smot,,y,

where tano, = —a,/h (o, > 0). Interpret u(x, y) physically.
3. Find the bounded harmonic function u(x, y) in the semi-infinite strip0 <x <1,y > 0
that satisfies the boundary conditions

u (0, y) =0, ux(1,y) = —hu(l, y), u(x,0) = f(x),

where 4 is a positive constant, and interpret u(x, y) physically.

Answer: u(x,y) = Z A, exp(—a,y) cosa,X,
n=1
where tan«,, = h/w®, (o, > 0) and

_ X) COS o, x dx n=12,..).
=t sinta, / f@) ( )
4. Find the bounded solution of this boundary value problem, where b and 4 are positive

constants:

Uy (X, y) + 1y (x, y) — bu(x, y) =0 O<x<1,y>0),

u(0, y) =0, ux(l, y) = —hu(l, y), u(x, 0) = f(x).

> sin o, x
A v 5 = Bn -, I/
nswer: u(x, y) n; oxp (y b+<x5)

where tan«,, = —a,,/ h (o, > 0) and

B,=——— " =1,2,...).
h+cos2 /f(x)sma xdx (n )

76. OTHER COORDINATES

To illustrate the methods of this chapter in other than rectangular coordinates,
we next consider a problem involving polar coordinates. In addition, two of the
problems immediately following this section involve spherical coordinates.

We seek here a function u(p, ¢) that satisfies a Dirichlet problem (Sec. 31)
consisting of Laplace’s equation

(1) P2Upp (0, B) + ity (p, @) + Ups(p, ¢) =0 (l<p<b0<¢p<mn)
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and the boundary conditions (Fig. 60)
(2 u(p,0)=0,  ulp,m) =up (I<p<b),
3) w(l,$) =0,  u(b,$) =0 0<¢<m),

where u is a constant.

u=20

FIGURE 60

Substitution of the product u = R(p)®(¢) into the differential equation (1),
followed by separation of variables, yields
pZR// pR/ B @ B
R R~ o ™
where —A, rather than A, is chosen as the separation constant in order to obtain a
Sturm-Liouville problem in standard form. More precisely, we have the conditions

(4) (0 R) + %R =0, R(1)=0,  R®) =0,
(5) " — 1D =0, ®(0) = 0.

and need only refer to Problem 6, Sec. 72, to see that the eigenvalues of problem
(4) are A, = ozﬁ (n =1,2,...), where a, = nx/Inb, and that the normalized

eigenfunctions are
[ 2 .
R, = ¢,(p) = 1/ — sin(a,, In p) n=1,2,...).
Inb

The weight function for these eigenfunctions is, moreover, 1/p. Except for constant
factors, the corresponding functions of ¢, arising from conditions (5) when A = o2,
are

®,, = sinh o, ¢ n=1,2,..).
Hence,
(6) u(p, $) =Y _(vasinha,) ¢u(p).

n=1

Turning to the nonhomogeneous condition u(p, ) = ug, we set ¢ = 7 in
expression (6) and write

ty =" _(vasinha,m) ¢u(p) (I1<p<b).

n=1
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Evidently, then, the products y, sinh o, v are the Fourier constants in this expan-

sion, and so
. 2 b1,
vy sinh o, m = (ug, @) = g —/ — sin(ay, In p) dp.
Inb Ji p

This integral is readily evaluated by making the substitution p = exps; and by
recalling that «,, = nr/In b, one can simplify the result to show that

upN2Inb 1 — (=1
. .

n

(7) ypsinh o, =

So, in view of expressions (6) and (7),

p. gy = 20y LN S

— n sinh o, 7w
That is,
4u0 sinh Oon—1 ¢ SiIl(Olzn_1 In ,0)
8 . .
®) wp 9= Z_; sinhaz_im  2n—1

It is interesting to contrast this solution with the one obtained in Example 1,
Sec. 44, for a Dirichlet problem involving the same region but with the nonhomo-
geneous condition u = ugy occurring when p = b instead of when ¢ = 7.

PROBLEMS'

1. Show thatif the condition u(p, 7) =uy (1 < p < b) in Sec. 76 is replaced by the condition
u(p,7)=p ({1 < p < b), then

n[l+(=1"'b] sinha,g
wp. $) =21 Z (Inb)? + (nm)? " sinha, sin(@, In ),

where «, = nm/Inb.
Suggestion: The Fourier constants found in Problem 8, Sec. 73, can be used here.
2. Let p, ¢, z denote cylindrical coordinates, and solve the following boundary value
problem in the region 1 < p < b,0 < ¢ < x of the plane z = 0:

02Uy (0, @) + Pty (0, §) + Uy (0, $) =0 (l<p<b0<¢<m),
u,(1,¢9) =0, u,(b, ) = —hu(b, ¢) 0 <¢<m),
uy(p,0) =0, u(p, m) = ug 1<p<b),

where 4 (h > 0) and u, are constants. Interpret the function u(p, ¢) physically.

Answer: u(p. d) = 2hbu i cosha,¢  sin(a, Inb)cos(w, In p)
CHe o= 0 “ cosho,m o, [hbInb + sin*(a, Inb)]’

where tan(a, Inb) = hb/a, (o, > 0).

See the footnote with the problem set for Sec. 74.
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3. The boundary r = 1 of a solid sphere is kept insulated and that solid is initially at
temperatures f(r), where r is the spherical coordinate described in Sec. 24. If u(r, t)
denotes subsequent temperatures, then

ou k 3*

Ez;m("u), u,(1,1) =0, u@r, 0) = f@r).
By writing v(r, t) =ru(r, t) and requiring that u be continuous when » = 0 (compare
with Example 1, Sec. 41), set up a boundary value problem in v, involving the boundary
conditions

v(0,1) =0, v(l, 1) =v(1,1), v(r, 0) =rf(r).
Then derive the temperature formula

sin a,r

o0
u(r,t) = By + Z B,

n=1

exp(—a?kt),

ayr

where tano,, = «, (o, > 0) and

1 1
1
BO=3/ rif(r)dr, B,,:Z(oz,,—l——)/ rf(r)ysina,rdr (n=1,2,...).
0 « 0

n

(An eigenfunction expansion similar to the one required here was found in Example 3,
Sec. 73.)
4. By writing v(r, t) = ru(r,t), find the temperatures u = u(r, t) in the solid sphere of
Problem 3 when the conditions there are replaced by
du _k o?
o ror?
where the constant /4 is larger than 1. Interpret this problem physically and derive the
temperature formula

(ru), u.(1,t) = —hu(l,1), u(r,0) = f(r),

ur.n=>_ B, Smr“”r exp(—a2kt),

n=1
where
t — ( 0
ana, = = o, >
and
2h—1 !
Bn:#cos)zan/o rf(r)sina,r dr n=1,2,...).
Suggestion: The Solution of the problem
d 92
o =Ko v(0.1) =0, v(1, 1) =—(h—Dv(, 1), v(r,0) =rf(r)
ot ax?2

in v(r, t) is readily found by referring to Problem 4(a), Sec 74.

77. A MODIFICATION OF THE METHOD

We now illustrate a certain modification of the Fourier method that can often be
used when generalized Fourier series arise. Another such modification is illus-
trated in Sec. 78. Both types of modifications were used in Chap. 5 when ordinary
Fourier cosine and sine series were involved.
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Assume that heat is introduced through the face x = 1 of aslab0 <x < 1
at a uniform rate A (A > 0) per unit area (Sec. 26), while the face x = 0 is kept
at the initial temperature zero of the slab. The temperature function u(x, t) must
satisfy the conditions

(1) w(x, 1) = ki (x, t) O<x<1,t>0),
) u(,t) =0, Ku,(1,)=A > 0),
3) u(x,0)=0 O<x<1).

Because the second of conditions (2) is nonhomogeneous, we do not have
two-point boundary conditions leading to a Sturm-Liouville problem. But, by
writing

“4) u(x, ) = U(x, 1) + @(x)
(compare with Example 2, Sec. 39), we find that conditions (1)-(3) become

Ui(x, 1) = k[Usx (x, 1) + " (x)],
U(,1) + @(0) =0, K[U.(1, 1) + @' (D)] = A,

and
U(x,0)+ ®(x)=0.
Hence, if we require that
(5) ®"(x) =0 and ®(0) =0, Ko'(1) = A,
we have the boundary value problem
©6) Ux,t)=kUy(x,0), U0 =0 U, 1)=0 U0 =-d(x)

for U(x, t) that does have two-point boundary conditions leading to a Sturm-
Liouville problem.
It follows readily from conditions (5) that

(7) O (x) = gx.

Also, by assuming a product solution U = X(x)T(¢) of the homogeneous condi-
tions in problem (6), we see that

(8) X' () +2Xx) =0, X0 =0, X 1)=0

and T'(t) + AkT(t) = 0. According to Problem 1, Sec. 72, the Sturm-Liouville
problem (8) has the eigenvalues and normalized eigenfunctions

=0k Xy =du(x) = V2sina,x n=1,2,...),
where o, = (2n — 1)7r/2; and the corresponding functions of ¢ are

T, (t) = exp(—a’kt) n=1,2,...).
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Hence,

) Ux, 1) =Y ynexp(—apkt) ¢p(x)

n=1

where, in view of the last of conditions (6),
A [o.¢]
_Exzzlynan(x) O<x<1).
n=

Now the Fourier constants for x (0 < x < 1) with respect to the normalized
eigenfunctions here are already known to us (see Example 2, Sec. 73, when ¢ = 1),
and that earlier result tells us that

A (D"
K a2

n

Yn = 2

After substituting these values of y, into expression (9) and then simplifying and
combining the result with expression (7), as indicated in equation (4), we arrive
at the desired temperature function:

A 2 (="
(10) ulx,t) = X X —i—ZZ ( a2) exp(—a,zlkt)sinanx ,

n=1 n

where «,, = 2n — )t /2.

PROBLEMS'

1. With the aid of representation (8) in Example 2, Sec. 73, show that the temperature
function (10) in Sec. 77 can be written in the form

2
oy

2A ad -1 n+1
u(x,t) = X Z 1 [1- exp(—aﬁkl)] sina, X,
n=1

where o, = 2n — 1)1t /2.
2. Heat transfer takes place at the surface x = 0 of a slab0 < x < 1 into a medium at
temperature zero, according to the linear law of surface heat transfer, so that (Sec. 26)

1, (0, 1) = hu(0, t) (h > 0).

The other boundary conditions are as indicated in Fig. 61, and the unit of time is chosen
so that k = 1 in the heat equation. By proceeding as in Sec. 77, derive the temperature

formula
hx +1 sina, (1 —x) 2
J)=———=2h E —_ 0 7 —a’t),
u(x, 1) h+1 — o, (h + cos?a,,) exp(—a,1)
where tanw,, = —«,/h (o, > 0).

"The footnote with the problem set for Sec. 74 also applies here.
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"\_/\/_.
e
0° u(x,0) =0 u=1
-
B 7] X
-
L ———
x=0 x=1
FIGURE 61
Suggestion: In simplifying the expression for the Fourier constants that arise, it
is useful to note that
hsina, _cosay,
a2 o,
3. Give a physical interpretation of the boundary value problem

u,(x,t) = kuy, (x,t) O<x<1,t>0),
u, (0,1) =0, u,(1,6) = h[T —u(1,1)] (h > 0),
u(x,0) =0,

where T is a constant (see Sec. 26). By making the substitution
ux,t) =Ux, 1) + ®(x)

and referring to the solution (6)—(7) in Sec. 74 that was found for another boundary
value problem, derive the solution

Sanl COS &,
ux,t)=T |1=2h d " exp(—alkt
(. 1) gan(h—ksma,,) p( " )

where tano, = h/a, (¢, > 0), of the boundary value problem here.

. Use the same substitution as in Problem 3 and the same solution of an earlier boundary

value problem to solve the temperature problem

U (x,t) = kuy (x,t) + qo O<x<1,t>0),
u,(0,8) =0, uc(1,1) = —hu(1, 1) (h >0,
u(x,0) =0,

where g is a constant.

qo | 2 sin o, COS &, X 2
Answer: u(x,t) = — +1—-x>—4h exp(—a;kt
(1) = 2k | h Zoﬂ(h—f—sm ot,,) p( )

where tan«,, = h/a, (a, > 0).

. Use the method in Sec. 77 to solve the boundary value problem

A+ u(x,t) =ty (x, 1) O<x<1,t>0),
u,(0,1) = -1, u(l,t) =0, u(x,0) =0.
Interpret this problem physically (compare with Problem 3, Sec. 74).

n 2n—1
Answer: u(x,t) = 1—x—2Z cosanX A+~ "n, where o, = %
n=1 n
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78. ANOTHER MODIFICATION

Let u(x, t) denote temperatures in a slab 0 < x < 7 (Fig. 62) that is initially at
temperature zero and whose face x = 0 is insulated, while the face x =z has
temperatures u(rw, t) =t (¢t >0). If the unit of time is chosen so that the thermal
diffusivity k in the heat equation is unity, the boundary value problem for u(x, t)
is

(1) U (X, 1) = Uy (x, 1) O<x<mt>0),
) u,(0,1) =0, u(m,t) =t, u(x,0) =0.
~—~—

u(x,0) =0 u=-t

AN\

L~
=0 x=
FIGURE 62

Observe thatif u(x, t) satisfies the first two of conditions (2), then the related
function U(x, t) = u(x, t) — t satisfies the conditions

(3) Ue(0,1) =0 and U@r,t) =0,
both of which are homogeneous. In fact, by writing
ulx,t)y =U(x,t) +t,
we have the related boundary value problem consisting of the differential equation
4) Ui(x,1) = U (x, 1) — 1
and conditions (3), along with the condition
(5) U(x,0)=0.

The nonhomogeneity in the second of conditions (2) is now transferred to the dif-
ferential equation in the new boundary value problem, and this suggests applying
the method of variation of parameters, first used in Sec. 42.

We begin by noting that when the method of separation of variablesis applied
to the homogeneous differential equation U, (x, t) = Uy, (x, t), which is equation
(4) with the term —1 deleted, and to conditions (3), the Sturm-Liouville problem

X'(x) +AX(x) =0, X'(0) =0, X)) =0
arises. Furthermore, from Problem 3, Sec. 72, we know that the eigenfunctions of
this problem are the cosine functions
. 2n—1

X, (x) = cosa,x where oy >

n=1,2,...).
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We thus seek a solution of the boundary value problem (3)—(5) having the form

(6) Ux,t) = Z A, (1) cos ay,x.

n=1

By substituting series (6) into equation (4) and referring to Problem 1,
Sec. 73, for the expansion

2 N (—1t!
1:—2( ) COS O, X 0 <x<m),

277}

we find that

Z [AL(6) + o Ay ()] cos ayx = Z 21"
n=1

n=1

COS O, X.
Ty,

Then, by identifying the coefficients in the series on each side here, we have the
differential equation
2(=1)"

(7) AL() + o2 An(t) =
Ty,

n=1,2,...).

Also, condition (5) tells us that

oo
Z A, (0)cosa,x =0,

n=1
orA,(0)=0n=1,2,...).
Now an integrating factor for the linear first-order differential equation (7)

exp (/ o’ dt) = expa’t.

Hence, if we multiply through the differential equation by this integrating factor,
we have

is

d 2(=D"
o [(expalt) An(0)] = ———exp a’t.
n
By replacing the variable ¢ here by 7, integrating the result fromt =0to 7 = ¢,
and keeping in mind the requirement that A,,(0) = 0, we see that

2(—=1D"
(expait) An(t) = ;a; (expait — 1),
or
A =2 S ep(-a)] =12,

n
Finally, by substituting this expression for A,(¢) into equation (6) and then
recalling that u(x, t) = U(x, t) + ¢, we obtain the solution of the original boundary
value problem:

L2y CD  exp(-a?
(8) u(x,t) =t+ nz [1—exp(—a;t)] cosapx,
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where
2n—1
9) = = (n=1,2,..).
Note that in view of the representation
(_1)n+1
nz—xzz—zfcosanx 0 <x<m),
T o
n=1 n
found in Problem 4, Sec. 73, this solution can be written
(— 1)"

(10) u(x,t)y =t — ——— — = Z exp(—a;t) cos ayx.

PROBLEMS'
1. Use the method of variation of parameters to solve the boundary value problem
U (x,t) = ki (x, 1) + q(t) O<x<1,t>0),
u,(0,1) =0, u(l,t) =0, u(x,00=0

for temperatures in an internally heated slab.
Suggestion: The representation, with ¢ = 1, that was found in Problem 1,
Sec. 73, is needed here.

( 1)n+1

Answer: u(x,t) = ZZ

n=1

t
cos a”x/ exp [— aﬁk(t — r)]q(r) dr,
0
where o, = 2n — 1)z /2.
2. Solve the temperature problem
U (X, 1) = Uy (X, 1) O<x<1,t>0),
uc(0,1) =0, ul,n) = F@), u(x,0) =0,

where F is continuous and F(0) = 0. [Compare this problem with the boundary value
problem (1)-(2) in Sec. 78.] Express the answer in the form

=b” t 2 ,
COS O, X exp [—an(t — r)} F'(7)dr,
aﬂ

0

u(x,t) = F(t) +2 Z
n=1

where o, = 2n — 1)1t /2.
3. By using the method of variation of parameters, derive the bounded solution of this
problem:

U (X, Y) + 1y (X, ¥) +qo =0 O<x<1,y>0),
u(0, y) =0, u (1, y) =—hu(l,y) (h>0), u(x,0) =0,

where gy and & are constants. Interpret the problem physically.

T See the footnote with the problem set for Sec. 74.
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Suggestion: The representation found in Problem 3, Sec. 73,is needed here. Also,
for general comments on solving the nonhomogeneous linear second-order differential
equation that arises, see the suggestion with Problem 4, Sec. 43.

1 —cosa,

i T covay LI~ SPCe]sinan,

Answer: u(x,y) = 2qoh Z
n=1

where tanw, = —«a,/h (a, > 0).
4. With the aid of the representation found in Problem 6, Sec. 73, write the solution in
Problem 3 just above as

Qo 2+4+h = 1—cosa, .
u(x,t) = 5 [x <m - x) - 4hz m exp(—a,y) sma,,x] ,

n=1

where tan o, = —a,/h (@, > 0). Then observe how it follows that

. qo 2+h
I =P (2 k).
S0 ) 2x<1+h x)

79. A VERTICALLY HUNG ELASTIC BAR

An unstrained elastic bar, or heavy coiled spring, is clamped along its length ¢
in order to prevent longitudinal displacements and then hung from its end x =0
(Fig. 63). At the instant ¢ =0, the clamp is released and the bar vibrates longitu-
dinally because of its own weight. If y(x, t) denotes longitudinal displacements
in the bar once it is released, then y(x, t) satisfies the modified form (Problem 3,
Sec. 29)

(1) Vi (X, 1) = aPyec(x, 1) + 8 O<x<ct>0)

of the wave equation, where g is acceleration due to gravity. The stated conditions
at the ends of the bar tell us that (see Sec. 29)

) y©0.0)=0,  ylc.1) =0,
the initial conditions being
3) y(x,00=0,  y(x,0)=0.
A, Ty

& 7

x
ly(x, )
A 274

FIGURE 63
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The fact that equation (1) is nonhomogeneous suggests that we use the
method of variation of parameters, first used in Sec. 42. We begin with the obser-
vation that the sine functions

_ @n-Drm
- 2c

are the eigenfunctions (Problem 7, Sec. 72) of the Sturm-Liouville problem

X, (x) = sina,x where oy n=1,2,...)

X'(x)+A2X(x) =0, X(0) =0, X'(c) =0,

which arises when the method of separation of variables is applied to the homo-
geneous wave equation y.(x, t) = a’y,(x, t) and conditions (2). To be specific,
we seek a solution of the boundary value problem (1)—(3) having the form

4) y(x, 1) = Z B, (t) sin o, x,
n=1
where
_ @n-Drm
(5) o, = 2—C

Substituting series (4) into equation (1) and recalling the representation (Prob-
lem 2, Sec. 73)

. 2 i sin a,x © )
= - <x <o),
c ay,
n=1
we find that
. 2%=r o ) 28 o sin a, x
Z B (t)sina,x =a Z[—anB,,(t) sina, x| + - .
n=1 n=1 n=1 n
or
D [By(®) + (@a)* By(t)] siney,x =Y == sina,x.
cay,
n=1 n=1
That is,
14 2 2g
(6) B (t) + (apa)” B, (1) = (n=1,2,...)
n
It follows, moreover, from conditions (3) that
(7) B,(0)=0, B,0)=0 n=12..).

Now the general solution of the complementary equation
By (t) + (@)’ By(t) = 0
is

B, (t) = C; cosayat + G, sinaat,
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where C; and C, are arbitrary constants, and it is easy to see that a particular
solution of equation (6) is
28

a’ca’

B,(t) =

Hence, the general solution of equation (6) is

2g

(8) B,(t) = Cicosayat + Gy sinaat + ——— Tead
ca;

The constants C; and C, are readily determined by imposing conditions (7) on
expression (8). The result is

2g
2cal

B, () = (1 — cosayat);

and in view of equation (4), it follows that

) y(x, 1) = Z sma,,x (1 — cosayat).

This solution can actually be written in closed form in the following way,
which is based on the fact (Problem 5, Sec. 73) that

4 & sinay,
(10) - 51no3z * Ox) (=00 < x < 00),
c= o

where Q(x) is the antiperiodic function described by means of the equations

(11) O(x) = x(2c —x) (0 =x =20),

(12) O +2c) =-0x) (—00 < X < 00).
First, we put expression (9) in the form

4 i ¢
(13) yx, 1) =25 [x(2c —x) — — Z w
¢ n=1 op

As for the remaining series here, the trigonometric identity
2sinA cos B = sin(A+ B) + sin(A— B)
enables us to write

sin o, X COS a,at sin « (x + at) 2. sina, (x — at)
o) TORERLAL 3 MAGAID) 3 et

3 >
op

" n=1

or

4 f: sin anx cosanat _ Q(x +at) + Qx — az)
2
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Finally, then,

O(x +at) + O(x — at)
> )

(14) yx, 1) = 2% X2 —x) —

PROBLEMS'

1. A horizontal elastic bar, with its end x = 0 kept fixed, is initially stretched so that its
longitudinal displacements are y(x, 0) = bx (0 < x < ¢). Itis released from rest in that
position at the instant ¢+ = 0; and its end x = c is kept free, so that y,(c, t) = 0. Derive
this expression for the displacements:

H(x 4+ at) + H(x — at)

y(x,t) =D 5 ,

where H(x) is the triangular wave function (6) in Example 2, Sec. 73. (Except for the
condition at x = 0, the boundary value problem here is the same as the one solved in
Sec. 47.)

2. Suppose that the end x = 0 of a horizontal elastic bar of length c is kept fixed and that
a constant force F; per unit area acts parallel to the bar at the end x = c. Let all parts
of the bar be initially unstrained and at rest. The displacements y(x, ¢) then satisfy the
boundary value problem

Vi (X, 1) = a®yer (X, 1) O<x<ct>0),

y(0,1) =0, Ey.(c,t) = K,
y(x,0) =0, y(x,0) =0,
where a’> = E/8, the constant E is Young’s modulus of elasticity, and § is the mass per
unit volume of the material (see Sec. 29).
(a) Write y(x,t) = Y(x,1) + ®(x) (compare with Sec. 77) and determine & (x) such

that Y(x, t) satisfies a boundary value problem whose solution is obtained by simply
referring to the solution in Problem 1. Thus show that

B H(x +at)+ Hx — at)}

.1y = 0
X = — |x
Y E 2

where H(x) is the same triangular wave function as in Problem 1.
(b) Use the expression for y(x, t) in part (a) to show that those displacements are

periodic in ¢, with period

4 3
To=— =dcy | 2.
a E
That is, show that y(x, t + Tp) = y(x, 1).

3. Show that the displacements at the end x = ¢ of the bar in Problem 2 are

y(c, t) = % [c + H(at — 0)]

and that the graph of this function is as shown in Fig. 64.

TThe footnote with the problem set for Sec. 74 applies here as well.
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ye, 1)
2cF),
E
@] 4¢ 8¢ t
a a
FIGURE 64

4. Show that the force per unit area exerted by the bar in Problem 2 on the support at the
end x = 0 is the function (see Sec. 29)

Ey(0,1) = Fy[1 — H'(a1)]

and that the graph of this function is as shown in Fig. 65. (Note that this force becomes
twice the applied force during regularly spaced intervals of time.)

Ey (0,1
o oo o o
| | I | I
| | | | |
| | | | |
| | I | I
S A & A S
% c 3¢ 5S¢ Tc 9¢ £
a a a a a
FIGURE 65

5. Let the constant Fy in Problem 2 be replaced by a finite impulse of duration 4c/a:

4
F when 0 <t < —C,
F(t) = ¢
4
0 when t > —C.
a

(a) State why the displacements y(x, ¢) between the times ¢t = 0 and ¢ = 4c/a are the
same as in Problem 2. Then, after showing that

4 4
y(x, _c) = and Ve (x, —C) =0
a a

when y(x, ¢) is the solution in Problem 2, state why there is no motion in the bar
here after time ¢t = 4c/a.

(b) Use results in part (a) and Problem 3 to show that if
2c aF
th = ; and Vg = FO,
the end x = c of the bar moves with velocity

Vo when 0 <1 < 1,
wl(e, t) =
— when 1y <t < 2t,

and that it remains stationary after time ¢ = 2.
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6. The end x = 1 of a stretched string is elastically supported (Fig. 66), so that the
transverse displacements y(x, t) satisfy the condition y, (1, t) = —hy(1,t), where his a

positive constant. Also,

y(0,1) =0, y(x,0) = bx, yi(x,0) =0,

where b is a positive constant; and the wave equation y,, = y,, is satisfied. Derive the

following expression for the displacements:

sin «,, Sin o, x

y(x, 1) =2bh(h +1) Z 2(h + cosa,) ©
n=1 n "

where tan«,, = —a,/h (o, > 0).

oS a,t,

Suggestion: In simplifying the solution to the form given here, note that

coswa,  hsina,

oy o?
y
> (1, 5)
~
<
>
0] §> X
T
FIGURE 66

7. An unstrained elastic bar of length ¢, whose cross sections have area A and whose
modulus of elasticity (Sec. 29) is E, is moving lengthwise with velocity vy when at the
instant ¢t = Oitsright-hand end x = ¢ meets and adheres to a rigid support (Fig. 67). The
displacements y(x, t) thus satisfy the wave equation y,, = a’y,, and the end conditions

v (0,1) = y(c, t) = 0, as well as the initial conditions

y(x,0) =0, Yi(x,0) = vp.

Vo

FIGURE 67

(a) Derive this expression for the displacements:

2up o (D)™ .
,t - — n n ta
y(x, 1) o g_l oz,% COS o, X SIn &, a
where
_ (@2n—-Drn

on 2c

(n

1,2,..).
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(b) Use the expression for y(x, t) in part (a) to show that

2 2
y(x, _c) = and y,<x, —C> = —p O <x<o).
a a

According to these two equations, if the end x = ¢ of the bar is suddenly freed
from the support at time ¢t = 2c/a, the bar will move after that time as a rigid
unstrained body with velocity —vy.

(¢) Show how it follows from the expression in part (a) that as long as the end of the
bar continues to adhere to the support, the force on the support can be written

AE 2
_AE,VX(C’I)z av0M<;C’t)»

where M(c, t) (t > 0) is the square wave represented by the series (see Problem 3,
Sec. 15)

4 1 . Cn-Dm
M(c,t) = ;Z;Zn—l sin " (t #c¢,2¢,3c,...).

8. Let y(x,t) denote longitudinal displacements in an elastic bar of length unity whose
end x = 01is fixed and at whose end x = 1 a force proportional to ¢? acts longitudinally
(Fig. 68), so that

y0,6)=0 and  y.(1,1) = A (A 0).

The bar is initially unstrained and at rest, and the unit of time is such that a = 1 in the
wave equation.

|
| —_—
| —>A12
y(x, 1) | —
o X x=1

FIGURE 68

(a) Write out the complete boundary value problem for y(x, t) and observe that if
Y(x,t) = y(x,t) — At’x, then
Y©0,t)=0 and Y.(1,t) =0.
Set up the complete boundary value problem for Y(x, ¢), the differential equation
being
Yi(x,t) = Y (x,1) —2Ax O<x<1,t>0).

Then, with the aid of representation (8) in Example 2, Sec. 73, apply the method of
variation of parameters to solve the boundary value problem for Y(x, ¢) and thus
derive this solution of the original problem:

(_

1)n+1
p (1 —cosayt)sina,x |,
n

yx,t)=A xt2—4z
n=1

where
_ (2n— Dr

n 1,2,...).
o > )

(n
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(b) Use the result in Problem 11(b), Sec. 73, to write the solution in part (a) here in
the form

y(x, 1) =A[x(12_1)+%x3+ O(x+1)+ Q(x_,)}

2

where Q(x) is the antiperiodic function described by means of the equations

Ox) = x(l - %xz) (-1<x <D,
Ox +2)=-0(x) (=00 < X < 00).

9. Consider the same boundary value problem as in Problem 8 except that the condition
at the end x = 1 of the bar is now replaced by the condition

ve(1,t) = sinwt.
(a) By proceeding in the same manner as in Problem 8, show that if
2n—-Dr
oy = ————
2
and w # w, for any value of n, then

n=12,..)

o0

. —-1)" o . . .
y(x,t) = xsinwt 4+ 2w E # — sinwt — sinw,t | sinw,x.
= on(0? —@}) \on

(b) Modify part (a) to show that resonance (Sec. 46) occurs when w = wy for any
value of N.
Suggestion: In each part of this problem, it is helpful to refer to the general
solution of a certain ordinary differential equation in Problem 2, Sec. 46.
10. By referring to expansion (8) in Example 2, Sec. 73, and the expansion found in
Problem 7, Sec. 73, write the solution in Problem 9(a) just above in the form

oo
sin wx sin wt —1yrtt
in wx sin w. +2C‘)Z (G228

® COS w - (@ — @?)
e

y(x,t) = sin w,x sin w,t,
where
_ (@2n—-Drm

> n=1,2,...).

Wn



CHAPTER

9

BESSEL
FUNCTIONS
AND
APPLICATIONS

In boundary value problems that involve the laplacian V?u expressed in cylindri-
cal or polar coordinates, the method of separation of variables often produces a
differential equation of the form

d’y dy
1 2 a7y D L — vy =0
(1) pdp2+pdp+(p vy =0,

where y is a function of the coordinate p. In such a problem, —A is a separation
constant and the values of A are the eigenvalues of a singular Sturm-Liouville
problem involving equation (1). The parameter v is a nonnegative number deter-
mined by other aspects of the boundary value problem. Usually, v is either zero
or a positive integer.

In our applications, it turns out that A > 0; and when A > 0, the substitution
x = /A p can be used to transform equation (1) into a form that is free of A:

(2) Y (%) + xy' () + (x* —vH)y(x) = 0.

This differential equation is known as Bessel’s equation of order v. Its solutions
are called Bessel functions, or sometimes cylindrical functions.

Before turning to the problem of finding solutions of equation (2), we begin
with a brief discussion of the so-called gamma function, which plays a central role
in studies of those solutions.

260
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80. THE GAMMA FUNCTION

As indicated just above, this section is devoted to some basic properties of the
gamma function, which can be defined in terms of the independent variable v by
means of an improper integral:’

(1) INO /00o A (v > 0).
It is easy to see that
rq) = /Ooo etdr =[—e']; =1
In order to find values of this function for the other positive integers, we write

rv+1) =/ e 't'dt
0
and integrate by parts, using
U=t" and dV =e'dt.
Then
dU=vt"'dt and V=-e¢",

so that

Y t=00 00
Frv+1) = {——t] + v/ et ldr.
€ 1= 0

Since ¢ grows faster than ¢¥ as ¢ tends to oo, we find that

) Frv+1)=vlLW) v > 0).
This recurrence relation, together with mathematical induction, reveals that

(3) 'n+1) =n! n=0,1,2,...).

As for the details, we recall from the beginning of this section that I'(1) = 0!
when the convention that 0! = 1 is used; thus equation (3) is valid when n = 0.
Given that equation (3) is valid when n = m where m is any nonnegative integer
(m=20,1,2,...), one can apply recurrence relation (2) to see that

F(m+DH+D)=m+DHI'm+1)=m+1)(m!) =m+1)!.

The validity of equation (3) is now established.
Recurrence relation (2), in the form

4) rvy=————= (v > 0),

fThorough developments of the gamma function appear in the books by Lebedev (1972, Chap. 1) and
Rainville (1972, Chap. 2), which are listed in the Bibliography.
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can be used to define I'(v) when v is negative but not an integer. To be specific, if
—1 < v < 0, the inequalities 0 < v+ 1 < 1 enable us to use equation (4) to define
I'(v) when —1 < v < 0.If =2 < v < —1,so that —1 < v + 1 < 0, the fact that
['(v) is now defined for —1 < v < 0 allows us to use equation (4) once again, this
time to define I'(v) when —2 < v < —1. Continuing in this way, we now have I"(v)
defined for every negative value of v that is not an integer (Fig. 69).

I'(v)

i

FIGURE 69

It can be shown that I' (v) is continuous and positive when v > 0. So it follows
from relation (4) that '(0 4+) = oo and, furthermore, that |T"(v)| becomes infinite
asv —> —n (n =0,1,2,...). This means that 1/ '(v) tends to zero as v tends to
—n(n=0,1,2,...); and, for brevity, we write

1 p—
['(-n)

(5) 0 whenn=0,1,2,....
Note that the reciprocal 1/ I'(v) is then continuous for all v.

We conclude this discussion of the gamma function by stating two further
consequences of relation (2) that will be useful in this chapter and whose verifica-
tions are left to the problems. The first is

(6) rov+DHw+DHW+2)---(v+kh=TWw+k+1 k=1,2,..)
when v > 0, and the second is the expression

1 (2k)!
(7 F(k+§>=k!22kﬁ (k=0,1,2,..))

for the values of the gamma function at the positive half-integers. With the usual
convention that 0! = 1, expression (7) tells us that

) r (1) -
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81. BESSEL FUNCTIONS J,(x)
Bessel’s equation
©) X2y 0+ xy' (1) + (& = v)y(0) =0 (v =0)

is an ordinary differential equation of the second order that is linear and homo-
geneous; and, upon comparing it with the standard form

(2) y'(x) + P(x)y' (x) + Q(x)y(x) =0

of such equations, we see that
x? —?
2

P(x) = % and Ox) =
Since these quotients do not have Maclaurin series representations that are valid
in some open interval containing the origin and since the products
xP(x) and X2 Q(x)
do, the origin x = 0 is a regular singular point of Bessel’s equation (1). From the

theory of ordinary differential equations, it is known that when x = 0 is such a
point, equation (2) always has a solution of the form

o0
)’=Xczajxj (ap #0),
j=0
which is the same as
o0
(3) y = Z ajx°t (ap # 0).
j=0

In order to determine a solution of equation (1) that is of the form (3), we
assume that series (3) is differentiable and note that

o0
Y= (c+ jajxti!
j=0
and
e .
y' = Z(c + e+ j— l)ajx”]_z.
j=0

Substituting series (3) and these derivatives into equation (1), we have

ST+ Dle+j—Daxt +3 e+ jajxet
j=0 j=0

oo [o¢]
+ E a;x“tiT? E via;xt =0,
=0 j=0

"The series method used here to solve equation (1) is often referred to as the method of Frobenius and is
treated in introductory texts on ordinary differential equations, such as the one by Boyce and DiPrima
(2009) and the one by Rainville, Bedient, and Bedient (1997). Both are listed in the Bibliography.
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or
ST+ De+j— D+t j)—Plapx™ +3 a2 =0,
j=0 j=0

But
(c+pet+j—D+c+)=@C+Plct+j—1+1]=(c+ j)?

in the first series here, and the second series can be written

oo
E a]-_zx”].
j=2

Hence,
o0 o0
Z [(c + j)* — v]a;xT + Zaj,zx”/ =0.
j=0 j=2
Multiplying through this equation by x~ and then writing out the j =0and j =1
terms of the first series separately, we have

@) (& =v)ag+[(c+1)? —v]ax + Z {[c+ H*=v¥aj+a;_}x =0.
=

Equation (4) is an identity in x if the coefficient of each power of x vanishes.
In particular, the condition ay # 0 with series (3) tells us that c = v or ¢ = —v if
the constant term is to vanish, and we make the choice ¢ = v. Then a; = 0, since

w+1D>=v>=2v+1=#£0.

Furthermore,
[((v+ > —v]a;+a;2=0 (j=2.3,..;
and since (v + j)? — v? = j(2v + j), the recurrence relation
-1 .
®) - (j=2.3..)

a,=———4a;
T jav+ )
is obtained. It gives each coefficient a;(j = 2, 3, ...) in terms of the second coef-
ficient preceding it in the series.
Note that if the value ¢ = —v, rather than ¢ = v, had been chosen, the first
factor in the coefficient of x in series (4) would have been

(—v+1? =12 =-2v+1,

which is zero when v = 1/2. Hence a; would not need to be zero when v = 1/2.
Moreover, if c = —v, the denominator on the right-hand side of relation (5) would
be j (—2v + j); and this means that the relation would not be well defined when
v is a positive integer and j =2 v.

Since a; = 0, relation (5) requires that a3 = 0; then as = 0, etc. That is,

(6) W1 =0 k=0,1,2,..)).
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To obtain the remaining coefficients, we let k denote any positive integer
and use relation (5) to write the following k equations:

-1
as = -1 a
T 2w )2
-1
D = ————= Dk—2.
T kw22 T
Upon equating the product of the left-hand sides of these equations to the product
of their right-hand sides, and then canceling the common factors as, ay, . . ., a2
on each side of the resulting equation, we arrive at the expression
(—1*

(7) @2 (k=1,2,...).

T RO+ DO +2) - (v + k2% D

In view of identity (6) and the fact that ¢ = v, series (3) now takes the form

[o¢]
(8) y=apx’ + Z arex” (a0 #0),
k=1
where the coefficients ay, (k= 1,2, ...) are those in expression (7). This series is
absolutely convergent for all x, according to the ratio test:

A1y 20D

xv+2k

lim
k— 00

i 1 Y,
T e k- D+ k+ 1) ( 2 ) e
Hence, it represents a continuous function and is differentiable with respect to
x any number of times. Since it is differentiable and its coefficients satisfy the
recurrence relation needed to make its sum satisfy Bessel’s equation (1), series
(8) is, indeed, a solution of that equation.

The coefficient ay in series (8) may have any nonzero value. If we substitute
expression (7) into that series and write

S (=¥ X\ %
1+;k!(v~l—1)(v+2)~-~(v+k) (E) 1

(2575

y = apx"’

we see that the choice

1
DT T2
enables us to write a solution of Bessel’s equation (1) as y = J,,(x) where
1 x\v 2 (_1)k X \V+2k
9 J,x)=— (= = .
©) L@ =107 (2) +k§ AT+ Do+ DwE2) -tk (2)

Finally, the relation (Sec. 80)
Frw+DH@+DW+2)---(w+k=TWw+k+1) k=1,2,..)
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and the convention that 0! = 1 enable us to write solution (9) more compactly as

°° (=¥ X\ v+2k
(10) M"):;m 5)

The function J, (x) is known as the Bessel function of the first kind of order v(v > 0).
It follows that the related function

(—D¥ X\ —v+2k
11
(1) = Zk'l"( v+k+1)( )
is also a solution of Bessel’s equation (1) when the nonnegative parameter v is not
an integer. One can see this by redoing the derivation of J,(x) using ¢ = —v and

also referring to Problem 7, Sec. 82. The Bessel function J_, (x) is clearly linearly
independent of J,(x) since it is not a constant times J, (x). In fact, since J_, (x) is
the product of 1/x” and a power series in x whose initial term (k = 0) is nonzero,
it is discontinuous at x = 0. But J,(x) tends to zero as x — 0. Thus the general
solution of Bessel’s equation (1) when v is positive but not an integer is

(12) y=CJ,(x) + CJ_,(x), w>0v#£1,2,..),

where C; and C; are arbitrary constants.

A solution of Bessel’s equation that is linearly independent of J, (x) is more
difficult to find when v is a nonnegative integer (v = 0, 1, 2, ...). We recall from
the paragraph immediately following equation (4) that we chose ¢ = v and not
c = —v. If v = 0, we do not, of course, obtain a new value of c whenc = —v. If v
has one of the values v = 1,2, ... ,we saw that the recurrence relation (5) is not
well defined for all values of j. The second (linearly independent) solutions when
v=n=20,1,2,...are discussed in Sec. 82.

82. SOLUTIONS WHEN v =0, 1,2, ...

This chapter is mainly concerned with solutions of Bessel’s equation when the
parameter v is a nonnegative integer n:

@) x2y"(x) + xy'(x) + (x> = n?) y(x) =0 n=0,1,2,...).
From Sec. 80 we know that
Tn+k+1)=@n+k! k=0,1,2,...),

and so the Bessel function of order v(v > 0)that was obtained in Sec. 81 becomes

(=Dk n+2k
@) Jux) = Z i (3) (n=0,1,2,...).

The case n = 0 will be of special interest to us in the applications. Bessel’s
equation (1) then becomes

(3) xy"(x) + Y (x) + xy(x) =0
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and expression (2) reduces to

(=) a2
4) Jo(x)=kz:; 7 (3)

Since
N2 = [(H2)B) -+ (W2 = [Q)@)(6) - - - 2k)]* = 224%6 - - - (2k)*

when k > 1, another form is

X2k X2 X4 x6

-1 = T 4.
L4262 (2k)? 2 g gt

(G) @) =1+ (-DF
k=1

From expression (2) one can readily see that
(6) Ju(—x) = (=1)"Jn(x) n=0,1,2,..)).

Thus J, is an even function if n = 0,2,4,... and odd if n = 1, 3,5, .... Also, it
follows immediately from expressions (5) and (2) that Jy(0) = 1 and J,(0) = 0
whenn=1,2,....

Series (5) bears some resemblance to the Maclaurin series for cosx. The
differentiation formula Jj(x) = —J;1(x), to be obtained in Sec. 83, also suggests
that J;(x) might be analogous to sinx. Graphs of y = Jy(x) and y = Ji(x) are
shown in Fig. 70. More details regarding these graphs, especially the nature of the
zeros of Jy(x) and Ji(x), will be developed later in the chapter.

FIGURE 70

A function linearly independent of Jy(x) that satisfies Bessel’s equation (3)
can be obtained by various methods of a fairly elementary nature. We do not give
further details here but only state the results.

A general solution of equation (3) is (see Problems 4 and 10)

(7)) y=AJyx)
Xt 1 x6 1 1
TBh@ It 5% - 2e (”z) T 2pe (“5*3) ‘}

where A and B are arbitrary constants and x > 0. Evidently, as long as B # 0,
any choice of Aand Byields a solution that is unbounded as x tends to zero through
positive values. Such a solution cannot, therefore, be expressed as a constant times
Jo(x), which tends to unity as x tends to zero. So Jy(x) and the solution (7) are
linearly independent when B = 0. It is most common to use Euler’s constant
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y =0.5772-- -, which is defined as the limit of the sequence (see Problem 5)

1 1 1
(8) sn=1+§+§+--~+ﬁ—lnn n=12..),
and to write
2 2
A= —(y —In2) and = —.
T T

When A and B are assigned those values, the second solution that arises is
Weber’s Bessel function of the second kind of order zero. (Fig. 71): ¥

© Y% =% (03 +7) Joo)

ESRE A GO D S U
22 2242 2 224262 2 3 '
Thus a general solution of equation (3) that is valid when x > 0 is
(10) y=CiJo(x) + G Y (x),

where C; and G, are arbitrary constants.

Yo(x)

0.5 /\
19) | | | /—\ |

FIGURE 71

We turn now to the case in which v is a positive integer n (n = 1,2, ...).
Although J,,(x) is a solution of equation (1), J_,(x) is not a linearly independent
one. In fact

(11) J_n(x) = (=1)"J(x) n=1,2,..).
To establish this relation, we need only write v = —n(n = 1,2, ...) in expression
(10), Sec. 81 to see that
ad (=¥ x\ —n+2k
12 J_,(x) = -7 (Z )
(12) x) kzzgk![‘(—n+k+1) (2)

TThere are other Bessel functions, and the notation varies widely throughout the literature. The treatise
by Watson (1995) that is listed in the Bibliography is, however, usually regarded as the standard
reference.
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Because (Sec. 80)

1 :0 When n=0,1,25-~-7
['(—n)
we know that
;:0 when O<k<n-1;
F(—n+k+1)

and expression (12) becomes

(=¥ X\ —n+2k
Jn0) = Zk'r( n+k+1) (E) '

Replacing k by k + n in this last series, so that k runs from zero to infinity again,
we have

Saed ( 1)k+n

_ XN 42k (=DFk  /x\n+2k
1= 3 G (2) =Y kanw )

In view of expression (2), relation (11) now follows.

It is possible to obtain a second solution Y, (x) of equation (1) that is linearly
independent of J,(x) whenn = 1,2, .... As was the case when n = 0, the theory
of ¥, (x) is considerably more involved than that of J,(x) ; and in this chapter, it
will be necessary to know only that Y, (x) is discontinuous at x = 0. In view of our
discussion of the second (linearly independent) solution of Bessel’s equation (1)
when n = 0, we now know that the general solution of that equation is

(13) y=CiJu(x) + G Y,(x) (n=0,1,2,...
when x > 0.
PROBLEMS
1. Use mathematical induction to show that
rb+D @+ wW+2) --- W+k=TWw+k+1) k=1,2,..)
when v > 0.

2. Use mathematical induction, together with the definition (Sec. 80)

I'(v) =/ etV dr > 0)
0

of the gamma function and the fact (Sec. 58) that

/ e do = ﬁ,
0 2

to show that

1 2k)!
F<k+_>=k!22kﬁ (k=0,1,2,...).
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3. Let y be any solution of Bessel’s equation (xy")’ + xy = 0 of order zero, and let £
denote the differential operator defined by means of the equation

L[X]=xX) +xX.
(a) By writing X = J, and Y = y in Lagrange’s identity (Problem 2, Sec. 69)
XL[Y] - YL[X] = % [x(XY' — YX))]
for that operator and observing that L[ X ] = 0 and L[Y ] =0, show that there is a

constant B such that

d|yx)| B
dx | Jox) |~ x[Jo(x)]*
(b) Assuming that the function 1/[Jy(x)]?> has a Maclaurin series expansion of the

form?

1 o0
=1 2k
[JoO] + ; CrX

and that the expansion obtained by multiplying each side of this by 1/x can be inte-
grated term by term, use the result in part (a) to show that y can be put in the form

y=Aly(x) + B ljo(x) nx+ dkxz"] ,

k=1
where A, B,and d; (k=1,2,...) are constants. [See equation (7), Sec. 82.]

4. According to Problem 3, Bessel’s equation xy” + y' + xy = 0 has, in addition to the
solution y; = Jy(x), a linearly independent solution of the form

yv=ylnx+ Z dix?*.
k=1

(a) By substituting this expression for y, into Bessel’s equation, noting that

, ) ) x© _1)k+1 X\ 2K+l
xy{+y+xy =0 and y=-Jilx) = (7 (—) ,

| !
— Kl(k+ 1! \2
and identifying the coefficients of x**! (k =0, 1,2, ...) in the result, show that
1
dl = 2—2
and
(- ) 1
diy1 = ——————— | (=DM12% (k) d, + —— k=1,2,...).
1l = [k 1 DI (=D (k1) dr + i ( , )

(b) Use the final result in part (@) and the value of d; found there to write expressions
for d,, d3, and d,, which suggest that

(—T1)k+! 1 1 1
d= 1 _ — — k=12
k= e R R ( 2,000

This valid assumption is easily justified by methods from the theory of functions of a complex variable.
See the authors’ book (2009, Chap. 5), listed in the Bibliography.
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Then use mathematical induction to show that this expression for the coefficients
dy is indeed correct. Note that it can also be written [compare with equation (7),

Sec. 82]
(_1)k+1 1 1 1
d=—" (1 — — — k=1,2,....

“Eope. o\ T2T3t g ( )

5. Lets, (n=1,2,...) be the sequence defined in equation (8), Sec. 82. Show that s, > 0
and s, — s,41 > 0 for each n. Thus show that the sequence is bounded and decreasing
and hence that it converges to some number y. Also, point out why 0 <y < 1.

Suggestion: Observe from the graph of the function y = 1/x that

n—1

1>/ d—lenn (n=>?2)
k . X
k=1
and
1 n+1
n+1</” Yx:ln(n—{—l)—lnn n>1).

6. Use the series representations (10) and (11) in Sec. 81, and the identity obtained in
Problem 2 to show that

(a) Jipx) = i sin x; ) J_ip(x) = 3 cos Xx.
V mx V' 7x

7. Use the expression for J;»(x) that was found in Problem 6(a) to verify that y = J;,»(x)
is a solution of Bessel’s equation

X2y (x) + xy' (x) + (2 —vH)yx) =0
whenv =1/2.
Suggestion: Since Bessel’s equation is linear and homogeneous, it is sufficient to
make the substitution y = x~!/?sin x.

8. Show that if y is a differentiable function of x and if s = ax, where « is a nonzero
constant, then

dy _dy dy _ ,dy
— =a— d — =a —.
dx Y ds an a2 ¢ as?
Thus, show that the substitution s = « x transforms the parametric form
d? d
xzd—x’:—kxé—i-(asz—nz)y:O n=0,1,2,..)

of Bessel’s equation into

d’y dy

2 2_ 2

s sz—i—s s—i—(s n)y =0 (n=0,1,2,..)),
which is free of o. Conclude that the general solution of the first differential equation

here is
y = C J(ax) + G Y, (ax).
9. The function I,(x) = i~"J,(ix), where i = «/—1, is called the modified Bessel function
of the first kind of order n.
(a) Use the series representation (Sec. 82)

o0

_ (—Dk X\ "2k B
Ju(x) = 2 m (§> n=0,1,2,..)
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to show that

it 1 n+2k
In(x)=;m (%) n=0,1,2,...).

Then, after establishing its convergence for all x, use this last series to show that
1,(x) > 0 when x > 0 and that

Li(—x) = (=1)"L,(x) n=0,1,2,..)).

(b) By referring to the final result in Problem 8, point out why y = I,(x) is a solution
of the modified Bessel equation

x2y"(x) +xy (x) — (&% + nP)y(x) = 0.

10. Follow the steps below to obtain a second solution of Bessel’s equation of order zero
that is not a constant times Jy(x)."

(a) Substitute the series
y:x”Za/—x/ (a();éO)
j=0

into the left-hand side of Bessel’s equation
xy"(x) + y'(x) + xy(x) =0
of order n = 0 to obtain
Xy () + y'(0) + xy(x) = aoc;x“1 +ar(14¢)*x°
+Z [a;(j + ) + a5 xH 7,
j=2

where it is assumed that the parameter c is not a negative integer but is otherwise
unrestricted. Write ap = 1, a; = 0, and

-1

aj = (j_{_—c)zaj,z (] 22)
Then show that the function
Y ) = x4y ande) ¥,
k=1
where
—1k
ay(c) = ) (k=1),

Q24+0)?(@E+c)26+c) - 2k+c)?
satisfies the differential equation

2 d 2 -1
xﬁy(x, c)+ Ey(x, c)+xy(x,c) =cx".

"The method here is a standard one that is used in, for example, the books by Bowman (1958,
pp. 6-8) and MacRobert (1967, pp. 224-227), both of which are listed in the Bibliography. The book
by MacRobert also uses the method to find a second solution of Bessel’s equation of order n when n
is any positive integer.



SEC. 83 RECURRENCE RELATIONS 273

Note that when ¢ = 0,one solution of this equation is

= y(x,0) = Jo(x).

(b) Differentiate with respect to ¢ each side of the differential equation at the end
of part (a) that is satisfied by y(x, ¢). Then, by formally reversing the order of
differentiation with respect to x and c, show that

4’ d
xﬁyc(x, c) + Eyc(x, c)+xy.(x,c) = 2ex '+ Pxnx

and hence, that y, = y.(x,0) is a second solution of Bessel’s equation of order
n = 0. Also, by differentiating the expression for y(x, ¢) in part (a) with respect to
¢, show that

Ye(x,¢) = y(x,c)Inx + Z ay(c) x?ke,
k=1
(c) Rewrite the expression for a,(c) in part (a) as
In[(=D¥*axy(c)] = =2[InQ+¢) + In@d +¢) + In(6 +¢) + - -- + In(2k + )],

differentiate each side here with respect to ¢, and then set ¢ = 0 to obtain

N PR Sy COE SV SRS
2= pe k) 23T TR )

Finally, use this expression and the one for y.(x, c¢) at the end of part (b) to arrive
at the function appearing in brackets in equation (7), Sec. 82. Namely,

- x% 11 1
¥ =y(x,0) = Jo(x) Inx + Z(—l)kﬂm (1 + 2 + 3 + -+ %) .
k=1

(Compare with Problem 4.)

83. RECURRENCE RELATIONS

Starting with the expression (Sec. 82)

(=1k n+2k B
Jux) = Zk,(n+k), () (n=0,1,2,..),
write
d . _, (—1)k 2k
dx ") [Z kl(n + k)| 2nt2k

B0 S L B
— kl(n+k)! 2n+2k - (x

2k—1

_Z (—1)¥ ¥
- — (k=D (n+k)! k-1
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If we replace k by k+ 1 in this last series, so that k runs from zero to infinity again,
it follows that
( 1)k+1 x2k+l

ax J(x)]_zkl( Fhkt+ D) onke

- (=D n+142k
N Zk‘(n+l+k)' (_> ’

or
d

(1) T 0] = =X () (n=0,1,2,...).

The special case

) Jy(x) = =Ji(x)

was mentioned in Sec. 82.
On the other hand, whenn =1,2, ...

d ; ( 1)k x2n+2k
R Zk'(n+k)!' otk

_Z =D 1 .£x2n+2k
o Kl(n+k)! 2n+t2k dx

o (_1)k 2n+2k71

- kz:: Kin+ k—1)1 2n2k-1°

and we find that
d ., o s (=¥ X\ n—1+2k
dx I =x ];k!(n—uk)! (E) ’
or
3 d " =x" =1,2
(3) E[x ()] = x" 21 (x) n=12..).

Relations (1) and (3) are called recurrence relations. Observe how they can
also be written

4) xJ)(x) = ndy(x) — xJpi1(x) n=0,1,2,..))
and
(5) xJ(x) = —nJ,(x) + xJ,-1(x) n=12,...),

respectively; and by eliminating J, (x) from these two equations, we find that
(6) xJp1(x) =2nJ,(x) — xJ,—1(x) n=1,2,...).

This relation, which expresses J,,;1 in terms of the functions J, and J,,_; of lower
orders, is sometimes called a pure recurrence relation since it does not involve
derivatives.

Integrals involving Bessel functions can sometimes be evaluated with the
aid of formulas that follow from relations (1) and (3). Relation (3) tells us, for
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instance, that whenn=1,2, ...,
/Ox s"Ju-1(5) ds = [s"Ju(5)]}.-
That is,
(7) /Oxs”]n_l(s) ds = x"J,(x) n=1,2,...).

An important special case of this is

8) /xsfo(s) ds = xJ1(x).
0

Results in this section will now be used to derive the following reduction
formula, which is often needed in evaluating certain integrals involving Jo(x):

9) /x s"Jo(s)ds = x"J1(x) + (n — Dx" 1o (x) — (n — 1)? /x s"2Jo(s) ds
0 0
n=2,3,..).

Note that in view of equation (8), formula (9) can be applied successively to
completely evaluate the integral on the left-hand side when the integer 7 is odd."

Our derivation of formula (9) uses integration by parts twice. We start by
writing

/ s"Jo(s) ds = / s" s Jo(s) ds.
0 0
If we put

U=s"" and dV =sJy(s)ds,
we see that in view of relation (3),

dU=(n—1)s"2ds and V =sJ(s).

Hence,

/x s"Jo(s) ds = [s" Jy($)]g — (n — 1)/x s" 11 (s) ds,
or 0 0
(10) /0 s"Jo(s)ds = x"Ji(x) — (n— 1) /Oxs"l Ji(s) ds.

As for the integral on the right here, we put
U=s""!' and dV = Ji(s)ds;

fNote, too, that when n is even, the reduction formula can be used to transform the problem of
evaluating fox s"Jo(s) ds into that of evaluating ﬂJx Jo(s) ds, which is tabulated for various values
of x in, for example, the book edited by Abramowitz and Stegun (1972, pp. 492-493), listed in the
Bibliography. Further references are given on pp. 490-491 of that book.
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and with the aid of relation (2), we have
dU=(n—1)s""? and V=—Js).
Then,

/ " sy ds = [—s" o)) 4 = 1) / 52 ol d,
0

0
and we arrive at

(11) /X s" () ds = —x""(x) + (n— 1) /X s"72 Jo(s) ds.
0 0

Formula (9) is now a combination of equations (10) and (11).

EXAMPLE. Formula (9) can be used to show that
X
(12) / s3Jo(s) ds = x (x* — 8)2J1 (x) + 4x? (x* — 8)Jy(x).
0
To be specific, one application of formula (9) yields

/ $STo(s)ds = x> Jy(x) + 4x* Jo(x) — 16/ s3Jo(s) ds,
0 0

and another gives us
/Ox s To(s)ds = x> T (x) + 2x% Ty (x) — 4 /Osto(s) ds.
Thus,
/Ox $3Jo(s)ds = (x° — 16x%) 1 (x) + (4x* — 32x%) Jo(x) + 64 /Oxslo(s) ds.
Referring to the integration formula (8), we now arrive at

/ $Jo(s) ds = (x° — 16x> + 64x) Ji(s) + (4x* — 32x?) Jy(x),
0

which is the same as equation (12).

Finally, we note that relations (1), (3), and (6) remain valid when n is replaced
by the unrestricted parameter v. Modifications in the derivations simply consist
of writing

Frw+k+1) or w+kbCWw+k
in place of (n + k)!.

PROBLEMS

1. By differentiating each side of the recurrence relation (4) in Sec. 83 and then referring
to both of the relations (4) and (5) there, show that

X2 (x) = (1 —n— X, (x) + 11 (x) n=0,1,2,...).
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2. Derive the differentiation formula

d
I [x" T, ()] = =x7" T, (),

where v > 0, and point out why it is also valid when v is replaced by —v (v > 0). [Com-
pare with relation (1), Sec. 83.]
3. Use results in Problems 2 above and 6(a), Sec. 83, to show that

> .
J3p(x) =1/ — (—Slzx —cosx).

X

84. BESSEL’S INTEGRAL FORM

We now derive a useful integral representation for J,(x). To do this, we first note
that the series in the expansions

xt 0 x x = (—DExR
) = 4 S 7
M eXp<2) /Z_: ! ew(y) = k; k!

are absolutely convergent when x is any number and ¢ # 0. Hence, the product of
these exponential functions is itself represented by a series formed by multiplying
each term in one series by every term in the other and then summing the resulting
terms in any order.” Clearly, the variable ¢ occurs in each of those resulting terms
as afactor " n =0,1,2,...)ort™ (n = 1,2, ...); and the terms involving any
particular power of ¢ may be collected as a sum.

In the case of t”" (n = 0, 1, 2, .. .), that sum is obtained by multiplying the kth
term in the second series by the term in the first series whose indexis j = n + k
and then summing from k = 0 to k = oo:

i [(_1)ixktk- xmtk kthrk}
— | k2 (n + k)y!12n+
(=D x\mt2%k ;
_Zk'(n—i—k)' (_) =Tt

Similarly, the sum of the terms involving ™" (n = 1, 2, .. .) is found by multiplying
the jth term in the first series by the term in the second series with index k = n+ j
and summing from j =0to j = oo

j12i° (n+ j)12nti

j=0
B n°° (_1)]' x n+2j g 7n
= (=1 ,-E:o HICE) (2> =D x0) 8

For a justification of this procedure, see, for example, the book by Taylor and Mann (1983, pp. 601—
602), which is listed in the Bibliography.
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A series representation for the product of the exponential functions (1) is,
therefore,

1 o0
) exp E (z - ;)} = Jo(x) + ; [0 " + (1" Ty (0) 7).

Let us write 1 = ¢/?, where i = +/—1, in equation (2):
(3) eXp[f (el — e—i¢)} = Jo(x) + Z [Jn(x) €™ 4 (—1)" ], (x) e~ "]
2 n=1

In view of Euler’s formula e¢ = cos ¢ + i sin ¢,” we know that
el? —e ' =2ising
and
e = cosng + i sinng, e " = cosng — i sinng.

It thus follows from equation (3) that

(4) exp(ix sin ¢) = Jo(x) + Z [14+ (=1)"] Ju(x) cos ng

n=1
oo
+i Z [1— (=1)"] J,(x) sin n¢.
n=1
Now, again by Euler’s formula,
exp(ix sin ¢p) = cos(x sin ¢) + i sin(x sin ¢);

and if we equate the real parts on each side of equation (4), we find that

o0
(5) cos(x sing) = Jy(x) + Z [14 (=1)"] Jn(x) cosng.

n=1
Holding x fixed and regarding this equation as a Fourier cosine series represen-
tation of the function cos(x sin ¢) on the interval 0 < ¢ < 7, we need only recall
(Sec. 2) the formula for the coefficients in such a series to write

(6) [14 (=1)"]Ju(x) = % /Tr cos(x sin ¢) cos ng d¢ n=0,1,2,...).
0

If, on the other hand, we equate the imaginary parts on each side of equation (4),
we obtain the Fourier sine series representation

[ee]

(7 sin(x sin ¢) = Z [1— (=1)"] Ju(x) sinng

n=1

for sin(x sin ¢) on the same interval. Consequently (see Sec. 4),

(8) [1— (D" Ju(x) = ;/ﬂ sin(x sin ¢) sin ng d¢ n=1,2,..).
0

fSee the footnote with Problem 4, Sec. 7.
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According to expressions (6) and (8), then,

9) Jon(x) = % /ﬂ cos(x sin ¢) cos 2n¢ d¢ n=0,1,2,..)
0

and

(10) Jon_1(x) = % /n sin(x sin ¢) sin(2n — 1)¢ d¢ n=12..).
0

A single expression for J,(x) can be obtained by adding corresponding sides of
equations (6) and (8) and writing

2J,(x) = % /n [cos ng cos(x sin ¢) + sin n¢ sin(x sin ¢)] de.
0
That is,
(11) J.(x) = % /n cos(ng — xsin¢) do n=0,1,2,..)).
0

This is known as Bessel'’s integral form of J,(x).

85. SOME CONSEQUENCES OF THE
INTEGRAL FORMS

A number of important properties of Bessel functions follow readily from integral
representations in Sec. 84. The boundedness properties

k

1) [Jn ()] <1, ‘d— S| =1 k=1,2,..)

dxk

are, for example, immediate consequences of Bessel’s integral form

J(x) = %/On cos(ng — xsin¢) de n=0,1,2,...).

More precisely, since | cos(n¢ — xsing)| < 1, we find that

()] < 1/” | cos(ng — x sin )| do < l/ﬂd¢>=1.
T Jo T Jo

Furthermore,
1d [T

Ji(x) = p ; cos(ng — xsin @) d¢

1 /™ 9 .
= —/ — cos(n¢ — xsin¢) do
T Jo ax

1 /. . .
= —/ sin(n¢ — xsin ) sin ¢ de ;
7 Jo

and continued differentiation yields integral representations for J;(x), etc. Since,
in each case, the absolute value of the integrand does not exceed unity, the rest of
inequalities (1) also hold.
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Sometimes it is useful to write the integral representations

Jon(x) = %/ﬂ cos(x sin ¢) cos 2n¢ d¢ n=0,1,2,..)),
0
and
Jo_1(x) = %/ﬂ sin(x sin¢) sin(2n — 1) ¢ d¢ n=1,2,..))
0
in Sec. 84 as
2 /2
2) Jon(x) = - / cos(x sin ¢) cos 2n¢ d¢ n=0,1,2,..)
0
and
2 /2
3) Jo_1(x) = - / sin(x sin ¢) sin(2n — 1)¢ d¢ n=12..).
0

Expressions (2) and (3) follow from the fact that when x is fixed, the graphs of the
integrands

y = g(¢) = cos(x sin ¢) cos2n¢,
y = h(¢) = sin(xsin ¢) sin(2n — 1)¢

are symmetric with respect to the line ¢ = 7 /2:

g —¢) =g(9), h(r — ¢) = h(¢) O=¢=n/2).

We note the special case

2 /2
4) Jo(x) = = / cos(x sin ¢) d¢
T Jo
of representation (2). It can also be written
2 /2
5) Jox) = = / cos(x cos @) do
T Jo
by means of the substitution
6="—_¢
=3 )

Representations (2) and (3) may be used to verify that for each fixed n
n=0,1,2,...),

(6) lim J,(x) = 0.

X—>00

To give the details when n = 0, we substitute u = sin ¢ into equation (4) and
obtain Hankel'’s integral representation

2 1
Jo(x)=—/ cosxu du.
T Jo 1 —u?

which can also be written

b4 ¢ cosxu I cosxu
—Jo(x) = —du+ ——du 0<c<1).
2 0t /0 1—u? ¢ V1—u? ( )
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The second integral here is improper but uniformly convergent with respect to x."
Hence, for any given positive number ¢, the absolute value of that integral can be
made less than ¢/2, uniformly for all x, by selecting c so that the difference 1 — ¢
is sufficiently small and positive. The Riemann-Lebesgue lemma (Sec. 52)

C
(7) lim G)cosrudu =0 (r>0),
r—0o0 0
involving a piecewise continuous function G(u) and a cosine function, then applies
to the first integral with that value of c. That is, there is a number x, such that the
absolute value of the first integral is less than ¢/2 whenever x > x,. Therefore,
e
2
and this establishes property (6) when n = 0. Verification when 7 is a positive
integer is left to the problems.
It is interesting to contrast limit (6) with the limit
(8) lim J,(x) =0,

n— o0

i s
§|Jo(x)| <5 +-=¢ whenever x > x;;

which is valid for each x (—00 < x < o0). This limit follows from the Riemann-
Lebesgue lemma (7) and its version (Sec. 52)

9) lim G)sinrudu =0 (r>0),

r—00 0

involving a sine function, when that lemma is applied to the integral representa-
tions (2) and (3) for J,,(x) and J,,_1(x), respectively.

PROBLEMS

1. Use integral representations for J,(x) to verify that
(a) Jo(0) =1, B)J,0)=0n=1,2,...); (c) Jy(x) = =Ji(x).

2. Derive representation (2), Sec. 85, for J,,(x) by writing the Fourier cosine series (5),
Sec. 84, as

cos(xsing) = Jy(x) +2 Z Jon(x) cos2ng

n=1
and then interpreting it as a Fourier cosine series on the interval 0 < ¢ < 7/2.
3. Deduce from expression (2), Sec. 85, that

2 /2
Jon(x) = (=D)" — / cos(x cos 0) cos 2nd do n=0,1,2,..).
T Jo
4. Deduce from expression (3), Sec. 85, that

2 /2
D1 (x) = (=Dt 2 / sin(x cos 0) cos(2n — 1) do n=12...).
T Jo

TSee, for instance, the book by Kaplan (2003, pp. 453-455) that is listed in the Bibliography.
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5. Complete the verification of property (6), Sec. 85, namely
lim J,(x) =0

for eachfixedn (n=0,1,2,...).
6. Apply integration by parts to representations (2) and (3) in Sec. 85 and then use the
Riemann-Lebesgue lemma (Sec. 52) to show that

lim nJ,(x) =0

n—o0

for each fixed x.
7. Use the representation (Sec. 85)

2 /2
Jo(x) = —/ cos(x sin¢) d¢
T Jo
to show that Jy(x) satisfies Bessel’s equation

xy"(x) + y'(x) + xy(x) = 0.

8. According to Sec. 66, if a function f(¢) and its derivative f’(¢) are continuous on the
interval —7 < ¢ < 7 andif f(—n) = f(w), then Parseval’s equation

oo

1 (" a?
— /_ﬂ[f«p)]2 dp ="+ (a;+b7)

n=1

holds, where the numbers a, (n = 0,1,2,...) and b, (n = 1,2,...) are the Fourier
coefficients

= / f@)cosnpds, b= / £(@)sinng dg.

(a) By applying that result to f(¢) = cos(x sin ¢), which is an even function of ¢, and
referring to the Fourier (cosine) series (5) for f(¢) in Sec. 84, show that

1" =
- /O cos?(x sin¢) dp = [Jo(x)]* +2 Z [J2n(0)]? (—00 < X < 00).

n=1

(b) Similarly, by writing f(¢) = sin(x sin ¢) and referring to the Fourier (sine) series
(7) for f(¢) in Sec. 84, show that

! / sin®(x sin ¢) d¢ = 22 [Jon1 ()] (—00 < X < 00).
T Jo =
(¢) Combine the results in parts (a) and (b) to show that
o] +2 Z [0 =1 (—00 < x < 0),
n=1

and point out how it follows from this identity that

Jo) =1 and  |J,(x)| < % (n

1,2,..)

for all x.
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9. By writing ¢ = i in the series representation (2), Sec. 84, derive the expansions

cosx = Jo(x) + 22(—1)"J2n(x)

n=1
and
sinx = ZZ(—l)Hlfznq(x),
n=1

which are valid for all x.
10. Show that series representation (2), Sec. 84, can be written in the form

N
N
n=—N

This exponential function is, then, a generating function for the Bessel functions J,,(x)
(n=0,+1,42,..).

86. THE ZEROS OF J,(x)

Recall from Sec. 82 that Bessel’s equation when v = 0 is
(1) xy"(x) + y'(x) + xy(x) = 0.

A modified form of this equation in which the term containing the first derivative
is absent will be useful to us here. That form is easily found (see Problem 1, Sec. 87)
by making the substitution y(x) = x“u(x), where c is a constant, in equation (1)
and observing that the coefficient of #//(x) in the resulting differential equation,

X2 (x) + (1 + 2¢)xu/ (x) + (% + Au(x) =0,

is zero if ¢ = —1/2. The desired modified form of equation (1) is then
1
2 x*u (x) + (x2 + Z)u(x) =0,

and the function u(x) = /xJy(x) is evidently a solution of equation (2).
We shall now use equation (2) to prove the following important lemma
regarding the positive zeros of Jy(x).

Lemma. The positive zeros of the function Jy(x), or positive roots of the
equation Jo(x) =0, form an increasing sequence of numbers x; (j=1,2,...) such
that x; — oo as j — oo.

To prove this, we continue with the function u(x) = /xJo(x). According to
equation (2),
_ U,
T 4x2

—u(x) —u"(x)

fOur method is a modification of the one used by A. Czarnecki, Amer. Math. Monthly, vol. 71, no. 4,
pp- 403-404, 1964, who considers Bessel functions J, (x), when —1/2 <v < 1/2.
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and multiplying each side of this equation by the function v(x) = sin x yields

(3) u(x)v”(x) —u" (x)v(x) = u(x) %
Also, from the identity
d
u(x)v"(x) —u"(X)v(x) = r [V (x) — ' (x)v(x)],
we know that

” " d , .
4 u(x)v"(x) —u’ (x)vx) = I [t(x) cos x — u'(x) sin x].
X
By equating the right-hand sides of equations (3) and (4), we obtain
i d
(5) u(x) % = [t(x) cos x — /' (x) sin x].

Next, let k£ be any positive integer (k= 1,2, ...). Since
coskmr + ) = —1, sin(2knr + ) =0
and
cos(km) =1, sin(2kn) =0,
it follows from equation (5) that

2km+m

2k +1 :
(6) / u(x) Smy dx = [u(x) cos x — u(x) sin x]
2 4x2 2km

km
= —[uQkm + ) + u2kn)).

It is now easy to show that our function u(x) = /xJo(x), and hence Jy(x), has at
least one zero in the interval

7 2kn < x <2km + 7.

We do this by assuming that u(x) # 0 anywhere in that closed interval and ob-
taining a contradiction. According to our assumption, either u(x) > 0 for all x in
the interval or u(x) < 0 for all such x, since u(x) is continuous and thus cannot
change sign without having a zero value at some point in the interval.

Suppose that u(x) > 0 everywhere in the interval (7). The integrand in inte-
gral (6) is positive when 2kr < x < 2kw + . Hence the value of the integral must
be positive, while the value —[u(2knm + ) + u(2km)] that we obtained is evidently
negative, giving a contradiction. If, on the other hand, u(x) <0 throughout the
interval (7), the value of the integral must be negative; but the value obtained is
positive. This is again a contradiction. We thus conclude that Jy(x) has at least one
zero in the interval (7).

Actually, Jo(x) can have at most a finite number of zeros in any closed
bounded interval a <x <b. To see that this is so, we assume that the interval
a < x < b does contain an infinite number of zeros. From advanced calculus, we
know that if a given infinite set of points lies in a closed bounded interval, there
is always a sequence of distinct points in that set which converges to a point in
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the interval.” In particular, then, our assumption that the interval a <x <b con-
tains an infinite number of zeros of Jy(x) implies that there exists a sequence
xm (m=1,2,...) of distinct zeros such that x,, — ¢ as m — oo, where c is a point
which also lies in the interval. Since the function Jy(x) is continuous, Jy(c) = 0; and
by the definition of the limit of a sequence, every interval centered at ¢ contains
other zeros of Jy(x). But the fact that Jy(x) is not identically equal to zero and has
a Maclaurin series representation which is valid for all x means that there exists
some interval centered at ¢ which contains no other zeros.* Since this is contrary
to what has just been shown, the number of zeros in the intervala < x < b cannot,
then, be infinite.

It is now evident that the positive zeros of Jy(x) can, in fact, be arranged as
an increasing sequence of numbers tending to infinity. The table just below gives
the values, correct to four significant figures, of the first five zeros of Jy(x) and
the corresponding values of Ji(x). (See Fig. 70 in Sec. 82.) Extensive tables of
numerical values of Bessel and related functions, together with their zeros, can be
found in books listed in the Bibliography.*

Jo(xj) =0
j 1 2 3 4 5
X; 2.405 5.520 8.654 11.79 14.93
J1(xj) 0.5191 —0.3403 0.2715 —0.2325 0.2065

The lemma just proved can be extended so as to apply to Bessel functions
J,(x) when n is a positive integer.

Theorem. Let n be any fixed nonnegative integer (n =0, 1,2, ...). The posi-
tive zeros of the function J,(x), or positive roots of the equation

(8) Ju(x) =0,

form an increasing sequence of numbers x; (j = 1,2,...) such that x; — oo as
j — oo.

Our proof is by mathematical induction. First, we know from the lemma that
this theorem is true when n = 0. Assume now that it is true when n = m, where m
is any nonnegative integer, and let a and b be two distinct positive zeros of J,,(x).
This means that the function x~™/J,,(x) vanishes when x = a and when x = b. It
thus follows from Rolle’s theorem that the derivative of x"J,,(x) vanishes for at
least one value of x between a and b; furthermore, from relation (1) in Sec. 83,

TSee, for example, the book by Taylor and Mann (1983, pp. 515-519), listed in the Bibliography.
#That is, the zeros of such a function are isolated. An argument for this is given in the authors’ book
(2009, p. 251), listed in the Bibliography.

8See especially the book edited by Abramowitz and Stegun (1972) and the ones by Jahnke, Emde, and
Losch (1960), Gray and Mathews (1966), and Watson (1995).
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we know that
d
T (x) = —x™ P [x™" T (x)].

Hence, there is at least one zero of J,41(x) between any two positive zeros
of J,(x). Also, just as in the case of Jy(x), the function J,,1(x) can have at
most a finite number of zeros in any bounded interval. Inasmuch as the zeros
of J,(x) form an unbounded increasing sequence of numbers, it now follows
that the same is true of the zeros of J,.1(x). This completes the proof of the
theorem.

87. ZEROS OF RELATED FUNCTIONS

We preface the theorem in this section with a needed lemma. The theorem, in
addition to the one in Sec. 86, will be important to us in solving boundary value
problems in which Bessel functions arise.

Lemma. At each positive zero of J,(x) (n=0,1,2,...), the derivative J,(x)
is nonzero. Moreover, the values of J)(x) alternate in sign at consecutive positive
zeros of J,,(x).

The proof starts with the fact that the function y = J,(x) satisfies Bessel’s
equation (Sec. 82)

(1) X2y (x) + xy' (x) + (x* — nH)y(x) = 0.

When written in the form
2,2

y 1, X“—n
V@ +—-yx)+—75—yx) =0,
X X

equation (1) is seen to be of the type treated in Lemma 1, Sec. 70, dealing
with the uniqueness of solutions of certain second-order linear differential equa-
tions. According to that lemma, there is just one continuously differentiable so-
lution of Bessel’s equation satisfying the conditions y(c) = y'(¢) =0, where ¢ > 0,
and the solution is identically equal to zero. Consequently, there is no positive
number ¢ such that J,(c) = J,(c) = 0. That is, J,(x) cannot vanish at a posi-
tive zero of J,(x). This means, of course, that J,(x) must change sign at such a
point.

It remains to show that values of J, (x) have different signs at consecutive
positive zerosa and b (0 < a < b)of J,,(x).If J)(a) > 0,then J,(x) > 0(a < x < b)
and J,(x) is decreasing at b; hence, J,(b) < 0. Similarly, if J,(a) < 0, then
J)(b) > 0. [See the graphs of y = Jo(x) and y = Ji(x) in Fig. 70 (Sec. 82),
where the slopes of these functions alternate at their zeros.] The lemma is now
established.

The theorem to follow is similar to the one in Sec. 86 but involves the function
hJ,(x)+xJ,(x), where n is a nonnegative integer and 4 is a nonnegative constant.
Although this theorem need not exclude the possibility that 4 may be negative,
such values will not arise in our applications.
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Theorem. Let n be any fixed nonnegative integer (n = 0, 1,2, ...), and sup-
pose that h is a nonnegative constant (h > 0). The positive zeros of the function
hJ,(x) + xJ,(x), or positive roots of the equation

(2) hdu(x) + xJ,(x) =0,
form an increasing sequence of numbers x;(j = 1,2,...) such that x; — oo as

j — oo.

To prove this, we observe that if a and b are consecutive positive zeros of
Ju(x), it follows that 4J,(x) + xJ, (x) must have the values aJ, (a) and bJ, (b) at
the points x = a and x = b, respectively. Since one of those values is positive and
the other negative, according to the above lemma, the function AJ,(x) + xJ, (x)
vanishes at some point, or at some finite number of points, between a and b.
Consequently, it has an increasing sequence of positive zeros tending to infinity."
So the theorem is true.

In this and the preceding section, we have considered only the positive zeros
of the functions

3) J. (%) and hJ,(x) + xJ,(x) n=0,1,2,..)

since they are the ones that will concern us in the applications. But observe that
x = 01is a zero of both of these functions whenn = 1, 2, ... and that it is a zero of
the second one whenn = 0if & = 0.

Furthermore, if x = c is a zero of the first of the functions (3), then x = —¢
is also a zero since J,(—c) = (—=1)"J,(c). The same is true of the second of the
functions (3). For, in view of the recurrence relation (Sec. 83)

X (x) = nJp(x) = X g1 (1),
that second function can be written
(4) (h+n)Ju(x) — xJpp1 (X);
and it follows that
(h+n)Jp(=c) = (=) Jnp1(=0) = (=D [(h + M) Ju(c) — cJps1(0)].

PROBLEMS
1. By means of the substitution y(x) = x“u(x), transform Bessel’s equation
22y +xy' (1) + (¢ = v)y(x) =0
into the differential equation
Xu"(x) + (1 4+ 2¢)xu/ (x) + (x2 = v? + Aux) =0,

which becomes equation (2), Sec. 86, when v =0 and ¢ = —1/2.

In the important special case n = 0, the first few zeros are tabulated for various positive values of 4
in, for example, the book on heat conduction by Carslaw and Jaeger (1986, p. 493), which is listed in
the Bibliography.
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2. Use the result in Problem 1 when ¢ = —1/2 to obtain a general solution of Bessel’s
equation when v = 1/2. Then, using the expressions (Problem 6, Sec. 82)

/2 /2
Jipx) = 5Sinx and J_i1p(x) = gcosx,

point out how Ji,»(x) and J_; > (x) are special cases of that solution.
3. Let n have any one of the values n = 0, 1, 2, .... By substituting bi, where b is any
nonzero real number, for the variable x in the expression (Sec. 82)
(-DF /x

i n+2k
J.(x) = 2 m (5) n=0,1,2,...),

show that the Bessel function J,(x) has no pure imaginary zeros.

88. ORTHOGONAL SETS OF BESSEL
FUNCTIONS

The physical applications in this chapter will involve solutions of singular Sturm-
Liouville problems, on an interval 0 < x < ¢, whose differential equations are of
the form (see Example 1 in Sec. 68)

d ax 2

1) L) 4 (2 pax)x=0 n=0,1,2,..),
dx dx X

where Xand X’ are to be continuous when 0 < x < ¢. Observe how the differential

equation (1) can be written

d*x dXx
x2—+x—+(Ax2—n2)X=0 n=0,1,2,..)
dx? dx
and that it reduces to
X dX
— 4+ — +AxX=0
o dx? + dx X

when n = 0. The single boundary condition to be used [see case (a) of Theorem 1
in Sec. 69] will always be a special case of

(2) b1 X(c)+ b2 X'(c) =0,

where the coefficients b; and b, are real and not both zero.

Theorems 1 and 2 below provide solutions of our Sturm-Liouville problems
when the special case of condition (2) is one of three different types. These theo-
rems treat the problems when n = 0 and whenn =1, 2, ... separately. Although
the theorems could be combined, it will be more convenient to have them separate
in the applications. Their proofs, appearing in Sec. 89, will, however, be combined.

Theorem 1. For the singular Sturm-Liouville problem consisting of the dif-
ferential equation

d’X dx
XW—FE—F)@X:O O<x<o)

®)
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and one of the boundary conditions

4) X(c) =0,
(5) hX(c)+cX'()=0 (h>0),
(6) X'(¢c) =0,

the eigenvalues ) ; and corresponding eigenfunctions X; are as follows:

(a) when condition (4) is used,

ri=of, X = Jo(ajx) (Gj=1,2,..)
where aj(j = 1,2, ...) are the positive roots of the equation
Jo(ac) =0;
(b) when condition (5) is used,
Aj=ar, X; = Jo(ax) (j=1,2,..)

where aj(j =1, 2,...) are the positive roots of the equation
hJo(ac) + (ac)Jj(ac) =0 (h > 0);
(¢) when condition (6) is used,
M=0, Xi=1 and rj=0a;, X;=Jolajx) (j=2,3,..)
where aj(j = 2,3, ...) are the positive roots of the equation
Jy(eec) = 0.
Observe that since Jij(x) = —J;(x) (see Sec. 83), the equations defining the
numbers «; in cases (b) and (c) can be written
hJo(ac) — (xc)Ji(ac) =0 and Ji(ac) =0,
respectively.

Theorem 2. Let n be a positive integer (n = 1, 2, ...). For the singular Sturm-
Liouville problem consisting of the differential equation

, X dX

(7) xﬁ—l—xa—l—(kxz—nz)X:O O<x<o)
and one of the boundary conditions

8) X(c) =0,

9) hX(c)+cX(c)=0 (h > 0),
(10) X'(c) =0,

the eigenvalues A ; and corresponding eigenfunctions X; are

ro=af,  Xj=Ju(x) (Gj=1,2,..)
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where the numbers o are defined as follows:
(a) when condition (8) is used, a;j(j=1,2,...) are the positive roots of the
equation
Ju(ac) = 0;

(b) when condition (9) is used, o;(j=1,2,...) are the positive roots of the
equation
hd,(ec) + ()], (ac) =0 (h > 0);

(c) when condition (10) is used, o;(j=1,2,...) are the positive roots of the
equation

Jy(ac) = 0.

Note that because the functions
hJ,(x) + xJ, (x) and (h+n)J,(x) — xJ1(x)

are the same, as pointed out at the end of Sec. 87, the equation defining the
numbers «; in case (b) of Theorem 2 can be written

(11) (h+n)J,(ac) — (ac)Jyi1(ac) = 0.
Also, because xJ,,(x) = nJ,(x) — xJ,11(x) (Sec. 83), the equation
(12) nJ,(ac) — (ac)J1(ac) =0

is an alternative form of the equation defining the «; in case (c) of Theorem 2.
For each of the cases in these two theorems, the orthogonality property

(13) [ xtapien ax =0 G # b
0

follows from case (a) of Theorem 1 in Sec. 69. Observe that this orthogonality of
the eigenfunctions with respect to the weight function x, on the interval 0 < x < c,
is the same as ordinary orthogonality with weight function unity of the functions
VX J,(ajx) on the same interval. Also, many orthogonal sets are represented here,
depending on the values of ¢, n, and 4. Once we have proved the two theorems, we
shall in Secs. 90 and 91 normalize these eigenfunctions and find formulas for the
coefficients in generalized Fourier series expansions involving the eigenfunctions.
The reader who wishes to reach such expansions and their applications more
quickly may pass directly to Sec. 90 without loss of continuity.

89. PROOF OF THE THEOREMS

We turn now to the proof of the two theorems in Sec. 88. Recall how we wrote
the differential equation (1) there as
,d*’X  dX

1 J— R 2—2X: = 12
@8] xdxz—i-xdx—i-()»x n°) 0 n=0,1,2,..))
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and combined it with one of the boundary conditions

(2) X(c) =0,
3) hX(c)+cX'(c)=0 (h > 0),
(4) X'(¢) = 0.

Case (a) of Theorem 2 in Sec. 69, applied to the general form (1)—(2), Sec. 88, of
these three Sturm-Liouville problems, ensures that any eigenvalue must be a real
number; and, keeping in mind that X and X’ must be continuous on the closed
interval 0 < x < ¢, we consider the possibilities that A may be zero, positive, or
negative.

(i) The case A =0
When A = 0, equation (1) is a Cauchy-Euler equation (see Problem 1, Sec. 44):

a’x ax
2 2y — _
(5) XW—}—XE—HX—O (n—O,l,Z,...).
To solve it, we write x = exp s and put it in the form
ax
(6) W_HXZO (n=0,1,2,)

If n = 0, equation (6) has solution X = As + B, where Aand B are arbitrary
constants; and the general solution of equation (5) is, therefore, X(x) = Aln x+ B
when#n = 0. Therequirement that Xand X’ be continuous when0 < x < cforces A
tobe zero, and we have X(x) = B. When condition (2) or (3)isimposed, B = 0. The
constant B can, however, remain arbitrary when condition (4) is used. Assigning
the value B = 1, we then have the eigenfunction X(x) = 1, corresponding to
A = 0. This appears in case (c) of Theorem 1 in Sec. 88 and is the only case there in
which A = 0 is an eigenvalue. Any eigenfunction corresponding to that eigenvalue
is, of course, a constant multiple of X(x) = 1.

If, on the other hand, n is positive, the general solution of equation (6) is
X= Ae™ + Be™™ . That is,

1
Xx)=Ax"+ Bx"= Ax"+ B—.
xn

Since our solution must be continuous and therefore bounded on 0 < x < ¢, we
require that B = 0. Hence, X(x) = Ax". It is now easy to see that A = 0 if any
of the conditions (2), (3), or (4) is to be satisfied, and we arrive at only the trivial
solution X(x) = 0. Thus, in Theorem 2, Sec. 88, zero is not an eigenvalue.

(ii) The case A > 0
We consider next the possibility that A > 0 and write A = o (& > 0). Equation (1)

is then
&’X  dx
(7) xzﬁ+xa+(a2x2—n2)){=0 n=0,1,2,...),

and we know from Problem 8, Sec. 82, that its general solution is

X(x) = Cy Ju(ax) + G Y, (ax).



292  BESSEL FUNCTIONS AND APPLICATIONS CHAP. 9

Our continuity requirements imply that C; = 0, since ¥, («xx) is discontinuous at
x = 0 (see Sec. 82). Hence, any nontrivial solution of equation (7) that meets those
requirements must be a constant multiple of the function X(x) = J,(ax).

In applying one of the boundary conditions at x = ¢, we emphasize that the
symbol J)(ax) stands for the derivative of J,(s) with respect to s, evaluated at
s = ax. Then, by the chain rule,

% Jn(ax) = % Jn(s) Z—i = J,(8) a = ot (ax);
and conditions (2), (3), and (4) require that
(8) Tn(ac) =0,
9) hJy(cc) + (ac) ], (ac) =0 (h > 0),
or
(10) J(ac) =0,
respectively.

According to the theorems in Secs. 86 and 87, each of the equations (8), (9),
and (10) has an infinite number of positive roots
)

(11) o) = (G=1.2...).

c
where x; (j =1,2,...)is the unbounded increasing sequence in the statement of
the theorem in question. The numbers «; here depend, of course, on the value of
and also on the value of / in the case of equation (9). Our Sturm-Liouville problem
thus has eigenvalues A; = a? (j =1,2,...),and the corresponding eigenfunctions
are

(12) X;(x) = J,(cjx) (G=12..).

(iii) The case A <0
There are no negative eigenvalues. In order to show this, we assume that A > 0 and

write A = —a? (o« > 0). Equation (1) then becomes

a’x ax
(13) xzm—i-xa—(azxz—i—nz))(zo n=0,1,2,...).
The substitution s = «ax can be used here to put equation (13) in the form
(compare with Problem 8, Sec. 82)

a>’x ax
(14) P 45— —(s>+nH)X=0 n=0,1,2,...).

ds? ds

From Problem 9, Sec. 82, we know that the modified Bessel function
X=1L,0)=i"J,>is)

satisfies equation (14); and since I (s) has a power series representation that con-
verges for all s, the function X(x) = I,(ax) satisfies the continuity requirements
in our problem. As was the case with equation (7), equation (13) has a second
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solution, analogous to Y, (ax), that is discontinuous at x = 0." Hence we know
that except for an arbitrary constant factor, X(x) = I,(«x) is the desired solution
of equation (13).

We now show that for each positive value of «, the function X(x) = I,(ax)
fails to satisfy any of the boundary conditions (2), (3), or (4). In each case, our proof
rests on the fact that I,(x) > O when x > 0, as demonstrated in Problem 9, Sec. 82.

Since I,(ec) > 0 when « > 0, it is obvious that condition (2), which requires
that [,(ac) = 0, fails to be satisfied for any positive number «.

Condition (3), when applied to the function X(x) =i~"J,(iax), becomes

(15) hi™"J,(iac) + ci"iad,(iac) =0 (h > 0).
But we know from the discussion at the end of Sec. 87 that the equation
hJ,(x) +xJ,(x) =0 (h>0)
has the alternative form
(h+n)Jp(x) = xJps1(x) =0 (h=0).

Hence, equation (15) can be written

(h+n)i"I,Gac) + ()i~ "V T, 1 (fac) =0 (h > 0).
Since I,(ax) =i "J,(iax), then,
(16) (h+ n)L(ac) + (@) Ly (ac) =0 (h > 0);

and because « > 0, the left-hand side of this last equation is positive. So, once
again, no positive values of « can occur as roots.

Finally, since condition (4) is really condition (3) if 4 is allowed to be zero
and since relation (16) is valid when # = 0, we may conclude that there are no
negative eigenvalues arising in either of the theorems in Sec. 88. Those theorems
are now completely proved.

Except for the zero eigenvalue in case (¢) of Theorem 1 in Sec. 88, the
eigenvalues are all represented by the numbers A; = a% where the «; are given
by equation (11). Since the numbers x; used in equation (11) form an unbounded
increasing sequence, it is clear that the same is true of the eigenvalues A ;. That is,

Aj<XjyrandA; - ocoas j — oo.

PROBLEMS

1. By referring to Theorem 1 in Sec. 88, show that the eigenvalues of the singular Sturm-
Liouville problem

xX"+ X' +xxX=0, X2)=0

on the interval 0 < x < 2 are the numbers A; =a? (j=1,2,...) where «; are the
positive roots of the equation Jy(2«) = 0 and that the corresponding eigenfunctions are

TFor a detailed discussion of this, see, for example, the book by Tranter (1969, pp. 16ff), which is listed
in the Bibliography.
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Xj=Jo(ajx) (j=1,2,...). With the aid of the table in Sec. 86, obtain the numerical
values a1 = 1.2, ap =2.8, a3 = 4.3, valid to one decimal place.
2. Write U(x) = +/xJ,(ax), where n has any one of the values n=0,1,2,... and « is a
positive constant.
(a) By recalling from Problem 8, Sec. 82, that y(x) = J,(x) satisfies the differential
equation

x2y"(x) + xy' (x) + (@*x* —nH)y(x) =0
and noting that y(x) = x~/2U(x), show that U (x) satisfies the differential equation

1 —4n?

4x?

U%n+<#+» >Uu)=0

(b) Let ¢ denote any fixed positive number and write
Uj(x) = /x J(ajx) (Gj=1,2,...),
where «; are the positive roots of the equation J,(ac) =0. Use the result in
part (a) to show that

(07 — o) Ui () Uk(x) = U;(x) Uy (x) = U (x) Ui ().

(c) With the aid of the identity
d
Ui U{ () = U] U0 = - [U;0) Up(x) = Uj 0 Ue@)]

show how it follows from the result in part (b) that the set {U;(x)} there is orthog-
onal on the interval 0 < x < ¢ with weight function unity. Thus, give another proof
that the set {J,(«;x)} in case (a) of Theorems 1 and 2 in Sec. 88 is orthogonal on
0 < x < ¢ with weight function x.

3. Since our series representation of J,(x)(n =0, 1,2, ...) in Sec. 82 converges when x is
replaced by any complex number z and since the coefficients of the powers of z in that
representation are all real, it follows that J,(z) = J,(z), where z denotes the complex
conjugate x —iy of the number z=x+iy." Also, the proof of orthogonality in Problem 2
remains valid when « is a nonzero complex number and when the set of roots «; there
is allowed to include any nonzero complex roots that may occur. Use these facts to
show that if a complex number

o =a+ib (a #0,b0)

is a zero of J,(z), then so is o; = a — ib. Thus,

1
/ '
0

Point out why the first integral here is actually positive. With this contradiction, con-
clude that if z = x; (j =1,2,...) are the positive zeros of J,(z), then the only other
zeros, real or complex, are z = — x; (j=1,2,...), and also z = 0 when n is positive.
(Compare with Problem 3, Sec. 87.)

1
Jn(oz]-x)lzdx = / xJu(ajx)J,(@jx)dx = 0.
0

TFor a discussion of power series representations in the complex plane, see the authors’ book (2009,
Chap. 5), listed in the Bibliography.
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90. TWO LEMMAS

The orthogonal sets of Bessel functions in Sec. 88 need to be normalized if we
are to use the theory of generalized Fourier series to find expansions in terms of
those sets. Lemmas 1 and 2 in this section provide the required norms. As we did
with the theorems in Sec. 88, we state these lemmas separately when n = 0 and

when n = 1, 2,.... Regardless of the value of n, however, the eigenfunctions of
the Sturm-Liouville problem can be written in normalized form as
Jn(a;x) .
1 Pj(x) = ——— (J=12,..).
@ (R VAT !

Lemma 1. Let c be any positive number.

(@) If a; (j =1,2,...) are the positive roots of the equation

Jo(ac) =0,
then
»_ ¢ 2
[ Jo(aj)|I” = 5 [J1(ej0)] (j=12..).
(b) Ifaj (j =1,2,...) are the positive roots of the equation
hJo(ac) + (ac)Jj(ac) =0 (h > 0),
then
(ajc)? + h? ,
ol ) 1> = ——=—— [Jo(a;0)]? (j=1,2,..)).
207

() Ifar =0and a; (j =2,3,...) are the positive roots of the equation
Jo(ae) =0,
then

c? c? )
||Jo(a1x>||2=3 and ||Jo(a,»x)||2=5[fo(a,»c>]2 (j=2.3,...).

The cases (a), (b), and (c) in this lemma correspond to the cases (a), (b),
and (c) in Theorem 1 of Sec. 88. Note how we are able to write the eigenfunction
X; = lin case (c) of that theorem as X; = Jy(a1x) in case (c) here since

Jo(arx) = Jo(0) =1

when a1 = 0. This allows us to express its norm in a way similar to the way in which
the norms occurring when j = 2, 3, ... are expressed. The three cases in Lemma 2
just below correspond, of course, to the three cases in Theorem 2 of Sec. 88.

Lemma?2. Letcbeany positive number andna positive integer(n = 1,2, ...).

(@) Ifa;(j =1,2,...) are the positive roots of the equation
Jn(ac) = 05
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then

1 (o) > = Cz—z[JnH(oz,-c)]2 (=12
(b) Ifaj(j =1,2,...) are the positive roots of the equation
hd,(occ) + (ac) ], (ac) =0 (h > 0),
then

(otjc)2 —n? 4+ K

2
1T () [|7 = 2o

[Ju(jo)]? (j=1,2,..).

(©) Ifaj(j =1,2,...) are the positive roots of the equation
J(ac) =0,
then

[PACTRI S

N2 2
("‘JC;T” a0 (GG=1.2..).
]

Although these two lemmas are stated separately, it is convenient to prove
them together. So, unless otherwise stated, » may have any one of the values
n=0,1,2,.... We start with the fact (Problem 8, Sec. 82) that if « is a nonzero
constant, the function

) X(x) = J(ax)
satisfies the differential equation
X +xX + @x*-nHX=0,

or

2
(3) xX + (oezx - %)X: 0.

Next, we multiply each side of equation (3) by 2x X’ and write
d d
— (xX)? + (&*x* —n?) — (X*) = 0.
dx dx

After integrating both terms here and using integration by parts in the second
term, we find that

[((xX")? + (x> = nH) X?], — 207 / xX*dx =0,
0

where ¢ is any positive number. When n =0, the quantity inside the brackets
clearly vanishes at x =0; and the same is true when n=1, 2, ..., because then
X(0) = J,(0) =0. Consequently,

202 /Cx[X()c)]2 dx = [cX' (0] + (@® —nP)[X(0)].
0
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Because X(x) = J,(ex) and X'(x) = aJ, (xx), it follows that
(4) 20 / ' x[Jn(@x)]? dx = (ac)*[J (@) ]* + [(@c)* — n*][Jn(ac)]?
0

We shall now use equation (4) to find all but one of the norms in Lemmas 1 and 2.
As for case (a) in these two lemmas, since J,(«jc) = 0, equation (4) tells us
that

Z/Cx[Jn(ijx)]2 dx = CZ[J,;(oejc)]z.
0

The integral here is the square of the norm of J,,(«;x) on the interval 0 < x < c,
with weight function x. Also (Sec. 83)

X} (x) = nJp(6) = XJy1 (1),
and it follows that J, («;c) = —Ju41(ejc). Hence,
20 Ja(e@i0)|? = E[Jnsi (@)

This is in agreement with the expressions for the squares of the norms stated in
case (a) of Lemmas 1 and 2.
Turning to case (b) in the lemmas, where

hlu(ajc) + (ajc) J,(ejc) =0 (h > 0),
we see that since
(o)’ [T (j0)]* = h*[Ju(ejo)]?,

it follows from equation (4) that
205? /0 x[],l(o(jx)]2 dx = [(ocjc)2 —n’+ hz][Jn(ocjc)]z.

This gives us the norms in case (b) of the lemmas.
Finally, we treat case (¢) in Lemma 1 differently from case (c¢) in Lemma 2.
Since Jy(a1x) = 1in case (¢) of Lemma 1,

CZ

nm@mwz/xwzz.
0

Expressions for ||J0(oz,-c)||2 (j=2,3,...) are obtained by writingn = 0and o = o
in equation (4). Because Jj(«jc) = 0, that gives

Z/Cx[lo(ot,-x)]2 dx = *[Jo(a;0))%
0

which is the same as the expression for o (1 )2 (j =2,3,...) 1in case (c¢) of
Lemma 1.

Note that in case (b) of Lemma 2 the constant / used in the equation defining
the «; can actually be zero. By canceling out the factor («c) in the equation

(o) ] (ac) =0

that follows when & = 0, we have the defining equation for the «; in case (c) of
Lemma 2. The norm in case (c) is, moreover, the norm in case (b) with 2 = 0.
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This completes the proof of Lemmas 1 and 2. We are now prepared to find
the generalized Fourier series involving the orthonormal sets (1).

91. FOURIER-BESSEL SERIES

Let f be any piecewise continuous function defined on an interval 0 < x < c,
and let J,(«;x) (j =1,2,...) be an orthogonal set of eigenfunctions arising from
Theorem 1 in Sec. 88 when n = 0 or Theorem 2 in that section when » has one of

the values n = 1,2, .... The normalized eigenfunctions are, of course,

Jn (Ol]‘x) .
1 bi(x) = 170 (j=1,2,..),
. P (el !

and the Fourier constants c; (Sec. 62) in the correspondence
) flx) ~ Zc,qﬁ,(x) Z ”J( )”J(a,x) 0<x<oc)
ojx

are the numbers

@) c=( ¢;)—/ xf(x)pj(x)dx = 7/ xf () Jn(ajx) dx
| Jn (el G120,

The norms found in each of the three cases (a), (b), and (c) in the lemmas
of Sec. 90 will now be combined with the generalized Fourier series (2) and its
coefficients (3) to obtain two theorems involving what are known as Fourier-
Bessel series. We continue to present our theorems separately when n = 0 and
when n = 1,2, .... Indeed, these theorems will follow from Lemmas 1 and 2,
respectively, in Sec. 90.

Theorem 1. Suppose that a function f is piecewise continuous on an interval
O<x<c

(@) Ifa; (j =1,2,...) are the positive roots of the equation

Jo(ae) = 0,
then
f(x)~§:Aon(ajx) 0<x<c)
where -
FMW/Ofo(x)JO(a,»x)dx (j=1,2,..).

(b) Ifaj(j =1,2,...) are the positive roots of the equation
hJo(ac) + (ac)Jj(ac) =0 (h > 0),
then
f(x)NZAjJO((xjx) O<x<o)

j=1
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where
T [(aj6)2+h2][10(ajc)]2/0 xf () Jo(ajx) dx (j=12,..).

(¢) Ifaj (j =2,3,...) are the positive roots of the equation

Jylac) =0,
then
fx) ~ A+ ZAon(oz,-x) O<x<o)
=2

where

2 C

A = —2/ xf(x)dx

¢ Jo

and

2 C
i = W/o xf(x)Jo(ajx) dx (j=2.3...0.
J

Note that the equations used to define the numbers «; in parts (b) and (c)
can also be written

hJo(ac) — (xc)Ji(ac) =0 and Ji(ac) =0,

respectively. (See the remarks immediately following the statement of Theorem 1
in Sec. 88.) Also, the number «; = 0 in case (c¢) of Lemma 1 in Sec. 90 does not
appear in case (c) of Theorem 1 here since Jo(a1x) = 1.

Theorem 2. Let A; (j =1,2,...) be the coefficients in the correspondence

f(x) ~ ZA]-Jn(ajx) O <x<o),

j=1

where f is piecewise continuous and n is a positive integer (n =1, 2, ...).

(@) Ifa; (j =1,2,...) are the positive roots of the equation

Ju(ac) =0,
then
Ajz%/cxf(xﬂn((xjx)dx G=12,...).
Al Tn (o Jo
(b) Ifaj(j =1,2,...) are the positive roots of the equation
hJy(ac) + (ac)J, (ac) =0 (h > 0),
then

2
20{]»

A= [(@je)? = n? + k][ Ju(ajo)]? /o

xf(x)Ju(ajx)dx G=12,...).
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(©) Ifaj (j =1,2,...) are the positive roots of the equation

J(ac) =0,
then
_ 2(){]2 c , ) L
' [<afc>2—n2][fn<a;c)]2/o @@ de (=12,

Recalling a remark just after the statement of Theorem 2 in Sec. 88, we note
that the equations used to define the «; in cases (b) and (c) here can also be written

(h+n)J,(ac) — (ac) 1 (ac) =0 and nJy(ac) — (ac)Jq1(ac) =0,

respectively.

To verify the two theorems in this section, let n have any one of the val-
ues n = 0,1,2,.... Then observe how it follows from correspondence (2) and
expression (3) that

(4) F@) ~ Y Ajdu(ejx) 0<x<oc),

j=1
where

5) !

N VACENE

The norms in the lemmas in Sec. 90 can now be used in this equation to obtain the
expressions for the A4; in the theorems here.

Proofs that correspondence (4) is actually an equality, under conditions sim-
ilar to those used in Sec. 15 to ensure the representation of a function by its Fourier
series, usually involve the theory of functions of a complex variable. We state, with-
out proof, one form of such a representation theorem and refer the reader to the
Bibliography."

/fo(x)J,,(ajx)dx G=12,..).
0

Theorem 3. Let f denote a function that is piecewise smooth on an interval
0 < x < ¢, and suppose that f(x) ateach point of discontinuity of f in that interval is
defined as the mean value of the one-sided limits f(x +) and f(x —). Then all of the
correspondences in Theorems 1 and 2 are, in fact, equalities when the appropriate
coefficients A; are used.

92. EXAMPLES

We now illustrate, before turning to physical applications, the use of Theorems 1
and2in Sec. 91. The functions in this section and in the problems to follow all satisfy
the conditions in Theorem 3 of Sec. 91, and so convergence to those functions will
not be in doubt.

TThis theorem is proved in the book by Watson (1995). Also, see the work by Titchmarsh (1962),
as well as the books by Gray and Mathews (1966) and Bowman (1958). These are all listed in the
Bibliography.
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EXAMPLE 1. Let us expand the function f(x) = 1 (0 < x < ¢) into a
series of the type

> A Jo(ejx),

j=1
where «; (j=1,2,...) are the positive roots of the equation Jy(cc) =0. Case (a)
in Theorem 1 of Sec. 91 is evidently applicable here. It tells us that

2

j = W/o xJo(ejx) dx (G=1L2..).

This integral is readily evaluated by substituting s = «;x and using the integration
formula (Sec. 83)

/xs](](s) ds = xJ1(x).
0

To be specific,
¢ 1 [ 1 Ji(oj
(1) / x Jo(ajx) dx:—z/ ] s Jo(s) ds:—zajcll(ozjc)zm.
0 aiJo aj aj
Consequently,
2 ci(aje) 2 1
Aj =~ 2 =7 ;
C []1(01]‘6)] o; c a,-Jl(a,-c)
and we arrive at the expansion
2 = Jola;
(2) 1== 0(@;x) 0 <x <o),

C izl ajfl(ozjc)

where Jo(ajc) =0 (a; > 0).

EXAMPLE 2. Here we expand the same function f(x) = 1(0 < x < ¢) as
in Example 1 into a Fourier-Bessel series

[o.¢]
> Ajdolax),
j=1

where «; are the positive roots of the equation
3) hJo(ac) + (ac) Jy(ac) =0 (h>0).

We need to refer to case (b) of Theorem 1 in Sec. 91 rather than case (@), which
was used in Example 1. Case (b) of the theorem tells us that

2
Zaj

A=
T [(@jo)? + h2][Jo(ajc)]?

4) /.Cx.lo(ozjx) dx (Gj=1,2,..).
0
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Even though the «; in expression (1) are different from the ones here, we can
nonetheless use that expression to write

W 20{? ci(ejo) ajJi(ajc)
I e+ ool a;le0? + Rl oF
Hence,
ajJi(ajc) Jo(ajx)
(5) 1=2c Z (02 + Lot 0 0 <x<o.

Finally, it is interesting to see how expansion (5) can be written in a form
that does not involve /. To do this, we need only observe how it follows from
equation (3) and the identity Jj(ac) = — Ji(ac) that

h]o((){jc) = — (Ol]‘C)J(;(Ot]‘C) = (Ol]‘C)Jl(Ole).

This enables us to write

1= ZCi i o Jl(‘)lzjc)]o(aj;‘) .
— (@;0)?[Jo(e;0)? + (@j0)*[J1(j0)]
or
21 Ji(aje)Jo(ajx)

6 z —- O <x<o).
©) cz:: aj [Jolajo)]? + [i(ajo)]?

EXAMPLE 3. To represent the function f(x) =x (0 < x < 1) in a series of
the form

o0
A+ Z AjJo(ajx),
=2

where o (j=2,3,...) are the positive roots of the equation Ji(«) =0, we refer
to case (c) in Theorem 1 of Sec. 91. Evidently,

1
2
A1:2/ 2dx ==
0 3

2 1
[Jot@p]? /0 X Jo(erjx) dx (j=2,3,..).

This last integral can be evaluated by referring to the reduction formula
(see Sec. 83 and the footnote there)

and

Aj =

/x s2To(s) ds = x%T1 (x) + xJo(x) — /XJO(S) ds
0

0
and recalling that Jy(a;) = 0:

1 1 aj 1 o
/ x*Jo(ejx) dx = —3/ s2Jo(s)ds = — [ajJO(a,) —/ Jo(s)ds} :
0 aj Jo o 0

J
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Finally, then,

2 > i ]O(ajx)
(7) x = §+2j§2 {ajjo(aj)—/o Jo(s)ds}m 0<x<1),
where Ji(a;) =0 (a; > 0).
EXAMPLE 4. Consider a function f thatis defined on the interval 0 < x <2
by means of the equations
x* when 0 < x < 1,
fe) =

0 when 1 < x <2,

and f(1) = 1/2. To show that

i ajJs(a;)Ja(a;x)
(0 = H[Jaa P

where «; are the positive roots of the equation J; (2a) = 0, we refer to case (c) in
Theorem 2 of Sec. 91 and write

2
©) 4j =

(8) fx) = 0 <x<?2),

o
2(af — M4

Keeping in mind that f(x) = 0when 1 < x < 2 and using the integration formula
(see Sec. 83)

2
/0 xf(x)Js(ajx) dx (Gj=1,2,..).

/ $ST4(s) ds = 3 T5(x),
0

we find that the integral in expression (9) reduces to

1 o
/ xSJ4(a/-x) dx = i()/ ]s514(s)ds = lJg(ozj).
0 ;i Jo aj
Hence,
1 ] (Xjfs(()lj)
2 (af —D[aQapP’

and expansion (8) is established.

Aj =

PROBLEMS
1. Show that

N Jo(;x)
x_22;|:1 211(01)/ Jo(s)d ] ahia) O<x<1),
=

where «; (j =1, 2, ...) are the positive roots of the equation Jy(a) = 0.
2. Derive the representation

2 [o¢]
2 C ]0(0{]')6)
=—+4 — 0 R
X + Zz oo ) O<x<o

where «; (j = 2,3, ...) are the positive roots of the equation J;(ac) = 0.
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3. Leto; (j =1,2,...) denote the positive roots of the equation Jy(ac) = 0, where cis a
fixed positive number.

(a) Derive the expansion

2 o (@j0)?
== (O;ng(a iX) O<x<o).
c = a/-Jl(a,c)

(b) Combine expansion (2) in Example 1, Sec. 92, with the one in part (a) here to show
that

cz—x2=§ZM O <x<o).

3 .
c = oz]-Jl(a]c)

4. Find the coefficients A; (j = 1,2, ...) in the expansion

L= A+ Adolex) O<x<o

j=2
when «; (j =2, 3,...) are the positive roots of the equation Jj(ac) = 0.
Answer: A1 =1, A;=0( =2,3,..).
5. Show that if

Fx) = X when 0 < x < 1,
=30 when 1 < x <2,

and f(1) = 1/2, then

_ a;Jr(a) Ji(ojx)
fx) = ZZ o 2_ DU Ga) P 0 <x<?2),

where o; (j = 1,2, ...) are the positive roots of the equation J/2a) = 0.
6. Let n have any one of the positive valuesn = 1,2, ... . Show that

o n+1(a )J (Ot x)
X" _22 @ e P 0<x<1),

where o; (j = 1,2, ...) are the positive roots of the equation J; (a) = 0.
7. Point out why the eigenvalues of the singular Sturm-Liouville problem

X' +xX + (P -1)X=0, X(1) =0,

on the interval 0 < x < 1 are the numbers A; = a? (j =1,2,...), where «; are the
positive roots of the equation J;(«) = 0, and why the corresponding eigenfunctions
are X; = Ji(a;x) (j =1,2,...). Then obtain the representation

Ji(ajx)
x_ZZ:a/Jz(a) O<x<1

in terms of those eigenfunctions.
8. There exist conditions on f under which Fourier-Bessel series representations are valid
when n is replaced by v (v > —1/2), where v is not necessarily an integer. In particular,
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suppose that

f(x)ZZAjJI/Z(ajx) 0<x<o),

j=1

where /x f(x) is piecewise smooth, where «; are the positive roots of the equation
Ji2(ec) = 0, and where [compare with case (@) in Theorem 2 of Sec. 91]

2 C
]2/ xf(x) Jip(ojx) dx (Gj=12,..).
0

P = CZ[J3/2((X/'C)

Using the expressions [Problems 6(a), Sec. 82, and 3, Sec. 83]

2 . 2 (sinx
Jipx) = Esmx and J3p(x) = — » —CcoSsx

to substitute for the Bessel functions involved, show that this Fourier-Bessel series
representation is actually the Fourier sine series representation for /x f(x) on the
interval 0 < x < c.

93. TEMPERATURES IN A LONG
CYLINDER

In the following two examples, we shall use Bessel functions to find temperatures
in an infinitely long circular cylinder p < ¢ whose lateral surface p = c is subject
to simple thermal conditions. Those conditions and others will be such that the
temperatures will depend only on the space variable p, which is the distance from
the axis of the cylinder, and time ¢. We assume that the material of the solid is
homogeneous.

EXAMPLE 1. When the cylinder is as shown in Fig. 72 and the initial tem-
peratures vary only with p, the temperatures u = u(p, t) in the cylinder satisfy the
special case (Sec. 24)

1
1) u,:k(upp—i——up) O<p<c, t=>0
p

/\=\£<:
| 3
- _
[ E
——=d
-~ -: N
~—+—]—
P y
¢ J\
/ u=20
X
—>—

FIGURE 72
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of the heat equation in cylindrical coordinates and the boundary conditions
) u(c,t) =0 > 0),
3) u(p,0) = f(p) 0<p<o).

Also,whent > 0, the function 1 and its derivatives must be continuous throughout
the cylinder and, in particular, on the axis p = 0. In solving this problem, we assume
that f is piecewise smooth on the interval 0 < p < ¢ and, for convenience, that
f is defined as the mean value of its one-sided limits at each point in that interval
where it is discontinuous.

Any solutions of the homogeneous equations (1) and (2) that are of the type
u = R(p)T(t) must satisfy the conditions

RT = kT <R” + lR’), R(c)T(t) = 0.
0

Separating variables in the first equation here, we have

T 1 , 1 _
It te)=o

o
where —A is a separation constant. Thus,

4) PpR"(p) + R (p) + 1pR(p) =0, R(c) =0 O<p<o
and

(5) T'@t) +1kT(t) =0 (t > 0).

Problem (4), together with continuity conditions on R and R’ in the interval
0 < p < ¢, is the singular Sturm-Liouville problem in Theorem 1 of Sec. 8§ when
the boundary condition (4) there is taken. According to case (@) in that theorem,
the eigenvalues and corresponding eigenfunctions of problem (4) here are

A= al, R; = Jo(ajp) (Jj=12,..),

where «; are the positive roots of the equation Jy(ac) = 0.
When A = A; for any given A;, the solutions of equation (5) are constant

multiples of 7; = exp(—a?kt). So the desired products are
uj = Ri(p)T;(t) = Joa;p) exp(—ajkt) (j=12..)

and their generalized linear combination,

(6) ulp.t) = AjJo(ejp) exp(—ejkr)
j=1

formally satisfies the homogeneous conditions (1) and (2) in our boundary value
problem. It also satisfies the nonhomogeneous initial condition (3) when the
coefficients A; are such that

flp) = ZA;‘JO((X,‘P) 0 <p<o).
j=1
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This is a valid Fourier-Bessel series representation, according to Theorem 3,
Sec. 91, if the coefficients have the values

(7) pf(p)Jolajp)dp (Gj=12,..),

2 Cc
A= /
/ 62[11(()[}'6)]2 0
obtained from case (a) of Theorem 1 in Sec. 91.
The formal solution of the boundary value problem (1)-(3) is, therefore,
given by equation (6) with the coefficients (7), where Jo(ajc) = 0 («; > 0). Our
temperature function can also be written

— Jo(ajp) ¢
(8) u(p,t) = = Z ]10(0[]]0) (—afkt)/o sf(s)Jo(a;s) ds.

EXAMPLE 2. Let us replace the condition that the surface of the infinite
cylinder in Example 1 be at temperature zero by the condition that it be insulated.
The boundary value problem for the temperature function u(p, t) is now

©) u,_k<upp lup> O<p<ec, t>0),
(10) u,(c, ) =0 (t >0,
(11) u(p, 0) = f(p) 0<p<o.

When u= R(p)T(t), separation of variables produces the eigenvalue
problem

(12) pR"(p) + R'(p) + *pR(p) =0, R'(c)=0 0<p<o.

Case (c) of Theorem 1 in Sec. 88 tells us that the eigenvalues and corresponding
eigenfunctions are

M=0, Ri=1 and A =af

i Rp=Jolajp)  (j=2.3,..),

where o (j =2, 3, ...) are the positive roots of the equation Jj(«c) = 0. Since

T'(t) +AkT(t) =0 (t > 0),
the corresponding functions of ¢ are constant multiples of
T)=1 and T; = exp(—ajkt) (j=23,...).
Hence,
up = Ri(p)Li(1) =1
and

uj = Rj(0)T;(t) = Jo(ajp)exp( —ajkt)  (j=2.3,...).

The desired solution of our boundary value problem is, therefore,

(13) ulp,t) = A1+ Z Aj Jo(aj,o)exp(—a?kt)
j=2
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where the coefficients Ay and A; (j =2, 3,...) are obtained by writing ¢ = 0 and
referring to the nonhomogeneous condition (11). More precisely,

f(o) = A1+ AjJo;p) 0<p <o)
j=2

and case (c¢) of Theorem 1 in Sec. 91 reveals that

2 C
(14) Ay = —2/ pf(p)dp
¢ Jo
and
2 ¢ .
(15) Aj = m/ﬂ pf(p)Jo(ajp) dp (j=2,3,..).

In some of the problems to follow, there will be surface heat transfer across
a cylindrical surface into surroundings at temperature zero in accordance with
Newton’s law of cooling (Sec. 26). If, for example, that surface is p = ¢, the
temperature function u (p, t) will satisfy the condition

Ku,(c,t) = —Hul(c,1t) (K >0, H>0);

and we shall find it convenient to use it in the form
H
(16) cuy,(c,t) =—hu(c,t) (h = C? > 0).

There will also be a number of steady-state temperature problems in cylindri-
cal coordinates giving rise to Bessel functions. In such problems, the temperatures
will continue to be independent of ¢. The function u = u(p, z) will, then, be
harmonic and satisfy Laplace’s equation V?u = 0, where (see Sec. 34)

1
17) Viu=u,, + P U, + Uz.

PROBLEMS

1. Letu(p, t) denote the solution found in Example 1, Sec. 93, when ¢ = 1 and f(p) = u,
where ug is a constant. With the aid of the table in Sec. 86, show that the first three
terms in the series for u(p, t) are, approximately, as follows:

u(p, t) = 2ug[0.80 Jo(2.4p) e >3 —0.53 J5(5.50) e + 0.43 Jy(8.7p) e K — .. .].

2. Suppose that the surface p = c of the infinite cylinder in Sec. 93 is such that heat transfer
takes place there into surroundings at temperature zero according to Newton’s law of
cooling, written in the form (16), Sec. 93:

cu,(c,t) =—hulc,t) (h > 0).

Use this condition, instead of condition (2) or (10) in Sec. 93, to find the temperatures
u(p, t) in the cylinder.
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Answer: u(p,t) = > A; Jo(ajp) exp(—zx?kt),
-1

where «; are the positive‘rioots of the equation hJy(ac) + (ac)Jj(ac) = 0 and
20% ¢
A = ! / of(p)Jo(e;p) dp (j=12,..).
/ [(Ole)z +h2][J0(O{/*C)]2 0 f 08 I
3. Derive an expression for the steady temperatures u(p, z) in the solid cylinder formed
by the three surfaces p = 1, z = 0, and z = 1 when u = 0 on the side, the bottom is
insulated, and u = 1 on the top.

= Jo(ajp) cosha;z
A . =2 J . J
nswer: u(p, z) Zl o Ji(@,) cosha,
=

s where J()(O{j) =0 (Otj > O)

4. Find the bounded steady temperatures u(p, z) in the semi-infinite cylinder p <1,z >0
when u = 1 on the base and there is heat transfer into surroundings at temperature
zero, according to Newton’s law of cooling (see Problem 2), on the side.

Jo(ajp) exp(—a;z)
To(ej) (o + 1)

where hJ()(O(]') + O!j]é(otj) =0 (O{j > 0)
5. (a) A solid cylinder is formed by the three surfaces p = 1,z =0,and z = b (b > 0).
The side is insulated, the bottom is kept at temperature zero, and the top is kept
at temperatures f(p). Derive this expression for the steady temperatures u(p, z)
in the cylinder:

2z J inha;z [
u(p,2) = / sf(s)ds+22 ]‘)(((Zl’p)z . zith’Z/ sf(s)Jo(ajs) ds,
] ] 0

Answer: u(p,z) =2h Z

El

where o, o3, ... are the positive roots of the equation J; (o) = 0.
(b) Show that when f(p) =1 (0 < p < 1) in part (a), the solution there reduces to

z

b

6. A function u(p, z) is harmonic interior to the cylinder formed by the three surfaces
p=c,z=0,and z=b (b > 0). Assuming that # = 0 on the first two of those surfaces
and that u(p, b) = f(p) (0 < p < ¢), derive the expression

u(p, z2) =

sinhoz
sinha;b’

u(p,z) = Z Aj Jo(a;p)
j=1
where «; are the positive roots of the equation Jyo(ac) = 0 and the coefficients A; are
given by equation (7), Sec. 93.
7. Solve this Dirichlet problem (Sec. 31) for u(p, z):
Viu=0 O<p<1,z>0),
u(l,2) =0, u(p,0) =1,
and u is to be bounded in the domainp <1,z > 0.

Answer: u(p, z) = ZZ 0; (]'O))
1o

8. Solve the following problem for temperatures u(p, t) in a thin circular plate with heat
transfer from its faces into surroundings at temperature zero:

exp(—a;z), where Jo(a;) =0 (r; > 0).

1
U =Uy, +—u, —bu O<p<1,t>0),
0
u(l,t) =0, u(p,0) =1,
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where b is a positive constant.
Jo(atjp)

Answer: u(p,t) = 2 exp(—bt) Z AT exp(—a?t),
=t T

where ]()(C(j) = O(Olj > 0)

9. Solve Problem 8 after replacing the condition u(1, ) = 0 by this heat-transfer condition
at the edge:
u,(1,t) = —hu(l,1) (h > 0).
10. Interpret this boundary value problem as a temperature problem in a solid cylinder:

1

Upp+—Uup+u,, =0 O<p<1, 0<z<b),
P

u,(1,2) = —hu, 2) (0 <z<b),

uz(p,0) =hu(p,0), u(p,b) =1 O<p<D,

11.

12.

where 4 is a positive constant. Then, with the aid of the expansion (5) appearing in
Example 2, Sec. 92, derive the solution

d (aj +h)e*i* + (a; — h)e @it a;Ji(aj)Jo(a;p)
= 2 . s
u(p, 2) Z 1 (a; + h)e*i® + (a; — hye b (a? + h2) [Jo(ap)T?
j=

where hJy(aj) + o Jj(eej) = 0 (a; > 0).
Suggestion: Use the conditions

Z'(2) —a; Z(z) =0,  Z'(0) = h Z(0)

to obtain the expression Z(z) = C,e%*+ Ce™%i%, where C; is an arbitrary constant and

Ol/'—h

C =
2 Ol]+h

C.

Then use the value C; = o + h.
Solve this boundary value problem for u(x, t):
2
xXu, = (Xuy)y — —u O<x<c,t>0),
X

u(c,t) =0, ux,0) = f(x),

where u is continuous for 0 < x < ¢, ¢t > 0 and where n is a positive integer.
Answer: u(x,t) = Z AjJy(ajx) exp(—a?t), where «; and A; are the constants
j=1
in case (a) of Theorem 2 in Sec. 91.
Let u(p, z) denote a function that is harmonic interior to the cylinder formed by the
three surfaces p = ¢,z = 0,and z = b (b > 0). Given that u = 0 on both the top and
bottom of the cylinder and that u(c, z) = f(z) (0 < z < b), derive the expression

= Ioy(nmtp/b) . nnz
= B, —————sin —,
up, 2) Z} Tonme/b) " b
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2 (" nnz
Bn = 5/0 f(Z) sin T dZ.

[See Problem 9, Sec. 82, as well as the comments immediately following equation (14),
Sec. 89, regarding the solutions of the modified Bessel equation.]

13. Let the steady temperatures u(p, z) in a semi-infinite cylinder p < 1, z > 0, whose base
is insulated, be such that u(1, z) = f(z) where

where

@) 1 when 0 < z < 1,
9= 0 when z>1.

With the aid of the Fourier cosine integral formula (Sec. 54), derive the expression

2 [*
u(p,z) = —/ o(@p) cos az sin a du
0

T aly(x)

for those temperatures. (See the remarks at the end of Problem 12.)

14. Given a function f(z) that is represented by its Fourier integral formula (Sec. 50) for
all real z, derive the following expression for the harmonic function u(p, z) inside the
infinite cylinder p < ¢, —00 < z < oo such that u(c, z) = f(2) (—o0 < z < 00):

u(p, z) = l/ h(@p) / f(s)cosa(s — ) ds da.
0 —00

T Ip(acc)

(See the remarks at the end of Problem 12.)

15. Let u(p, z, t) denote temperatures in a solid cylinder p < 1, 0 < z < 7 whose entire
surface is kept at temperature zero and whose initial temperature is unity throughout.
That is,

1
u,_k<upp pup—|—uzz> O<p<l, O<z<m t>0),

ul,z,t) =0, u(p,0,t)=0, u(p,m,t)=0,
u(p,z,0)=1.

(a) Show that u(p, z,t) = v(p,t)w(z, t) where v(p, ) denotes temperatures in an
infinite cylinder p < 1 and w(z, t) represents temperatures in an infinite slab
0 < z < 7 when both the cylinder and the slab have zero boundary temperatures
and initial temperatures unity.

(b) Usingresultsin Example 1, Sec. 93, and Example 1, Sec. 39, show that the functions
v(p,t) and w(z, t) in part (a) are

v(p,t) = ZZ j()(Ol],O) ( a?kl),

ajJi(e))

where Jy(e;) =0 (a; > 0), and

4 ~sin@n - Dz 5
w(z, t) = - Zl 1 exp[—(2n — 1) kt] .

Suggestion: Start the proof in part (a) by assuming that if u(p, z,¢) is a
product of any two functions v(p, ) and w(z, t), then

1
-k (”pﬂ P —u, + uzz)
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becomes

1
vw, —kw,) +w {v, —k (vp,, + ;vp)]

whenever these expressions exist.

94. A TEMPERATURE PROBLEM
IN SHRUNKEN FITTINGS

We consider here a temperature problem in shrunken fittings involving a solid
cylinder p < 1 at uniform initial temperature A. A long hollow cylinder1 < p <2
of the same material and at uniform initial temperature B is tightly fitted over
the solid cylinder. The outer surface p = 2 of the second cylinder is then kept at
temperature B. (See Fig. 73, where a cross section of the two cylinders is shown.)

y

u(p,0) =4

/ u(p,0) =B
R

u2,t) =B

FIGURE 73

The temperatures u(p, t) throughout the solid cylinder of radius 2 that is
formed must satisfy this boundary value problem:

1
1) u =k (upp + —up> O<p<2 1t>0),
0
2 u2,t)=B (t > 0),
_JA when 0<p <1,
@) u(p,O)_{B when 1 <p <?2.

The usual continuity conditions on u(p, ¢) and its derivatives are to be satisfied.
In particular, u(p, t) is to be continuous on the axis p = 0.

The fact that the boundary condition at p = 2 is nonhomogeneous reminds
us how a substitution similar to

4) u(p,t) =U(p,t) + @(p)

was first used in Example 2, Sec. 39, where the rectangular coordinate x, rather than
the polar coordinate p, was used. Substituting expression (4) into the boundary
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value problem (1)—(3), we have

1 1
(5) U,:k(Upp—i——Up)—i-k(CDN—i-—CD/) O<p<2,t=>0),
o o
and
(6) UR,t)+®2)=B (t > 0),
_JA when 0<p <1,
™ U(p’0)+q’(p)—{3 when 1 < p <2.
Hence, if
1
(8) ®"+-d =0 and &)= B,
0
we have the new boundary value problem
1
9) Utzk(Upp+—Up> O<p<2 t>0),
0
(10) Uue,t)=0 (t >0,
| A—®(p) when 0<p <1,
(11) U(’O’O)_{B—CD(;)) when 1 <p <2,

whose solution can be obtained by referring to Example 1 in Sec. 93, once the
function ¢ (p) satisfying conditions (8) is found.
The first of conditions (8) can be solved by writing it as the Cauchy-Euler
differential equation
02" 4+ pd +00 =0
and making the substitution p = exps (see Problem 1, Sec. 44), which gives us

d*®
12 — =

The general solution of equation (12) is, of course, ® = Cis + C,; and, since
s = In p, we find that

®(p)=Cilnp + .

Because ®(p) must be bounded when 0 < p < 2, the constant C; must be zero.
Hence, ®(p) = C,. By applying the second of conditions (8), we arrive at the
expression ®(p) = B.

Now, according to Example 1 in Sec. 93,

(13) Up,t) = Z AjJo(ajp) exp(—ajkt)
j=1

where Jo(2 «;) = O(et; > 0) and where the constants A; are yet to be determined.
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Because @ (p) = B, condition (11) becomes

_JA—B when0<p <1,
U('O’O)_{O when 1 <p <2;

and, according to expression (7), Sec. 93,
__A-B
T2 Q2e)]

The integral here is readily evaluated by making the substitution s = «; o and
using the integration formula (Sec. 83)

1
(14) /0 p Jo(ajp)dp (j=1,2,..)).

/ Jo(s)ds = x J1(x).
0

More precisely,
/'1 pheprdo =[5 sy ds = 1L,
0 ajJo aj
Expression (14) then becomes
A-B i)
2 aj[12a)]?

(15) Aj = (j=12..).

Substituting these values of A; into series (13) and then recalling equation (4), we
arrive at the solution of the original boundary value problem:

A— Bi Ji(ap)Jo(a;p)

(16) u(p,t) = B+ — e P

exp(—a?kt),
j=1

where Jo(2ar;) = 0(aj > 0).

95. INTERNALLY GENERATED HEAT

When the Fourier method cannot be directly applied to obtain solutions involving
Bessel functions, modifications of the method learned in earlier chapters can be
used, as in Sec. 94. The following example illustrates another modification that we
have already seen.

EXAMPLE. We suppose now that heat is generated at a constant rate per
unit volume in the cylinder in Sec. 93 and that the surface and initial temper-
atures are both zero. The temperatures u = u(p, t) must, therefore, satisfy the
conditions

1
(1) u,:k(upp+;up>+q0 O<p<ec,t>0),
where gy is a positive constant (Sec. 23), and
) u(c,t) =0, u(p,0) =0.

The function u is, of course, required to be continuous in the cylinder.
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The differential equation (1) is nonhomogeneous because of the constant
term g, and this suggests that we apply the method of variation of parameters,
first used in Sec. 42. To be specific, we know from Example 1, Sec. 93, that without
the term ¢, the eigenfunctions

Rj = Jo(a;p) (G=12,..),

where Jo(ajc) = 0 («; > 0), arise. So we seek a solution of the present boundary
value problem having the form

(3) u(p, ) =y Aj() Jo(;p),

j=1

where the «; are as just stated.
Substituting this series into equation (1) and noting how the representation

290 = Jo(a;jp)
_ fdom J0in) 0
w205 ) 0<p=<0

follows immediately from the one obtained in Example 1, Sec. 92, we find that if
series (3) is to satisfy equation (1), then

d
ZA () Jo(ajp) = kZA (t)[d 5 Jo<a,p)+ 2, Jot@ip)
j=1
2qo Jo(erjp)
+ ; CO[le(Ol]‘C) ’

But, according to Problem 8§, Sec. 82,

dzz Jo(@jp) + = ! CZ Jo(ajp) = —a3 Jo(a;p).
Thus,
i [AL(0) + ok Aj(0)] Jo(ejp) = i 2 Jo(ajp);
= P 1coz,Jl(Ot,c)

and by equating coefficients on each side of this equation, we arrive at the differ-
ential equation

2q0 .
4 A + ok Aj(t) = ———— =1,2,...).
4) () +aik A () caJ(@;0) (J )
Furthermore, in view of the second of conditions (2),
o0
> Aj0) Jo(ajp) =0 0 < p <o)

j=1
Consequently,

(5) Aj(0) =0 (G=1,2..).
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To solve the linear differential equation (4), we multiply each side by the
integrating factor

exp (/a%kdt) = exp(akt).

This enables us to write the differential equation as

d 1 ke 2q0 2kt

— e A ()| = ———— %™

dt [e A )} caTi(@ie)
After replacing ¢ by 7 here, we then integrate each side from r = 0to r = ¢ and
recall condition (5). The result is

o2kt qu o2kt
eI Ai(t) = ————— (" = 1),
! Cka?]l(ajc)( )
or
2q0 1—exp(—alkt )
(6) Ay = 20 Lo exploogkl) (=12

ck arJi(aje)

Finally, by substituting this expression for the coefficients A;(¢) into se-
ries (3), we arrive at the desired temperature formula:

2q0 1 —exp(—a?kt
(7) u(p. 1) = -2 1= exp(—ojkr)

Jo(a;p),
ck = a?Jl(ajc) !

where Jo(a;c) =0 (a; > 0). Note how the summation formula
2 Joleip) c
P 0<p<o

[see Problem 3(b), Sec. 92] enables us to put solution (7) in the form

@ |, 5 8= Jolwjp)exp(—aike)
8 =2 12_2_°
®) u(p,t) 7 4 Z o 1 (0)

9

c 4

j=1
which can be more useful when ¢ is large. [Compare with the last paragraph in
Example 2, Sec. 39.]

PROBLEMS

1. In the example in Sec. 95, suppose that the rate per unit volume at which heat is
internally generated is g(¢), rather than simply go. Derive the following generalization
of the solution (7) found in that example:

2 Joljp) [ )
u(p,t) = - 21: W | q(t)exp [—ajk(t — r)} dr,
i=
where Jo(ajc) =0 (a; > 0).
2. Solve the temperature problem arising when the boundary conditions (2) and (3) in
Example 1, Sec. 93, are replaced by

u(c,t) =1, u(p,0) =0.
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Do this by making the substitution u (p, t) = U(p, t)+® (p), where ® (p) is continuous
at p = 0, and referring to solution (6), with coefficients (7), in that earlier example.
Expansion (1) in Example 2, Sec. 92, will also be useful.
, 2~ Jo@;p) 2
Answer: u(p,t) =1— - 21: W exp(—ozjkt),
=
where Jy(ajc) =0 (a; > 0).

3. Use the special case of Duhamel’s principle in Sec. 27 and the solution obtained in
Problem 2 to solve the temperature problem arising when the boundary condition
u(c,t) = 1in that problem is replaced by u(c, t) = F(t), where F(0) = 0 and F(¢) is
continuous and differentiable when ¢ > 0.

2k o~ aj Jo(at;p)

t
Answer: u(p,t) = - @0 F(7) exp[—a?k(t — r)] dr
j

0

where Jy(ajc) =0 (a; > 0). -
4. Give a physical interpretation of the following boundary value problem for a function
u(p, t) (see the example in Sec. 95):

1
u,:u,,p+;u,,+qo O<p<1,t>0),
u,(1,)=0,  u(p,0) =ap?,
where gy and a are positive constants. Then, after pointing out why it is reasonable to
seek a solution of the form
w(p,H) = A1)+ Y Aj(0) Jo(a;p),
=2
where o (j = 2,3, ...) are the positive roots of the equation J; («;) = 0, use the method
of variation of parameters to actually find that solution.
Joe;p) exp(—ejt)
aiJo(a)) ’

Answer: u(p,t) = = +q0t + 4a Z

where the «; are as stated above.

5. Interpret this boundary value problem as a temperature problem in a cylinder
(see Sec. 26):

1
U = Upy + — Uy O<p<1,t>0),
0
u,(1,t) = B, u(p,0) =0,
where B is a positive constant. Then, after making the substitution
B
wp,0)=Ulp,0) + 5 p

to obtain a boundary value problem for U(p, t), refer to the solution in Problem 4 to
derive the temperature formula

SZ Jo(ajp) exp )

B
u(p,t) = 7 207 + 8t — (e

)

where o; (j = 2,3, ...) are the positive roots of the equation J;(«) = 0. [Note that the
substitution for u(p, t) made here is suggested by the fact that U,(1,¢) = 0.]
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6. Solve the boundary value problem

2
n
Upp + Uy — — U+ Uz =0 O<p<1,z>0),

u(l,z) =0, u(p,0) = p",

where u(p, z) is bounded and continuous for 0 < p < 1, z> 0 and where n is a positive
integer. (When n = 0, this problem becomes the Dirichlet problem that was solved in
Problem 7, Sec. 93.)
S RACIH)
Answer: u(p,z) =2 7 exp(—a;z), where J,(a;) =0 (a; > 0).
; T (@) pP(—q; j j
7. Let the function u(p, ¢, z) satisfy Poisson’s equation (Sec. 23) V2u + ay = 0, where
a is a constant, inside a semi-infinite half-cylinder 0 < p < 1,0 < ¢ < 7w,z > 0,
and suppose that # = 0 on the entire surface. The function u, which is assumed to be
bounded and continuous for 0 < p < 1,0 < ¢ < m, z > 0, thus satisfies the boundary
value problem

1 1
upp—f—;up—i—;uw—i—uu—l—apsinqﬁzo O<p<1,0<¢p<mz>0),

u(l,¢,2) =0, u(p,¢,0) =0, u(p,0,2) =u(p,m, z)=0.

Use the following method to solve it.

(a) By writing u(p, ¢, z) = asin¢v(p, z), reduce the stated problem to the one
1 1
v,),)—i—gv,,—?v—kvu—l—pzo O<p<1l,z>0),

v(l,2) =0, v(p,0)=0

in v(p, 7), where v is bounded and continuous for0 < p <1,z > 0.

(b) Note that when n = 1, the solution in Problem 6 suggests that the method of
variation of parameters (see the example in Sec. 95) be used to seek a solution of
the form

v(p, D) =Y Aj(2) Ji(;p),
j=1
where Ji(«;) = 0 (¢; > 0), for the problem in part (a). Apply that method to
obtain the initial value problem

Al(2) — ot Aj(2) = — Aj(0)=0

a; J 2 (O[ j) ’
in ordinary differential equations. Then, by adding a particular solution of this
differential equation, which is a constant that is readily found by inspection, to the
general solution of the complementary equation A7(z) — a? Aj(z) = 0 (compare
with Problem 2, Sec. 46), find v(p, z). Thus obtain the solution

. N exp(—a;z)

, ¢, 2) = 2asin ————Ji(x;p),

u(p, ¢,z) =2asing 21: SYAPE) 1(@jp)

j=
where Ji(a;) = 0 (; > 0), of the original problem.

Suggestion: In obtaining the ordinary differential equation for A;(z) in part (b),
one can write the needed Fourier-Bessel expansion for p by simply referring to the
expansion already found in Problem 7, Sec. 92. Also, it is necessary to observe how the
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identity
2

d 1 d 1
47 Ji(ajp) + > dp Ji(ajp) — o7 Ji(ajp) = —OC?J1(0€;'P)

follows immediately from the differential equation in that problem.

96. TEMPERATURES IN A LONG
CYLINDRICAL WEDGE

As illustrated in Problem 1, Sec. 48, some temperature problems have solutions
involving double Fourier series. In this section, we consider a temperature problem
whose solution involves two series, one of which is a Fourier sine series and the
other a Fourier-Bessel series.

EXAMPLE. Using cylindrical coordinates, we derive here an expression
for temperatures u(p, ¢, t) in the long right-angled cylindrical wedge formed by
the surface p = 1 and the planes ¢ = 0 and ¢ = 7/2 when u = 0 on its entire
surface and u = f(p, ¢) at time ¢t = 0. By referring to expression (2), Sec. 24,
for the laplacian V?u and writing u,, = 0 in that expression, we have the heat
equation

1 1 T
1) utzk(upp—}—;up—i—ﬁuw) (0<p<1,0<¢<§,t>0).
The boundary conditions are, of course,
(2) M(l, ¢1 t) - 0,
(3) u(p,0,t) =0,u(p,7/2,t) =0,
4 u(p,9,0) = f(p, ¢,

where it is understood that u(p, ¢, t) is to be continuous throughout.
Upon substituting the product u = R(p) ®(¢) T(¢) into equation (1), we see

that
T/ R// R/ q> "
5 =4
) kT R + oR + prd
where —A is a separation constant. Separation of variables in the second of equa-
tions (5) now tells us that

CI)// pz R// pR' )

—_— = — _— A = —U,

= (I ) =

where —u is another separation constant. It now follows that if u = R® T satis-
fies all of the homogeneous conditions (1)-(3), the following conditions must be

satisfied:

(6) P*R"(p) + pR'(p) + (.p* = WR(p) =0,  R(1) =0,

= -2,

(7) (P +ud@ =0, DO=0, d(x/2)=0.
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Equations (5) tell us, moreover, that
(8) T (t) + AkT(t) = 0.

According to Sec. 35, conditions (7) make up a Sturm-Liouville problem
whose solutions are

wn = (2n)?, ®,(p) =sin2n ¢ n=1,2,..).
Conditions (6) then become the singular Sturm-Liouville problem
P*R"(p) + pR'(p) + [» p> — 2n)*]|R(p) =0,  R(1) =0;
and case (a) of Theorem 2 in Sec. 88 tells us that for each positive integer n,

nj =g, Ruj(p) = Jau(atnjp) (=120,

where «,; are the positive roots of the equation Jp,(¢) = 0. When 1 = A,
equation (8) becomes

T'(t) + ank T(1) =0;
and, except for constant factors,
T,; = exp(— aﬁjkt).
Then
Ryj®, T = Jou(enjp) sin2n exp(— ey ki),

and the principle of superposition enables us to write

©) wp.§.0) = > BujJou(nip) sin2np exp(— okt).
n=1 j=1

Now the nonhomogeneous condition (4) requires that

f(p.9) = Z Z B,j Jon(anjp) sin2ng,

n=1 j=1
or

o0 o0

(10) Fo,8) =D |3 Byj Jan(awip) | sin2n¢ (0<e<7)

n=1 | j=1

When p is fixed, series (10) is a Fourier sine serieson 0 < ¢ < /2, with coefficients

o 4 /2 )
> By o) = = [ (0. 0)sin2ng do.

j=1
Inasmuch as the series on the left here is a Fourier-Bessel series, we need only
refer to case (a) of Theorem 2 in Sec. 91 to see that

. 2
" [JZn+1 (Olnj)]2

1 4 /2
/ p{—/ f(o, )sin2n¢ dd | Jon(on;p) dp.
0 T Jo
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['hat is,

/2
(1) By = o Iaryo) [ (o, ) sin2np d .

8 1
Y [J2n+l (O(nj)]2 ~/0
The formal solution of our boundary value problem is, therefore, series (9) with
coefficients (11), where, for each positive integer », the numbers «,,; (j = 1,2, ...)
are the positive roots of the equation J,,(«) = 0.

97. VIBRATION OF A CIRCULAR
MEMBRANE

Fourier-Bessel series and double series involving them can arise in vibration prob-
lems, as illustrated in the following example.

EXAMPLE. A membrane, stretched over a fixed circular frame p = c in
the plane z = 0, is given an initial displacement z = f(p, ¢) and released at rest
from that position. The transverse displacements z(p, ¢, t), where p, ¢, and z are
cylindrical coordinates, satisfy this boundary value problem:

1 1
(1) 2 = a’ (pr + ; Zp t+ ; Z¢¢) ,
(2) z(c, ¢, 1) =0 (-t <¢<mt=0),
(3) Z(p7¢’0)=f(p7¢)a Zt(p’¢’0)=() (O§P§C,—JT§¢§7T),

where z(p, ¢, t) is periodic with period 27 in the variable ¢ and is also continuous.
A function z = R(p)®(¢) T(¢) satisfies equation (1) if

T// R// R/ (I) "

4 =7 +t—+ 5=

“ a’T R pR p?d

where —A is a separation constant. We separate variables again, this time in the
second of equations (4), and write

o’ 2R// R’
_:_<p + 2 +Ap2>=—u,

= —A,

P R R

where —pu is another separation constant. Evidently, then, the product R® T sat-
isfies the homogeneous conditions in our boundary value problem and has the
necessary periodicity with respect to ¢ if R and & are eigenfunctions of the
Sturm-Liouville problems

(5) p*R"(p) + pR'(p) + (p* — W) R(p) =0,  R(c) =0,
(6) P"(¢) + n@(¢) =0, Q(—m) = P(n), Q' (—m) = P'(m)
and 7T is such that
(7) T'(t) + 1a*T(t) = 0, T'(0) = 0.
We know from Sec. 49 that problem (6) has eigenvalues

po=0,  p,=n n=12,..)
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and corresponding eigenfunctions
Dy(p) =1, D, (¢p) = A, cosng + B,sinng n=12..),
where A, and B, are arbitrary constants. After noting that problem (5) reduces to
pR"(p) + R'(p) + 1 pR(p) =0, R(c) =0

when u = puy = 0 and that case (@) in Theorem 1, Sec. 88, can be combined with
case (@) in Theorem 2 of that section, we find that the eigenvalues of problem (5)
are

hoj = of . hnj =ty (j=1,2..)
for each positive integer n, where «,,; are the positive roots of the equations
Ju(ac) =0 n=0,1,2,..)).

The corresponding eigenfunctions are
Roj = Jo(aojp), R, = Jo(anjp) (G=12,..).
Also,
Toj(t) =1 and 1,;(t) = cosayjat.
The products R® T are now seen to be
Ry ®0Ty; = Jo(oojp) cosapjat (Gj=12,..)
and, whenn =1,2, ...,
R,j®, T, = Ju(onjp) (A, cosng + B, sinng) cos ay;at G=12,..).

The generalized linear combination

oo
(8) 2(p, ¢, 1) = Z AgjJo(aojp) cosagjat
j=1
o0 o0

+ Z Z Ju(onjp)(Apj cosng + By sinng) cos ay;at
n=1 j=1
of these products formally satisfies all of the homogeneous conditions. Observe
thatwhenn = 1,2, ... and the products R,; ®,T,; are multiplied by arbitrary con-
stants, those constants are absorbed into the A, and B,, but that the resulting con-
stants involve the index j. [Compare with the remark immediately following equa-
tion (11) in Sec. 49.] Expression (8) also satisfies the nonhomogeneous condition,
which is the first of conditions (3), if the constants Ag;, A,;, and B,; are such that

©)  flo.¢) = Z 2 Aoj Jo(e; )

i{

when0<p <c,—-7m <¢ <

Z Ayidy (cxn],o)] cosng +

Z B J, (ocn],o)] smnqb}

j=1
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For each fixed value of p, series (9) is the Fourier series for f(p, ¢) on the
interval —m < ¢ < m if

o0 1 T
ZZA()]‘JO(“O]'P) = ;/ flp,p)do

j=1

and
9] 1 -
S g p) = ;/ f(p. ®)cosne de (n=1.2..),
j=1 o
00 1 T )
> Byduteio) = | flo.9sinng dg (n=1,2,..).
j=1 -

The series on the left-hand side of each of these three equations is the Fourier-
Bessel series representation, on the interval 0 < p < ¢, of the corresponding func-
tion of p on the right-hand side. Specifically, case () in Theorems 1 and 2 in Sec. 91
tells us that

1 C T
(10) A()j = W/O ,0-]0(0(0;‘,0) /_7r f(p.d)de dp
and
2 C T
(11) Apj = W/o pJn(0njp) /_nf()o,(p) cosne de¢ dp,
2 C T .
(12) an = W/O ,OJn(Olan) /_n fo,¢)sinng de¢ dp

whenn=1,2,....

The displacements z(p, ¢, t) are, then, given by equation (8) when the coeffi-
cients have the values (10), (11), and (12). We assume, of course, that the function f
is such that the series in expression (8) has adequate properties of convergence
and differentiability.

PROBLEMS

1. The iterated integral (11) in Sec. 96 can be written with the order of integration
reversed as
8 /2 1
Bj=——"""5 Sin2n¢>/ pf(p, @) Jan(anip) dp d.
! 7T[12n+1(0lnj)]2 /0 0 ? !
Obtain this expression for B,; by writing equation (10), Sec. 96, as

o0

flo. )=

j=1

Z B, sin2n¢] Jon (0t p) O<p<l

n=1

and using case (a) of Theorem 2 in Sec. 91 first.
2. Solve the boundary value problem in the example in Sec. 96 when the entire surface
of the wedge is insulated, instead of being kept at temperature zero.
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3. Derive the following expression for the temperatures u(p, ¢, t) in an infinite cylinder
p < 1whenu = 0on the surface p =1 and u = f(p, ¢) at time ¢ = 0:

u(p, ¢, t) = Z AgjJolagjp) eXP(—“(z)jkt)

j=1

+ Z Z J (0t p) (Ayj cosng + By, sinng) exp(—aﬁjkt),

n=1 j=1

where a,,;(j = 1,2, ...) are the positive roots of the equations
J.(a) =0 n=0,1,2,...)

and

1 1 T
Ao = m/o PJo(Olo/',O)/_n flp,9)de dp,

1 T
Ayj / pJn(an,-p)/ f(p, ¢) cosng do dp n=12,..),
0 —

" @)

1 b4
B, = ]2/ pln(anjp)/ f(p, ¢) sinng dep dp (n=12,..).
0 -

T [] n+l1 (Ofnj)
These iterated integrals can, of course, be written with the order of integration reversed.
(See Problem 1.)

4. Show that if the plane ¢ = n/2 in the example in Sec. 96 is replaced by a plane
¢ = ¢, the expression for the temperatures in the wedge will, in general, involve
Bessel functions J, of nonintegral orders.

5. Suppose thatin Sec. 97 the initial displacement function f(p, ¢) is a linear combination
of a finite number of the functions

Jo(ao;p) and Ju(anjp) cosng,  J,(aup)sinng n=1,2,..)).

Point out why the iterated series in expression (8) of that section then contains only
a finite number of terms and represents a rigorous solution of the boundary value
problem.

6. Let the initial displacement of the membrane in Sec. 97 be f(p), a function of p only,
and derive this expression for the displacements when ¢ > 0:

oo

2 Jo(oejp) cosajar [€ _
wp. ) =5 Zl: “h@of /0 sF$)Jo(;s) ds,
e

where «; are the positive roots of the equation Jo(ac) = 0.

7. Show thatif the initial displacement of the membrane in Sec. 97 is A Jy(axp), where A is
a constant and oy is some positive root of the equation Jy(xc) = 0, then the subsequent
displacements are simply

z(p, t) = AJo(axp) cosaiat.

Observe that these displacements are all periodic in ¢ with a common period; thus the
membrane gives a musical note.

8. Replace the initial conditions (3), Sec. 97, by the conditions that z = 0 and z, = 1 when
t = 0. This is the case if the membrane and its frame are moving with unit velocity



SEC. 97 VIBRATION OF A CIRCULAR MEMBRANE 325

in the z direction and the frame is brought to rest at the instant ¢+ = 0. Derive the
expression

2 — sina;at
t =—§ ———Jy(a;p),
2(p, 1) P o(ajp)

2 .
c = ozjll(a]c)

where «; are the positive roots of the equation Jy(ac) = 0, for the displacements when
t > 0.

9. Suppose that the damped transverse displacements z(p, t) in a membrane, stretched
over a circular frame, satisfy the conditions

1
ZHZpr-f-;Z,,—sz[ O<p<1,t>0),

z(1,1) =0, z2(p,0) =0, z/(p, 0) = vo.

The constant coefficient of damping 2b is such that 0 < b < a4, where «; is the smallest
of the positive zeros of Jy(«). Derive the solution

o0 =2 S 2 S TET)
j=1 !

where Jy(a;) = 0 (a; > 0), of this boundary value problem.




CHAPTER

10

LEGENDRE
POLYNOMIALS
AND
APPLICATIONS

As we shall see later in this chapter (Secs. 107 and 108), an application of the
method of separation of variables to Laplace’s equation in the spherical coordi-
nates r and 6 leads, after the substitution x = cos 6 is made, to Legendre’s equation

(1) [(1 = x)y' ()] + Ay(x) =0,

where A is a separation constant. The points x = 1 and x = —1 correspond to
0 = 0and @ = =, respectively, and we begin the chapter by using series to discover
solutions of equation (1).

98. SOLUTIONS OF LEGENDRE’S
EQUATION

To solve Legendre’s equation, we write it as
M (1 —x%)y"(x) = 2xy'(x) + Ay(x) =0
and observe that, in standard form, it is a special case of

y'(x) + P(x)y (x) + O(x)y(x) =0,

where each of the functions

—2x
1—x2
has a Maclaurin series representation with positive radius of convergence. Thus

x = 0is an ordinary point of the differential equation (1), and we seek a solution
326

A
P(x) = and Ox) = -
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of the form"
e .
(2) y= Z a;x 7,
j=0
where the series is assumed to be differentiable.
Writing

[o.¢] oo
y = Z jajxi™! and y' = Z j(j —Dajx'=?
j=0 j=0

and then substituting series (2) and these two derivatives into equation (1), we
have

Zj(j —Dajx/™? —Zj(j — Dajx’ —ZZja,-x/ +Zkajx/ =0,
j=0 j=0 j=0 j=0

which is the same as
> G =Dax? =3[ = 1) +2j — Aaix’ =0.
j=0 j=0
Since the first two terms in the first series here are actually zero and since
JG=D+2j=jG+D
in the second series, we may write
> iG=Dax =3[+ 1) = Aax’ =0.
j=2 j=0

Finally, by putting the second of these two series in the form
Y IG =G = 1) = Aajox/ 72,
j=2

we arrive at the equation
@) Z G =Da —[( =2 — 1) —Maj_2}x' 2 =0,
j=2

involving a single series.
Equation (3) is an identity in x if the coefficients g; satisfy the recurrence

relation

J=2G—-D—2
4 P =
@ K iG-1D

The power series (2) thus represents a solution of Legendre’s equation within its
interval of convergence if its coefficients satisfy relation (4). This leaves a¢ and a;
as arbitrary constants.

Llj_z (]22,3,)

For a discussion of ordinary points and a justification for this, see, for example, the books referred to
in the footnote Sec. 81.
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If a1 =0, it follows from relation (4) that a3 = as = --- = 0. Thus, one
nontrivial solution of Legendre’s equation, containing only even powers of x, is
oo
o) yi=ao+ ) ayx™* (ap # 0),
k=1

where qag is an arbitrary nonzero constant and where the remaining coefficients
az, aq, . . . are expressed in terms of ay by successive applications of relation (4).
(See Problem 4, Sec. 99.) Another solution, containing only odd powers of x, is
obtained by writing ap = 0 and letting a; be arbitrary. More precisely, the series

[o.¢]
(6) Y =aix + Z agq ¢ (a1 #0)
k=1
satisfies Legendre’s equation for any nonzero value of a; when as, as, . . . are writ-
ten in terms of a; in accordance with relation (4). These two solutions are, of
course, linearly independent since they are not constant multiples of each other.
From relation (4), it is clear that the value of A affects the values of all
but the first coefficients in series (5) and (6). As we shall see in Sec. 99, there
are certain values of A that cause series (5) and (6) to terminate and become
polynomials. Assuming for the moment that series (5) does not terminate, we
note from relation (4), with j = 2k, that

az(k+1)x2(k+l)

2hQk+1)—x |
a2k :

Tl |k ek+ | T

So, according to the ratio and absolute convergence tests, series (5) converges
when x? < 1 and diverges when x? > 1. Although it is somewhat more difficult to
show, series (5) diverges when x = +1.7

Similar arguments apply to series (6). In summary, then, if A is such that
either of the series (5) or (6) does not terminate and become a polynomial, that
series converges only when —1 < x < 1.

lim

k—o00

99. LEGENDRE POLYNOMIALS
When Legendre’s equation
(1= x%)y"(x) = 2xy'(x) + hy(x) = 0

arises in the applications, it will be necessary to have a solution which, along with
its derivative, is continuous on the closed interval —1 < x < 1. But we know from
Sec. 98 that unless it terminates, neither of the series solutions

(1) y1=ao+ Z agex*t (ap #0),
k=1
() »=ax+ 202k+1x2k+1 (a1 # 0)
=1

obtained there satisfies those continuity conditions.

TSee, for instance, the book by Bell (2004), listed in the Bibliography.
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Suppose now that the parameter A in Legendre’s equation has one of the
integral values

3) A=nn+1) n=0,1,2,..),
and then rewrite the recurrence relation (4) in Sec. 98 as

@ L _iU+D—nmtD)
TG+ Y

Note how it follows from relation (4) here that

(j=01,2,..).

Ani2 = Qpyg = Apie = -+ = 0.

Consequently, one of the solutions (1) and (2) is actually a polynomial, when A has
one of the values (3).

We now examine that polynomial, first when 7 is even and then when # is
odd.

(i) n is even
If n = 0, relation (4) tells us that

@m=as=as="---=0;

and series (1) becomes simply y; = ag. Moreover, if nis any one of the even integers
2,4,6, ..., that series is evidently a polynomial of degree n:

(5) yi =ag+ax* + -+ ax" (an #0).

Observe that series (2) remains an infinite series when # is even.
If n is even, it is customary to assign a value to a, such that when the coef-

ficients a, ..., a, in expression (5) are determined by means of relation (4), the
final coefficient a,, has the value

0L
(6) an = zn(n!)z'

The reason for this requirement is that the polynomial (5) will then have the value
unity when x = 1, as will be shown in Sec. 101. The precise value of g that is
needed is not important to us here. Using the convention that 0! = 1, we note that
ap = 1if n = 0. In that case, y; = 1.

(i) n is odd
If n = 1, we find from relation (4) that y, = a;x, since

a=as=a;=---=0;
and if n is any one of the odd integers 3, 5,7, ..., series (2) becomes
(7) V= a1x +azx> + - - + a,x" (an #0).

Observe that when # is odd, series (1) continues to be an infinite series.

When 7 is odd, we choose a; so that the final coefficient in expression (7) is
also given by equation (6). The reason for this choice is similar to the one above
regarding the value assigned to ay. Note that y, = x if n = 1, since a; = 1 for that
value of n.
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When n = 2,3, ..., relation (4) can be used to write all of the coefficients
that precede a,, in expressions (5) and (7) in terms of a,,. To accomplish this, we first
observe that the numerator on the right-hand side of relation (4) can be written

JG+D=nm+1) == = ) + (= Pl == Hn+j+1).
We then solve for a;. The result is
(G+2G+1

®) R P Y B |

To express a,_» in terms of a,, we now use relation (8) to write the following k
equations:

ajyn.
j+2
)

o E=D
@@n-1)""
. __(n—2)(n—3)a
n—4 — (4) (21’1 — 3) n—2»
n—-2k+2)(n—2k+1)
an_2k = — Ap_2k+2-

(2k)2n —2k+1)
Equating the product of the left-hand sides of these equations to the product of
their right-hand sides and then canceling the common factors
Ap—2,0p—-4, ..., an72k+2
on each side of the resulting equation, we find that
(—1)* nn—1)---(n—2k+1) .
2Kkl 2n—1)2n—=3)---2n—2k+1) "

Then, upon substituting expression (6) for a, into equation (9) and combining
various terms into the appropriate factorials (see Problem 1), we arrive at the
desired expression:

) Qp_ok =

1 =D (2n — 2k)!
(10) WU TR = 20l — Rl

As usual, 0! = 1.
In view of equation (10), the polynomials (5) and (7), when the nonzero
constants ag and a; are such that a,, has the values (6), can be written

1 &S (—DF (2n — 2k)! 2k

11 Pu(x) = — : =0,1,2,...),
(1) =72 2K -2l -k o )
where
_fn/2 if n is even,
M=Ym-1/2  ifnisodd.

Another expression for P,(x) will be given in Sec. 101. Note that since B,(x) is
a polynomial containing only even powers of x if n is even and only odd powers
if n is odd, it is an even or an odd function, depending on whether n is even
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or odd; that is,
(12) Pi(—x) = (=1)" Py(x) n=0,1,2,...).

The polynomial P,(x) is called the Legendre polynomial of degree n. For the
first several values of n, expression (11) becomes (see Fig. 74)

P(x) =1, Pi(x)=x,
Py(x) = %<3x2 -1, Py(x) = %(Sx3 — 3x),

1 1
Pi(x) = 3 (35x* — 30x% + 3), Ps(x) = 3 (63x° — 70x> + 15x).

Observe that the value of each of these six polynomials is unity when x =1, as an-
ticipated. Also, the polynomials Py(x), P»(x), and Py(x) contain only even powers
of x, while P;(x), P;3(x), and Ps(x) contain only odd powers.

P}’l (‘x)

FIGURE 74

We have just seen that Legendre’s equation
(13) (1 —x?)y"(x) = 2xy'(x) + n(n+ D yx) =0 n=0,1,2,...)

always has the polynomial solution y = P,(x), which is solution (5) (n even) or
solution (7) (n odd) when appropriate values are assigned to the arbitrary con-
stants ap and a; in those solutions. Details regarding the standard form of the
accompanying series solution, which is denoted by O, (x) and is called a Legendre
function of the second kind, are left to the problems. We, of course, know from
the statement in italics at the end of Sec. 98 that the series representing O, (x)
is convergent only when —1 < x < 1. It will, however, be sufficient for us to
know that Q,(x) and Q, (x) fail to be a pair of continuous functions on the closed
interval —1 < x < 1 (Problem 12, Sec. 105). Since P,(x) and Q,(x) are linearly
independent, the general solution of equation (13) is

(14) y= G Pn(x) +G Qn(x)a

where C; and C, are arbitrary constants.
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PROBLEMS

1. Give details showing how expression (10) in Sec. 99 for the coefficients a,_5; in the
Legendre polynomials is obtained from equations (6) and (9) there.
Suggestion: Observe that the factorials in equation (6), Sec. 99, can be written

Cn)! = 2n)2n—-1)2n—-2)---2n—-2k+1)(2n — 2k)!,
n=nmn-1)---(n—2k+ 1(n —2k)!,
n=nn-1)---mn—k+1)(n-k).

2. With the aid of expression (11), Sec. 99, for P,(x), show that when n = 2,3, ..., the

constants gy and a; in equations (5) and (7) in that section must have the following
values in order for the final constant a,, to have the value specified in equation (6) there:

OBAG)---(n=1
= (=12 =2,4,...),
“=C T e@e - m . )
- OO
— (=12 =3,5..).
“=E T ow® -1 " :
3. Establish these properties of Legendre polynomials, where n =0, 1,2, ... :

. 2l
(@) P, (0) = (-1 Zrgane

©) P10 =0; (@) P),,,(0)=(2n+1)Py0).
Suggestion: For parts (a) and (d), refer to Problem 2.

(b P,0)=0;

4. Legendre’s equation (1), Sec. 98, is often written
(1= x)y"(x) = 2xy'(x) + v(v + Dy(x) =0,
where v is an unrestricted complex number. Show that when A = v(v + 1), recurrence
relation (4), Sec. 98, can be put in the form

v=—j+2)0+j-1 .
a; = — — a_ (j=2,3,..).
! jG =1 "~ !
Then, by proceeding as we did in solving Bessel’s equation (Sec. 81), use this relation
to obtain the following linearly independent solutions of Legendre’s equation:

= ao{l + Z(—l)k

k=1

w=2)-- v =2k+ D[V + DV +3)---(v+2k—1)] 2k
2k)! ’

V= al{x + Z(—l)k

k=1

[0 =DE =3 =2k+D][(v+2)(v +4)--- (v + 2k)] 2k
2k+ 1! ’

where gy and a; are arbitrary nonzero constants. (These two series converge when
—1 < x < 1, according to Sec. 98.)
5. Show that if v is the complex number

1
U=—§+il¥ (a > 0),
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Legendre’s equation in Problem 4 becomes
2N 1, / 1 2
1 =x7)y"(x) = 2xy'(x) — Z+°‘ y(x) = 0.

Then show how it follows from the solutions obtained in Problem 4 that the functions

- ? : _2\?%| 2
B e e
k=1 !

> 3\’ 7\’ 4k —1\"| x2%+1
@l =3+ a2+<5) a2+(§>1...[a2+< 2 >1(2)1i+1)|
k=1 ’

are linearly independent solutions of this differential equation, valid on the interval
—1 < x < 1. These particular Legendre functions arise in certain boundary value prob-
lems in regions bounded by cones.

Note that the solutions y; and y, obtained in Problem 4 are solutions (5) and (6) in
Sec. 98 when A = v(v + 1). They remain infinite series when v = n = 1,3,5, ... and
v=n=0,24,..., respectively. Whenv =n =2m(@m = 0,1,2,...), the Legendre
function Q, of the second kind is defined as y,, where

2m)! ’
and whenv=n=2m+1(m=0,1,2,...), O, is defined as y;, where
(_1)m 22m (m|)2

a =

ap = —

Cm+1)!
Using the fact that
1 +x d x2k+1

ZZk—{-l (-1<x<1,
k=0

show that

1 1 1
Qo(x):§1n1+x and O1(x) = fl L—1_xQ0(x)—1
—x

100. RODRIGUES’ FORMULA
Expression (11), Sec. 99, tells us that

(— 1)k (2n — 2k)! 2k

P,(x) = 2" 2 K =20l — k) n=0,1,2,...),
where
. {n/Z if n is even,
(n—1)/2 if nisodd.
That is,
" ! — 2!
D B =5 ;(—1)" ” _"I'{)!k! : ((2:_ 2215), x 2k (n=0,1,2,..).
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Since
A" ok _ (2n — 2k)!
dxn (n — 2k)!
and because of the linearity of the differential operator d” /dx", expression (1) can
be written

X'k O<k<m

1 dar = n! 2\ n—k k
@ B0 = 5ot o kz_% o &) D

The powers of x in the sum here evidently decrease in steps of 2 as the index
k increases; and the lowest power is 2n — 2m, which is n if n is even and n + 1
if n is odd. The sum can actually be extended so that k ranges from 0 to n. This
is because the additional polynomial that is introduced is of degree less than n,
and its nth derivative is, therefore, zero. Since the resulting sum is the binomial
expansion of (x> — 1)", it follows from equation (2) that

n
2nn! dx®
This is Rodrigues’ formula for the Legendre polynomials.

Various useful properties of Legendre polynomials are readily obtained from

Rodrigues’ formula with the aid of Leibnitz’ rule for the nth derivative of the
product of two functions (Problem 2, Sec. 102):

(3) Pi(x) = x> =1 n=0,1,2,...).

n

(4) D'(fe) =)

k=0

n!

m (D" f)(D*g),

where it is understood that all of the required derivatives exist and that the zero-
order derivative of a function is the function itself.

EXAMPLE 1. If we write u = x2 — 1, so that
W=x>-1)"=x-1D"(x+1"

it follows from Leibnitz’ rule that
- n!
Dnn= ank _1n Dk 1n.
u ;—(n_k)!k![ (x = ')[D*(x + 1)"]
Now the first term in this sum is
[D"(x — 1)"|[D°(x + 1)"] = n!(x + 1)",

and the remaining terms all contain the factor (x — 1) to some positive power.
Hence the value of the sum when x = 1 is n!2”, and it follows from Rodrigues’
formula (3) that

(5) P =1 n=0,1,2,...).
Observe how it follows from this and the relation

P.(—x) = (=1D)"P,(x) n=0,1,2,...),
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obtained in Sec. 99, that

(6) P,(—1) = (-1)" n=0,1,2,...).
EXAMPLE 2. We turn now to the derivation of an important recurrence

relation,

(7) (n+ 1) Py (x) + nB1(x) = Cn+ Dx By (x) n=12,..),

which is to be used in Sec. 104.
Our derivation is based on the following two identities, where u = x> — 1:

(8) Du™' = D(x?* — 1) = 2(n + Dxu” n=0,1,2,...),

9) D" =2+ 1)[2n + Du" + 2nu ] n=0,1,2,...).
Identity (8) is obvious and enables us to write
D(Du™y = 2(n+ 1)(u" + x Du™)
=2(n+ D@ + 2nx*u" Y
=2+ D[u" +2n(x* — Du" 1 + 2nu"’1],

which is the same as identity (9).
We start by using Rodrigues’ formula (3) to write

DDyt
20t +1)!
In view or expression (9), this tells us that
Qn+ 1) D" " + 2n D" 1y
2mn) '

Referring to Rodrigues’ formula once again, we have

Poi(x) =

Pn+1 (X) =

D =2 Y= DHIP,_ (),
and so it follows that

@n+1)D" " +2"n! B,_1(x)

Pi1(x) = S

That is,

Pn+1(x) - Pn—l(x) _ anlun
2n+1 © 2npl

On the other hand, we see from Rodrigues’ formula (3) and expression (8)

(10)

that

D"(DuYy  D"(xu")  D"(u'x)
2 (1) 2l 2l
Inasmuch as the first two terms of Leibnitz’ rule (4) are

D"(fg) = (D" f)g +n(D" ' f)(Dg) +---,

Poyi(x) =
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this yields

Paa() = 222 ;:!Dn_lun
Because
(11) D"u"* =2"n! P, (x),
then,
12) Poyi() —xPy(x) D"

n 2!
Finally, by equating the left-hand sides of equations (10) and (12), we arrive
at recurrence relation (7). Note, too, that the relation

(13) P (x)—B,_;(x) =@2n+ 1) B(x) n=1,2,..)

is an immediate consequence of equations (10) and (11).

101. LAPLACE’S INTEGRAL FORM

We recall having a useful integral form for Bessel functions J,(x) in Sec. 84 that
gave us an upper bound for |J,(x)|. We turn here to a well known integral form
for Legendre polynomials and obtain similar upper bounds for | P,(x)|. We state
the main result as a theorem and preface it with the following lemma.

Lemma. Every polynomial
n
(1) q(x) = ax*
k=0

satisfies the identity

1 7 .
() q(0) = 5~ / q(x + ye'?) de,
jT T

where x and y are independent of ¢.

Our proof begins with the integral

T 2r  whenm=0
im¢ _ 5
®) /_ﬂe d¢_{0 whenm=1,2,....

The value of this integral is obvious when m = 0. When m = 1,2, ..., Euler’s
formula enables us to write’

/7r eim¢’d¢=/ﬂ(cosm¢+i5inm¢)d¢=/” cosm¢>d¢+i/jr sinme d¢ = 0.

- —

TFor a careful treatment of the evaluation of integrals of complex-valued functions of a real variable,
see, for example, Sec. 38 of the authors’ book (2009) that is listed in the Bibliography.
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Now, the binomial formula tells us that
(x + yeF = x* 4 kK1 (yei?) 4 .. 4 (yei)k:
and, since each term on the right here, including x, has a factor of the form
elmne m=0,1,2,...,k),

it follows from integral (3) that
1 [ :
—/ (x+ye’¢’)kd¢>=xk k=0,1,2,...,n).
27 ),

Expression (1) thus becomes

- 1 /" : 1 [ ;
g =) aks— 1 adyedp = 5o [ D ax+ye?) dg.
k=0 k=0
This result is the same as expression (2), and the lemma is proved.
We are now ready to prove the following theorem, which expresses each
P,(x) in a form known as Laplace’s integral form.

Theorem. Each Legendre polynomial has the integral representation

1 T
@) P,(x) = —/ (x+Vx2—1cosg)" do n=0,1,2,...).
T Jo
To prove this theorem, we write g(x) = P,(x) in equation (2):
1 [" ,
5) B0 =5 [ Bt ye) do.
27 J_,
But we know from Rodrigues’ formula (Sec. 100)
dr 1, "
P = 7 {Znn! -1 }
that
Py(x) = p™(x) n=0,1,2,..)
where
(6) p) = (> =1)"

2"'n!

and p™ (x) denotes the nth derivative of p(x). Consequently, equation (5) can be
written

1 T :
(7) Pi(x) = — / P (x + ye'?) dé.
27 J_,
As usual, we agree that 0! = 1 and p©@ (x) = p(x).
Now it is readily shown (Problem 5, Sec. 102) that

T kb (k) id k+1 (" ki n—k—1) i
(8) / e P (x + ye )d¢=7 e p (x + ye'?)do,

'
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where, in addition to x and y (y # 0) being independent of ¢, the integer k is such
that 0 < k < n — 1. Successive applications of this reduction formula enable us to
write equation (7) as

v _
©) F(x) = Zn. - / e p(x 4 ye'?)dg.
Ty )

Finally, if we require that x # +1, write y = +/x2 — 1, and then use the fact
(Problem 6, Sec. 102) that

1 A
(10) %e"”q’p(x + ye'?) = (x + Vx2 — 1cos )",
we can see how expression (9) becomes
1 T
P,(x) = —/ (x+vVx2—=1cos¢)" do,
21 ),

which is the same as expression (4) in the statement of the theorem. Note that
since P,(1) = 1 and B,(—1) = (—1)" (Sec. 100), expression (4) is also valid when
x = #£1. Hence it is valid for all x, and the proof of the theorem is complete.

102. SOME CONSEQUENCES
OF THE INTEGRAL FORM

In this section we establish two upper bounds for | P,(x)| that follow from Laplace’s
integral form

D P,(x) = %/ﬂ(x+vx2—1cos¢)”d¢ n=0,1,2,...),
0

obtained in Sec. 101.
Suppose that —1 < x < 1. Since x = cosf for some value of § between 0
and 7 inclusive, expression (1) can be written

(2) P,(cosf) = %/ (cos @ +isinf cos )" do 0 <0 <m).
0

Furthermore, since cos?0 = 1 — sin’# and cos? ¢ = 1 — sin’ ¢,
|cos® + isinécos¢| = (cos’ 6 + sin’ 6 cos’ »HP=(1- sin® 0 sin® )V
and this means that
1 [ 1 [
|Py(cosB)| < — / |cosO +isinfcos¢ |" dp = —/ (1 —sin® 6 sin® $)"% d¢.
T Jo T Jo
Moreover, since sin(7 — ¢) = sin ¢, we see that
2 x/2
(3) |P,(cos0)| < = / (1 —sin® 0sin® $)"* dp.
T Jo
Finally, since 0 < 1 — sin” 6 sin® ¢ < 1 for all values of 8 and ¢, it follows from
inequality (3) that | P,(cos6)| < 1, or that
4) |P,(x)] <1 when —-1<x<1,

wheren=20,1,2,....
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To obtain another important consequence of inequality (3), we assume that
0<6 <m and 0<¢><%.
It is evident from the graphs of
2
y=sing and y=—¢
T
that

2
sing > —¢ and 0<¢<£.
b4 2

<2$in9 )2
u= o,
T

it is straightforward to show that

1—sin?@sin’¢ <1 —u.

So if

Also,1 —u < e™(u > 0), as can be seen graphically or from the Maclaurin series
for e7*. According to inequality (3), then,

2 /2 2nsi 2
(5) |P,(cos 0)| < —/ exp (— o 9¢>2> de 0 <0 <m)
T Jo T

wheren=1,2,....
Changing the variable of integration in this last integral by means of the
substitution (Problem 7)

V2nsin @ #

g

(6) s =

and noting that because the integrand is always positive, the resulting upper limit
of integration can be replaced by co, we find that

(7) | P,(cos8)| < \/% ﬁ/o exp (—s?) ds 0 <6 <n),

wheren=1,2,....
Finally, since the value of this improper integral is /7 /2 (Problem 9, Sec. 58)
and since

sin0=\/1—00529=\/1—x2

when x = cos 8, we arrive at the inequality

3
(8) | Ph(x)] < I —x?) (-1 <x<1),
where n =1, 2, .... Thus, for each fixed x in the interval —1 < x < 1,

M
(9) |Pn(x)| < W (n=1527"')7

where the value of M depends only on the choice of x.
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PROBLEMS

1. From recurrence relation (13), Sec. 100, obtain the integration formula

1
1
/a P,(x)dx = il [Pi—1(a) — Piyi(a)] n=1,2,..).

2. Use mathematical induction on the integer n to verify Leibnitz’ rule (4), Sec. 100.
3. Write

F(x,t) = (1 —2xt 4+ 13712,
where |x| < 1 and 7 is as yet unrestricted.

(a) Note that x = cos6 for some uniquely determined value of 6 (0 < 6 < 7), and
show that

Fx,t)=(1—=€)"121 —e )12,

Then, using the fact that (1 — z)~'/2 has a valid Maclaurin series expansion when
|z| < 1, point out why the factors (1 — ¢?¢)~"/? and (1 — e~?¢)~1/2, considered as
functions of ¢, can be represented by Maclaurin series that are valid when |¢]| < 1.
It follows that the product F(x,t) also has such a representation when |¢| < 1.7
That is, there are functions f,(x) (n =0, 1,2, ...) such that

Fr,n= for" (t] < 1.

n=0
(b) Show that the function F(x, ) satisfies the identity

oF
(1 =2xt+1%) == (x —1)F,

and use this result to show that the functions f,(x) in part (a) satisfy the recurrence
relation

(n+1) fa1 (0) + nfmi(x) = Cn+ Dxf(x) (n=12,..).

(¢) Show that the first two functions fy(x) and fi (x) in part (a) are 1 and x, respectively,
and notice that the recurrence relation obtained in part (b) can then be used to de-
termine f,(x) whenn = 2,3, ... . Compare that relation with relation (7), Sec. 100,
and conclude that the functions f,(x) are, in fact, the Legendre polynomials P,(x);
that is, show that

(=2t +A72 =3 " R (Ix] <1, J¢] < 1).
n=0
The function F is, therefore, a generating function for the Legendre polynomials.
4. Give an alternative proof of the property (Sec. 100) P,(1) =1 (n =0,1,2,...), using
(a) recurrence relation (7), Sec. 100, and mathematical induction;
(b) the generating function obtained in Problem 3(c).
5. Use integration by parts to obtain the reduction formula (8) in Sec. 101.
Suggestion: Start by writing the left-hand side of the formula as

T d |1 ;
/ e_’(k+l)¢% |:Ep(n—k—l)(x +yel¢) d¢,

TFor a discussion of this point, see, for example, the authors’ book (2009, pp. 222-223), listed in the
Bibliography.
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so that

1 .

| o pn—k=D iy do.

4% l.yP (x +ye'®)| do

6. Derive identity (10), Sec. 101, where x # +1 and y = +/x2 — 1.
Suggestion: The expression

u=e "D and dv =

et + e
2
which follows from Euler’s formula e/ = cos ¢ + i sin ¢, is needed here.

7. In Sec. 102, give details showing how the substitution (6) transforms inequality (5) into
inequality (7).

CcCos ¢ =

103. ORTHOGONALITY OF LEGENDRE
POLYNOMIALS

Let X(x) denote the dependent variable in Legendre’s equation, with arbitrary A:
1 —x)X"(x) = 2xX'(x) + A X(x) = 0.

Writing this equation in the form

ey [ = x*) X' W) +2X) =0,

we see that we have a special case of the Sturm-Liouville differential equation
() [r() X' 0] + [g(x) + Ap(x)] X(x) = 0,

where

px)=1, ¢gx)=0, and r(x)=1-— x>

The function r(x) vanishes at x = +1; thus, as already pointed out in Example 2,
Sec. 68, equation (1), without boundary conditions, is a singular Sturm-Liouville
problem on the closed interval —1 < x < 1, where X and X’ are required to be
continuous on that interval.

The following theorem provides us with all the solutions of problem (1).

Theorem. The eigenvalues and corresponding eigenfunctions of the singular
Sturm-Liouville problem

(3) [(1=x)X'(X)] +1X(x) =0 (-l<x<1)
are
4) Ao=nn+1), X, = P,(x) n=0,1,2,..),

where P,(x) are the Legendre polynomials. The set {P,(x)} (n = 0,1,2,...) is,
moreover, orthogonal on the interval —1 < x < 1, with weight function unity.

We start the proof by recalling from Sec. 99 that P,(x) and Q,,(x) are linearly
independent solutions of equation (3) when A has any one of the values

M=nn+1) n=0,1,2,...).
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Since the polynomial P,(x) and its derivative are continuous on the entire interval
—1 < x < 1 andsince thisis not true of the Legendre function Q,(x), itis clear that
the continuity requirements on X and X’ are met only when Xis a constant multi-
ple of P,(x). Hence the A, and X, in the statement of the theorem are, in fact, eigen-
values and eigenfunctions. It remains to show that there are no other eigenvalues.

To accomplish this, we first observe that since the eigenfunctions just noted
all correspond to different eigenvalues, the set { P,(x)} (n =0, 1,2, ...) is, in fact,
orthogonal on the interval —1 < x < 1, with weight function p(x) = 1. (See Theo-
rem 1 in Sec. 69.) That is,

1
5) / P,(x)P,(x)dx =0 (m # n).
-1

In the notation used for inner products, property (5) reads (P, B,) = 0 (m # n).
Later (Sec. 105) there will be a theorem telling us that if a function f is piecewise
smooth on the interval —1 < x < 1, then the generalized Fourier series for f with
respect to the orthonormal set of functions

P, (x)
6 () =
(6) Pn(x) W

converges to f(x) at all but possibly a finite number of points in the interval
—1 < x < 1. The set {¢,(x)} is, therefore, closed (Sec. 62) in the function space
Cl’,(—l, 1), defined in Sec. 9. That is, there is no function in C[’,(—l, 1), with positive
norm, that is orthogonal to each of the functions (6).

Suppose now that A is another eigenvalue, different from those listed in
the statement of the theorem, and let X denote an eigenfunction correspond-
ing to 1. Because of the orthogonality of eigenfunctions corresponding to dis-
tinct eigenvalues, (X, ¢,) =0 (n=0, 1,2, ...) where the functions ¢, are those in
equation (6). But the fact that {¢,(x)} is closed requires that X, which is continu-
ous on the entire interval —1 < x < 1, have value zero for each x in that interval.
Consequently, since an eigenfunction cannot be identically equal to zero, X is not
an eigenfunction. In view of this contradiction, there are no other eigenvalues;
and the proof of the theorem is finished.

If the interval 0 < x < 1, rather than —1 < x < 1, is used, the differential
equation (1) along with either one of the boundary conditions X’(0) = 0, X(0) = 0
is also a singular Sturm-Liouville problem (Sec. 68).

n=0,1,2,...)

Corollary. The eigenvalues and corresponding eigenfunctions of the singular
Sturm-Liouville problem consisting of the differential equation

(7) [A—xHX'(x)] +1X(x) =0 O<x<1)
and the boundary condition X'(0) = 0 are

(8) An=2nQ2n+1), X, = Py (x) n=0,1,2,...).
If the condition X(0) = 0 is used instead, the eigenvalues and eigenfunctions are
9) An=02n+1)2n+2), Xy = Pyi(x) (n=0,1,2,...).

The sets { Py, (x)} (m =0,1,2,...) and { Py,11(x)} (m =0, 1,2, ...) are, in addition,
orthogonal on the interval 0 < x < 1, with weight function unity.
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To see how these solutions arise, we consider first the solutions in the theorem
when the condition X’(0) =0 is imposed on them. Since P,(0) =0 only when # is
even (Problem 3, Sec. 99), it follows that the polynomials P,.1(x) (n =0,1,2,...)
must be eliminated. This leaves the eigenvalues and eigenfunctions (8). If, on the
other hand, the condition X(0) = 0 is imposed, the fact that F,(0) = 0 only when
nis an odd integer leads us to the eigenvalues and eigenfunctions (9).

Theorem 1 in Sec. 69, regarding the orthogonality of eigenfunctions,
ensures the orthogonality stated in the above corollary:

1
(10) [ Pntor P =0 (m % n)
0
and
1
(11) / Popy1(X) Py (x) dx =0 (m # n),
0
where m=0,1,2,... and n=0,1,2,.... Valid representations of piecewise

smooth functions on the interval 0 < x < 1 will follow (Sec. 105) from representa-
tions on the interval —1 < x <1 in terms of the set { P,(x)} (n =0, 1,2, ...),just as
Fourier cosine and sine series follow from Fourier series involving both cosines and
sines. Hence the same argument, involving closed sets, that was used in the proof
of the theorem above can be used to show that there are no other eigenvalues of
the Sturm-Liouville problems in the corollary.

104. NORMALIZED LEGENDRE
POLYNOMIALS

We saw in Sec. 103 that the set P,(x) (n =0, 1, 2, ...) of Legendre polynomials is
orthogonal on the interval —1 < x < 1 with weight function unity. We also saw
that the sets P, (x) (n =0,1,2,...) and P,11(x) (n =0,1,2,...) are orthogonal
on the interval 0 < x < 1 with that same weight function. In this section, we
shall normalize (Sec. 60) these polynomials and present the results as a theorem.
This will enable us to find the coefficients in various series expansions involving
Legendre polynomials.

Theorem. In each of the following cases, the weight function is unity.

(a) The set
ont0 = | L R (n=0,1,2,..)

is orthonormal on the interval —1 < x < 1.

(b) The set
$n(x) = VAn + 1 Poy(x) n=0,1,2,...)
is orthonormal on the interval 0 < x < 1.
(¢) The set
Bn(x) = VAn +3 Pryy1 (x) (n=0,1,2,..)

is orthonormal on the interval 0 < x < 1.



344 LEGENDRE POLYNOMIALS AND APPLICATIONS CHAP. 10

In order to verify statement (a) in the theorem, we need to find the norms

1 12
1Pl = (P, P)'? = {/ [Pn(x)]zdx} (n=0,1,2,...).
~1
We do this with the aid of the recurrence relations
1) n+1DP(x) +nb_1(x) = 2n+ DxP,(x) n=12..).
obtained in Example 2, Sec. 101, and
() nB(x)+ (n—1)P,_2(x) =2n—DxP,_1(x) n=2,3,...),

which is found by replacing n by n — 1 in relation (1). Because
(Put1, b)) =0 and (B2, B) = 0.
it follows from relations (1) and (2) that
n(Pu-1, Ph1)

(3) Tt (x By, Bi—1)
and

an Pn
4) % = (xB_1, B.

The integrals representing (x P,, P,_1) and (x P,_1, P,) are identical, and we need
only equate the left-hand sides equations (3) and (4) to see that

(21’[ + 1)(Pn7 Pn) = (21’l - 1)(Pn—1, Pn—l)s
or
) Cn+DIP* = 2n— D P1l? n=23,..).

It is easy to verify directly that equation (5) is also valid in the case n = 1, involving
P (x) = x and Py(x) = 1.

Next, we let n be any fixed positive integer and use equation (5) to write the
following n equations:

Cn+ DIBI? = Cn— DI Pl
@n— DI Pill* = @n = 3)|| Piall?,

GOIBI* = Q)P
QIPI* = DI P>

Setting the product of the left-hand sides of these equations equal to the product
of their right-hand sides and then canceling appropriately, we arrive at the result

Cn+ DRI = IRl (n=12,..).

Since || Py||> = 2, this means that

(6) I Ball =

=0,1,2,...).
2n+1 (n )
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The set of polynomials

B 2n+1 _
(7) Pn(x) = Y =1/ 5 P n=0,1,2,...)

is, therefore, orthonormal on the interval —1 < x < 1, as stated in part (a) of the
theorem.

As for part (b), we need to evaluate
1 1 1
121 = [ (PP dx =5 [ [PutoPdx.
0

Since this last integral represents the square of a norm in part (@), the norm (6)
tells us that

Il Py 12 ! 2 _ 1.
2T a1 dns U
and the orthonormal set is
P, (x
(8) Pu(x) = —”2;( ll) =VaAn+1 Py (x). n=0,1,2,...).
2n
Finally, in part (c) we must find
| Ponia|)* = / [Pon1 ()] / [Pons1(0)]* dx.

Since this last integral also represents the square of a norm in part (a), we know
from the norm (6) that

PPt 2= 1
2 = S a3 A3
So
Py,
9) bu(x) = —Hzp“ (x”) = VAn + 3 Pyi1 (x) (n=0,1,2,..),
2n+1

and the proof of the theorem is complete.

105. LEGENDRE SERIES

The theorem in Sec. 104 gave us three different orthonormal sets involving Leg-
endre polynomials. In this section, we apply the theory of generalized Fourier
series to those sets and arrive at three different types of Legendre series that will
be useful in the applications. We recall from Sec. 62 that for a given function f
and orthonormal set ¢,(x) (n = 0,1,2,...), defined on an interval a < x < b
and with weight function unity, the coefficients ¢, in a generalized Fourier series
correspondence

(1) F@~D cndn(x) (a<x<b)
are B

b
(2) = (f, ) = / fX)dn(x) dx n=0,1,2,...).

The three cases (a), (b), and (c) in the following theorem use the three cases
(a), (b), and (c), respectively, in the theorem of Sec. 104.
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Theorem 1. Let f be piecewise continuous on the indicated interval.

(a) If A, (n=0,1,2,...) are the coefficients in the correspondence

J(x) ~§:AnPn(x) (-1 <x<1),
n=0
then
A, = 2”; 1/]1 F00) Pa(x) dx n=0,1,2,..).
(b) If Ay, (n=0,1,2,...) are the coeﬁ‘ic;ents in the correspondence
fx) ~ i Aop Prp(x) 0<x<1),
n=0

then
1
Ay, = (4n+1)/ f(x) Py (x) dx n=0,1,2,...).
0

(¢) If Aypyr n=0,1,2,...) are the coefficients in the correspondence

F@) ~ > Agit Pania (%) 0<x<1),
n=0

then

1
Agyis = (n +3) /0 fO) Py (ydy  (1=0,1.2,...).

To prove part (a) of this theorem, we recall from the theorem in Sec. 104
that the set

2n+1
o) = \| T P (n=0,12,.)
is orthonormal on the interval —1 < x < 1 and then use expressions (1) and (2)
to write
> [2n+1
f(x)’“zcn %Pn(x) (-1<x<1
n=0
where

1
Cn:1/2n2+1/ f(x)Pu(x) dx n=0,1,2,..)).
-1

Part (a) here now follows by writing
2n+1
2

The result in part () also follows from the theorem in Sec. 104, which tells
us that the set

A, =c,

n=0,1,2,...).

On(x) = Vadn + 1 P, (x) n=0,1,2,..)
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is orthonormal on the interval 0 < x < 1. Thus

fx) ~ ZCnv4n + 1P, (x) O<x<1,

n=0

where
1
Cn = ~4n+ 1/ f(x) Py (x) dx.
0

Putting Ay, = c,v/4n+1(m=0,1,2,...), we arrive at the result in part (b) here.
Part (c) of this theorem can be verified in a similar way, and details are left
to the problems.
We state here, without proof, a representation theorem involving Legendre
series that is applicable to piecewise smooth functions."

Theorem 2. Let f denote a function that is piecewise smooth on the interval
—1 <x <1, and suppose that f(x) at each point of discontinuity of f in that interval
is defined as the mean value of the one-sided limits f(x +) and f(x —). Then

(3) f) =) APyx) (-l<x<1,
n=0

where the coefficients A, are given in part (a) of Theorem 1.

Obvious adaptations of this theorem to the series in parts (b) and (c¢) of
Theorem 1 can also be made when f is piecewise smooth on the interval 0 < x < 1.

EXAMPLE. Let us expand the function f(x) =1(0 < x < 1) in a series of
Legendre polynomials of odd degree. According to part (¢) of Theorem 1,

1= Awii Pruya (v) O<x<1
n=0
where
1
A2n+1 = (4I’l+3)/ P2n+1(x)dx (}120,1,2,...).
0

The integral here is readily evaluated with the aid of the integration formula
(Problem 1, Sec. 102)

1
1
/a PWdx =5 [Pa@ - @] (1=1.2...),
which tells us that

4) A1 = Pop(0) — Poy12(0).

The proof, which is rather lengthy, can be found in, for example, the book by Kreider, Kuller, Ostberg,
and Perkins (1966, pp. 425-432), listed in the Bibliography. A simplified proof of a special case of the
theorem appears in the book by Rainville (1972, pp. 177-179), also listed there.
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Thus,
(5) 1= " [Pu(0) = Pyus2(0)] Pruy1 (x) 0<x<1).
n=0
Since [Problem 3(a), Sec. 99]
. (2n)!
PZH(O) = (_1) m (n=0,1,2,...),
the coefficients (4) can also be written
4n+3 2n)!
6 Ay = (D" . .
© et = GO gy
This alternative form of representation (5) is then obtained:
> L, 4n+3 (2m)!
1= 2_; D" T et gy Pen ) O<x<1),

PROBLEMS
1. From the orthogonality of the set { P,(x)}, state why
(a) f_ll Px)dx=0n=1,2,...);

(b) fjl(Ax + B)P,(x)dx =0(n=2,3,...), where Aand B are constants.
2. Verify directly that the Legendre polynomials

Py(x) =1, Pi(x) =x, P2<x)=%(3x2—1), P3<x)=%(5x3—3x)

form an orthogonal set with weight function unity on the interval —1 < x < 1. Show
that their graphs are as indicated in Fig. 74 (Sec. 99).

3. Let F denote the odd extension of the function f(x) =1 (0 < x < 1) to the interval
—1 < x < 1, where F(0) = 0. Also, let g be the function defined by means of the
equations

0 when —1 <x <0,
gx) =

1 when O<x <1,

and g(0) = 1/2. Then, by observing that
1
glx) = —+ F(x) (-1<x<1

and referring to expansion (5), Sec. 105, show that

1 o0
g = —Po(x) 5 Z Pu(0) = P O] Py (¥) (1 <x <1
=0
4. Let f denote the function defined by means of the equations

Flx) = 0 when —1 <x <0,
V=1« when 0<ux <1.

(a) State why f(x) is represented by its Legendre series (3), Sec. 105, at each point of
the interval —1 < x < 1.
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10.

11.

(b) Show that Ay,,1 =0 (n=1,2,...)in the series in part (a).
(c) Find the first four nonzero terms of the series in part (a) to show that

1 1 5 3
fx) = ZPO(X)+ EPI(X) + EPZ(X) - 3—2P4(x)—|—--~ (-l<x<1.
Show that for all x,
, 1 2 . 3 2
(@) x* = 3 0 (x) + §P2(X)§ b x’ = gPl(x)—f— §P3(x).

Obtain the first three nonzero terms in the series of Legendre polynomials of even
degree representing the function f(x) = x (0 < x < 1) to show that

1 5 3
x:EPO(x)+§P2(x)—EP4(x)+-~- O<x<1).

Point out why this expansion remains valid when x = 0, and state what function the

series represents on the interval —1 < x < 1.

Give details showing how part (¢) of Theorem 1 in Sec. 105 follows from part (c) of the

theorem in Sec. 104.

Let f be piecewise continuous on the interval —1 < x < 1. Show that

(a) if fis even, so that f(—x) = f(x), the Legendre series in part (a) of Theorem 1
in Sec. 105 becomes the series in part (b) of that theorem;

(b) if fis odd, so that f(—x) = — f(x), the Legendre series in part (a) of the same
theorem in Sec. 105 becomes the series in part (¢) of that theorem.

Suggestion: Recall from Sec. 99 that each P, (x) is even and that each

P2n+1 (x) is odd.

By applying Theorem 1 in Sec. 65 to the Fourier constants used in proving part (a) of

Theorem 1 in Sec. 105, state why

1
lim \/2n+1/ fx)P,(x)dx =0
n—oQ _1

when f is piecewise continuous on the interval —1 < x < 1.
(a) By recalling that P, (x) is a polynomial of degree m containing only the powers
x™, x"72, x4, ... of x (Sec. 99), state why

-2 4
X" = cBu(x) + Cm—me + Cm—4xm +--,

where the coefficients are constants. Apply the same argument to x"2, etc., to
conclude that x™ is a finite linear combination of the polynomials

Pm(x)a Pm—Z(x)a Pm—4(x)v s

(b) With the aid of the result in part (a), point out why

1
/ P,(x)p(x)dx =0,
-1
where P,(x) is a Legendre polynomial of degree n (n = 1,2, ...) and p(x) is any
polynomial whose degree is less than n.
Let n have any one of the valuesn =1,2, ... .

(a) By recalling the result in Problem 1(a), state why P,(x) must change sign at least
once in the open interval —1 < x < 1. Then let x4, x», . . ., x; denote the totality of
distinct points in that interval at which P,(x) changes sign. Since any polynomial
of degree n has at most » distinct zeros, we know that 1 < k < n.
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(b) Assume that the number of points x;, x5, ..., X, in part (a) is such that k < n, and
consider the polynomial

px)=(x—x)x —x2) - (x — xp).

Use the result in Problem 10(b) to show that the integral

1
/ P,(x)p(x)dx

1

has value zero. Then, after noting that P,(x) and p(x) change sign at precisely the
same points in the interval —1 < x < 1, state why the value of the integral cannot
be zero. Having reached this contradiction, conclude that k = n and hence that the
zeros of a Legendre polynomial P,(x) are all real and distinct and lie in the open
interval —1 < x < 1.

12. Show in the following way that for each value of n(n = 0,1, 2,...), the Legendre
function of the second kind Q,(x) (Sec. 99) and its derivative Q) (x) fail to be a pair of
continuous functions on the closed interval —1 < x < 1. Suppose that there is an inte-
ger N such that Qy(x) and Qj(x) are continuous on that interval. The functions Qn(x)
and P,(x) (n # N) are then eigenfunctions corresponding to different eigenvalues of
the singular Sturm-Liouville problem (1), Sec. 103. Point out how it follows that

1
/ ONX)P,(x)dx =0 (n # N),
-1

and then use Theorem 2 in Sec. 105 to show that Qn(x) = Ay Py(x), where Ay is some
constant. This is, however, impossible since Py(x) and Qy(x) are linearly independent.

106. THE EIGENFUNCTIONS P,(cos 0)

The boundary value problems to be treated in Secs. 107 and 108 will involve
singular Sturm-Liouville problems whose eigenfunctions are

P,(cosb) n=0,1,2,...).
In this section, we give some modifications of earlier results involving
Fn(x) n=0,1,2,..))

that will apply to those trigonometric eigenfunctions.

Theorem 1. Let
d

. dO® .
(1) %<sm9 E)—l—)»sm@(a_o

be the differential equation in the singular Sturm-Liouville problem involving one
of the three cases below. The eigenvalues X, and corresponding eigenfunctions ®,
are as follows:

(a) when the interval is 0 < 6 < w and no boundary condition is used,

A =nn+1), ®, = P,(cos0) n=0,1,2,...);
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(b) when the interval is 0 < 0 < 7 /2 and the boundary condition ®' (7 /2) = 0 is

used,
A =2n2n+1), ®, = Py, (cosH) n=0,1,2,...);
(¢) when the interval is 0 < 0 < 7/2 and the boundary condition ®(x/2) =0 is
used,
A= 2n+1)2n+2), ®, = Py11(cosb) n=0,1,2,...).

The fact that the problem in each of the three cases in this theorem actually
involves a singular Sturm-Liouville problem, where ® and ®’ are required to be
continuous on the stated interval, is readily established by referring to Sec. 68.

As for the proof of the theorem, the relation x = cos 6 enables us to write

d® do dx  de

o " dxdo - ax oM
or
1 do  de
sing do ~ dx’
Consequently,
sin ZS =(1- c0520)<ﬁ 2—?) =—-(1-x%» Z—(j;
and so

1 d(. d@) 1 d{ 2d®]dx d{ 2d®]
—(sin— |=— — |-A—x)—|—=— |A—-x")—].
dx X dx

sin@ do do sin 6 dx | do dx
Equation (1) thus becomes
d de
2 — 1 =x)—|+206=0
) I [( x%) dx} + ,

which, except for notation, is Legendre’s equation (1) in Sec. 103. It is now evident
thatunder the transformation x = cos 8, the above theorem is simply an alternative
form of the theorem and its corollary in Sec. 103.

The next theorem is just a restatement of Theorem 1 in Sec. 105 regarding
Legendre series.

Theorem 2. Let F be piecewise continuous on the interval stated in each part
below.
(a) If A,(n=0,1,2,...) are the coefficients in the correspondence

F(0) ~ Y AyPy(cost) 0<6<m),
n=0

then

A, =

m+1 (7
= ”2+ /F(@)P,,(cose)sinede n=01,2..).
0



352 LEGENDRE POLYNOMIALS AND APPLICATIONS CHAP. 10

(b) If Ay (n=0,1,2,...) are the coefficients in the correspondence

F6) ~ 3" Agy Pru(cos0) (0 <0< %)
n=0
then
/2

App = (4n + 1)/ F(0) Py, (cos ) sin 6 do n=0,1,2,...).

0

(¢) If Ayp1 (n=0,1,2,...) are the coefficients in the correspondence
- b

F©) ~ ; Aopy1 Poyy1(cos 0) (0 <0 < 5),

then

/2
A1 = (4n+3) / F(0) Py,1(cos0) sin 6 do n=0,1,2,...).
0

To verify this theorem, one need only write x = cos 6 and define the function
3) f(x) = F(cos ' x),

where the principal values of the inverse cosine function are to be taken. When
this f(x) is used in Theorem 1 of Sec. 105, that theorem becomes Theorem 2 here.
If F is piecewise smooth on the stated interval, the correspondence is, of course,
an equality for each point 6 at which F is continuous.

107. DIRICHLET PROBLEMS
IN SPHERICAL REGIONS

For our first application of Legendre series, we shall determine the harmonic
function u in the region r < c¢ such that u assumes prescribed values F(6) on
the spherical surface r = c¢. Here r, ¢, and 6 are spherical coordinates, and u is
independent of ¢. Thus u = u(r, 6) satisfies Laplace’s equation (Sec. 24)

2

d ol
(1) rm(l’u)-ﬁ- slne—u)z r<c,0<6<m

sin6 96 ( 30
and the condition (Fig. 75)
2) u(c, 0) = F(0) 0 <6 <),

The function u and its partial derivatives of the first and second order are to be
continuous throughout the interior 0 <r < ¢, 0 < 6 < 7 of the sphere.

Physically, the function # may denote steady temperatures in a solid sphere
r < c whose surface temperatures depend only on 6; that is, the surface tempera-
tures are uniform over each circle r = ¢, 6 = 6. Also, u represents electrostatic
potential in the space r < ¢, which is free of charges, when u = F(6) on the bound-
aryr =c.

We start by seeking a product solution u = R(r)®(#) of the homoge-
neous equation (1) that satisfies the stated continuity requirements. Separation of
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FIGURE 75

variables shows that for some constant A,

1 d(. d® rod?
— | sin 6 = (rR) = —A.

sinf © df do) Rdr?
Consequently, R must satisfy the ordinary differential equation

d2
(3) rﬁ(rR)—ARzo r <o)

and be continuous when 0 < r < ¢. Also, for the same constant A, the function ®
satisfies the equation

d doe
4) E(sin@ %>+Asin9®:0 0 <6 <m),

where ® and @’ are to be continuous on the closed interval 0 < 0 < 7.
Case (a) of Theorem 1in Sec. 106 tells us that equation (4) is a singular Sturm-
Liouville problem whose eigenvalues and corresponding eigenfunctions are

(5) An=n(n+1), ®,, = P,(cos0) n=0,1,2,..)).
Writing equation (3) in the form
r’R" +2rR' — AR =0,

we see that it is a Cauchy-Euler equation, which reduces to a differential equation
with constant coefficients after the substitution » = exp s is made (see Problem 1,
Sec. 44). When A = n(n + 1), its general solution is

G
pntl

(6) Rr=Cr"+Cr "t =Cr+ O<r <o),

as is easily verified. The continuity of R at r = 0 requires that C; = 0, and so the
desired functions of » are R, (r) =r" (n=0,1,2,...).

The functions u,, = r" P,(cos6) (n =0, 1,2, ...), therefore, satisfy Laplace’s
equation (1) and the continuity conditions accompanying it. Formally, their
generalized linear combination

(7) u(r,0) =Y Byr"Py(cost)

n=0
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is a solution of our boundary value problem if the constants B, are such that
u(c,0) = F(0), or

oo
(8) F(0) = B.c"Py(cosh) 0 <6 <m).
n=0
To find these constants, we need only refer to case (a) of Theorem 2 in
Sec. 106. Evidently, B,c" = A, where

2 1
(9) Ay = nr

/ F(0)P,(cosf)sind do n=0,1,2,...);
0

and the formal solution of our Dirichlet problem can be written in terms of the
constants (9) as

(10) ur.6) =3 A, (2) P,(cos6) r <o).
n=0

Note that the harmonic function u in the unbounded regionr > c, exterior to
the spherical surface r = ¢, which assumes the values F(9) on that surface and is
bounded as » — oo can be found in like manner. Here C; = 0 in our solution (6)
of equation (3) if Ris to remain bounded as r — o0; and the solutions of equation
(1) are

1
un = g Falcos ) (n=0,1,2,..).
Thus,
=, B
n
(11) u(r,0) = Z; mPH(cosé) r > o),

where the B, are this time related to the constants (9) by means of the equation
A, = B,/c"t!. That is,

0 n+1
(12) ur.0) =3 AnG) P,(cos6) r=o).
n=0

PROBLEMS

1. Suppose that u is harmonic throughout the regions r <c and r > ¢, that u — 0 as
r — oo, and that u = 1 on the spherical surface r = ¢. Show from results found in
Sec. 107 thatu = 1 whenr <candu = ¢/r whenr > c.

2. Suppose that for all ¢, the steady temperatures u(r, 6) in a solid sphere » < 1 are such
that u(1, 0) = F(0) where

1 when 0 <0 < z,
F©0) = T
when — <0 < 7.
2
Derive the expression
I
u(r.6) =3 + 5 Z; [Pon(0) = Poni2(0)] 7" Py (cos )

for those temperatures.
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SEC. 107
3. Let u(r, 0) denote steady temperatures in a hollow sphere a < r < b when
0 <06 <m).

u(a,0) = F@9) and u(,0)=0

Derive the expression
b2n+1 2n+1 a n+1
u(r 49) Z A W (;) Pn(COSQ),

n=0

where
n=0,1,2..)).

M1 [T
A, = ”2+ /F(G)Pn(cose) sin6 do
0

4. Letu(x,t) represent the temperatures in a nonhomogeneous insulated bar —1 < x <1
along the x axis, and suppose that the thermal conductivity is proportional to 1 — x°.

The heat equation takes the form
(b > 0).

d 0 0
Pop Zla-y
ot ax
Here b is constant since we assume that the product of the physical constants ¢ and §
used in Sec. 22 and in Problem 2, Sec. 23, is constant. Note that the ends x = +1 are
insulated because the conductivity vanishes there. Assuming that

(-1<x<1),

u(x,0) = f(x)

derive the expression
u(x,t) = Z Apexp[—n(n+ 1)bt] P, (x),

n=0

n=0,1,2..)).

where
A, = 2”“ / F@) Py(x) dx

5. Show thatif f(x) = x?> (=1 < x < 1) in Problem 4, then
1 1
u(x,t) = = —|— == exp(—6bt).

6. Give a physical interpretation of the following boundary value problem in spherical

coordinates for a harmonic function u(r, 6)
r 2(ru)—}- L s'n@a 1<r<b0 <6 <06)
— — | = <r< <0 <
ar? sinf 96 30 e o
u(1,6) = 0, u(b, 8) =0,
u(r, 6,) =0,

u(r.6) = f(r),
where 0 < 0 < 6, < . Then, using the normalized eigenfunctions found in Prob-

lem 11(b), Sec. 72, and the functions p, and ¢, in Problem 5, Sec. 99, derive the

expression
) .
sin(a, Inr),

1 (0
ur.6) = r ; B o
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where

2 b
ap = ﬂy Bn f(r)

Inb T Wb ), Jr

sin(e, Inr) dr,

and

F () = Pa, (€08 0) Gu,(cOS 62) — Py, (COS 0) Gy, (COS B).

108. STEADY TEMPERATURES
IN A HEMISPHERE

In this section, we consider two steady temperature problems for a solid hemi-
sphere r < 1,0 < 6 < /2 of radius unity. They will illustrate the use of cases (b)
and (¢) in Theorems 1 and 2 in Sec. 106. In each problem, the temperatures u(r, 9)
will satisfy Laplace’s equation

92 1 9 du T
1 2 — % (sine=) = 1 z
(1) rarz(ru)+sin9 59 <s1n930> 0 <r< ,0<9<2>,

which leads to the ordinary differential equations

d2
(2) rﬁ(rR)—ARzo r<1
and
d (. ® . T
3) %<sm9d9>+ksm9®_0 (O<0<§>

when u = R(r)®(0) and A is a separation constant.

EXAMPLE 1. Suppose that the base r < 1,6 = /2 of the hemisphere is
kept at temperature u = 0 and that the hemispherical surfacer =1,0 <0 < 7/2
is maintained at temperature u = 1 (Fig. 76). In order to solve this boundary value
problem, we need the boundary condition

4) u(r,%):O O<r<1

u=1

u=0

FIGURE 76
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and
) u(l,6) =1 (()<9<%>.
The homogeneous condition (4) tells us that
T
(6) 0 (5) —0.

When case (c) of Theorem 1 in Sec. 106 is applied to equations (3) and (6),
we have the eigenvalues and eigenfunctions

M =02n+1)(2n+2), ®, = Pyu11(cosb) n=0,1,2,...).
Next, let us substitute A, into equation (2) and write the result as
P’R'+2rR —2n+1)(2n+2)R=0.

The general solution of this Cauchy-Euler equation is

G

Ry = Cir?™ 4 555

O<r<1,
and G, = O since R(r) is to be continuous at r = 0. Hence, one can write

R, = r¥tt n=0,1,2,..)
and then, by the principle of superposition,

o0
(7) u(r, 0) = Agpy1r™*! Pyya(cosb).

n=0

Finally we set r = 1 in series (7) and use boundary condition (5):

(8) 1= ; Aspi1 Py (cOs 0) (o <6< %) .

Although we could refer to case (c¢) in Theorem 2 in Sec. 106, we can at this point
simply refer to the example in Sec. 105, where we saw that

< LAn+3 @2n)!
1= ;H) 1 e P O<x<1),

If we put x = cos 6 here, we find that the coefficients in series (8) are
4n+3 (2n)!
n+1 22+ (nl)2
The formal solution of our boundary value problem is, therefore,
dn+3 (2n)!
n+1 22+ (nl)2

A1 = (=D n=0,1,2,..)).

r Py (cos 6).

) u(r,0) = (=1)"
n=0

EXAMPLE 2. Here the base of the hemisphere is insulated, and the flux
of heat inward through the hemispherical surface r = 1,0 < 0 < 7/2 is kept
at prescribed values F(0). The boundary value problem for steady temperatures
u(r, 0) in the hemisphere consists of Laplace’s equation (1) and the condition of
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7
//////////////////////

FIGURE 77

insulation (see Problem 8, Sec. 27)

(10) Ug (l’, %) =0 O<r<1

at the base, part of which is shown in Fig. 77, and the flux condition (see Sec. 26)
b1
(11) Ku,(1,6) = F() (O <0 < E),

where K is thermal conductivity. In order that temperatures be steady, we as-
sume that the values F(0) are such that the resultant rate of flow through the
hemispherical surface is zero. That is,

/2
(12) / F(8) 27 sin6 do = 0.
0

Also, we assume that F is piecewise smooth on the interval 0 < 6 < 7/2 and that
u satisfies the usual continuity conditions when 0 < r <1land 0 <6 < /2.

Writing u = R(r)©(0) and separating variables in equation (1), we obtain
equation (2), where R must be continuous when 0 < r < 1, and equation (3),
where ® and ®’ are to be continuous when 0 < 6 < m/2. Also, it follows from
condition (10) that

(13) @/(%) =0.

From case (b) in Theorem 1, Sec. 106, we know that the singular Sturm
Liouville problem consisting of equations (3) and (13) has eigenvalues and corre-
sponding eigenfunctions

A =2n2n+1), ®, = P,(cosH) n=0,1,2,...).
When A = A,, equation (5) is the Cauchy-Euler equation
r’R" +2rR' —2n(2n+ 1R =0,

whose solutions that are continous at » = 0 are constant multiples of R, = r>".
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Formally, then,

o0
u(r,0) = Z B, %" Py, (cos 6)
n=0
if the constants B, are such that condition (11) is satisfied. That condition requires
that

(14) F©) =" @nKB,) Py (cosb) <0 <6< %)

n=1

Case (b) of Theorem 2 in Sec. 106 tells us that this is a valid Legendre series
representation if 2n K B, = A;,, where

/2
(15) Ayy=@n+1) / F(0) Py,(cos0)sinf do n=1,2,...),
0

and if F is such that the condition Ay =0, which is the same as condition (12), is
satisfied. Thus By is left arbitrary, and

1 &1
(16) u(r,0) = Bg + 7K g — Ay r¥ Py, (cos 0) (F <1,0=<6< Z)
n
n=1

where the coefficients A, have the values (15).

The constant By is the temperature at the origin r = 0. Solutions of such
problems with just Neumann conditions (Sec. 31) are determined only up to such
an arbitrary additive constant because all the boundary conditions prescribe only
values of derivatives of the harmonic functions.

PROBLEMS

1. The base r < ¢, 6 =m/2 of a solid hemisphere r <¢, 0 <6 < /2 is insulated. The tem-
perature distribution on the hemispherical surface is u = F (). Derive the expression

0 2n
u(r.6) = > Ay, (g) Py (c0s6),
n=0

where
/2
Ay = (dn + 1)/ F(0) Py,(cos ) sin6 do n=0,1,2,...),
0

for the steady temperatures in the solid. Also, show that u(r, ) = 1 when F(#) = 1.

2. A function u is harmonic and bounded in the unbounded regionr > ¢,0 < 6 < 7 /2.
Also, u = 0 everywhere on the flat boundary surface r > ¢, = 7/2;and u = F(0) on
the hemispherical boundary surface r = ¢, 0 < 6 < /2. Derive the expression

[} 2n+2
C
u(r, 0) = E Adnt (;) Pyi1(cos0),
n=0

where

/2
Agpi1 = (dn+ 3)/ F0) Py, 1(cosP)sinfdd (n=0,1,2,...).
0
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3. The flux of heat Ku, (1, 6) into a solid sphere at its surface r = 1is a prescribed function
F(0), where F is such that the net time rate of flow of heat into the solid is zero. Thus,
(see Example 2 in Sec. 108)

/ F(©)2msinf db = 0.
0

Assuming that u = 0 at the center r = 0, derive the expression

11
0 :—E - A, r"P, ),
u(r, 0) X p r" P,(cos0)

n=1
where

A,,=2n+l

/ F(0)P,(cos8)sinb db n=0,1,2,..),

0
for the steady temperatures throughout the entire sphere 0 <r < 1.

4. Heat is generated at a steady and uniform rate throughout the interior of a solid
hemisphere 0 <r <1,0<6 <x/2, and the entire surface is kept at temperature zero.
Thus the steady temperatures u = u(r, 0) satisfy the nonhomogeneous differential

equation
1 82 1 ad d
- — (ru) + (sin@—u>+q0:0 (0<r<1,0<9<%>

r or? r2sing 90 a0

and the boundary conditions

u(l,0) =0, u (r, %) =0.

Also, u(r, 9) is continuous at r = 0. Point out how Example 1 in Sec. 108 suggests
seeking a solution of the form

w(r,0) =y By(r) Pyy1(cos0)

n=0
and applying the method of variation of parameters, which was first used in Sec. 42.
Follow the steps below to find the solution by that method.

(a) Observe how it follows immediately from case (c) in Theorem 1, Sec. 106, that

1 d|. d
sng 10 [sm@ y7) P,.1(cos 0)} =—2n+1)2n+2) Py, 1(cosb)

n=0,1,2,..).

Then, with the aid of this identity and expansion (5), Sec. 105, obtain the initial
value problem

r’B!(r) +2rB.(r) — 2n+ 1)(2n + 2)B,(r) = —qo Asu11*,  B,(1) =0
n=0,1,2,...),

where Ay, 11 = P, (0)— Ps,2(0) and where B, (r) is to be continuous on the interval
0<r<l1.

(b) Solve the differential equation in part (a) by adding a particular solution of it
to the general solution of the complementary equation (compare with Problem 2,
Sec. 46). Then apply the required conditions on B, (r),stated in part (a), to complete
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the solution of the initial value problem in ordinary differential equations there.
Thus arrive at the desired temperature function:

=< Po(0) — Priya(0)

Q-T2 O ) Para(coso).

u(r,0) = %

Suggestion: Observe that the differential equation in part (@) has a particular
solution of the form B, (r) = ar?, where a is a constant. Also, note that the complemen-
tary equation in part () is of Cauchy-Euler type, and solve it by the method described
in Problem 1, Sec. 44.

5. Verify expression (12) in Sec. 108, regarding the resultant rate of flow through the
hemispherical surface r =1, 0 < 6 < /2 in Example 2 in that section.

Suggestion: Use the fact that the horizontal distance from the z axis to a point
on the hemispherical surface is sin 8, as shown in Fig. 77.



CHAPTER

11

VERIFICATION
OF SOLUTIONS
AND UNIQUENESS

In this chapter, we examine in some detail the question of verifying solutions of
boundary value problems. Careful verifications of the solutions of the two bound-
ary value problems solved in Chap. 4, where the Fourier method was introduced,
will be made. More precisely, the solutions found for the temperature problem in
Sec. 36 and the vibrating string problem in Sec. 37 will be verified.

We shall also consider the question of establishing that a solution of a given
problem is the only possible solution. A multiplicity of solutions may actually
arise when the statement of the problem does not demand adequate continuity or
boundedness of a solution and its derivatives. This was illustrated in Problem 7,
Sec. 58.

We begin the chapter with an important theorem that enables us to establish
uniform convergence of solutions obtained in the form of series and is often useful
in both verifying such a solution and proving that it is unique.

109. ABEL’S TEST FOR UNIFORM
CONVERGENCE

We start here with some needed background on uniform convergence. Let s,(x)
denote the sum of the first n terms of a series

(1) > Xi(x)
i=1
of functions Xj;(x) that converges to a sum s(x):
) sn(x) =Y Xi(x),  s(x) = lim s,(x).
i=1

362
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Suppose that the series converges uniformly with respect to x for all x in
some set. Then (see Sec. 17), for each positive number ¢, there exists a positive
integer n., independent of x, such that

3) |s(x) —s,(x)| < & whenever n > n,

for every x in the set. The following lemma, known as the Cauchy criterion, pro-
vides us with an alternative characterization of uniform convergence.

Lemma. A necessary and sufficient condition for the uniform convergence
of series (1) on a given set is that for each positive number ¢, there exists a positive
integer n., independent of x, such that for all points x in the set and all positive
integers J,

4) [Sntj(X) —8,(X)| < € whenever n > n,.

To verify the necessity of condition (4), we assume that condition (3) is
satisfied and let j denote any positive integer. Since

[Snj — Sul = |(Snyj -+ —s)l<|s — Sptjl + 15 — Sul,
we find that
[Sntj — Sul < 2e whenever n > ng;

and since ¢ is an arbitrary positive number, this is the same as statement (4).

To show that condition (4) is also sufficient for uniform convergence, we
assume that condition (4) holds and recall from calculus that it is sufficient for the
pointwise convergence of series (1). Hence it implies that the sum s(x), defined
by means of the second of equations (2), exists. Keeping » fixed in inequality (4)
and letting j tend to infinity, we now have the inequality

[s(x) —sp(x)| < ¢ whenever n > n,

if x is in the set. That is, since ¢ is arbitrary, series (1) converges uniformly.

Note that x here may equally well denote elements (x;, xp, ..., xy) of some
set in N-dimensional space. The uniform convergence is then with respect to all
N variables x1, x2, ..., xy together.

We now derive a test for the uniform convergence of infinite series whose
terms are products of certain types of functions. Its application in verifying formal
solutions of boundary value problems will be illustrated in Sec. 110. The test,
known as Abel’s test,” involves functions in a sequence T;(¢) (i = 1,2,...) which
is uniformly bounded for all points ¢ in an interval. That is, there exists a positive
constant M, independent of i, such that

(5) IT(t)| <M i=1,2..)

for all ¢ in the interval. The sequence is, moreover, monotonic with respect to i.
Thus, for every ¢ in the interval, either

(6) T <T@ i=12,..)

"Niels Henrik Abel (1802-1829), Norwegian, pronounced ah-bel .
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or
(7 Tt > T@) i=1,2,..).

We state the test as a theorem which shows that when the terms of a uniformly
convergent series are multiplied by functions 7;(¢) of the type just described, the
new series is also uniformly convergent.

Theorem. The series
®) > X))
i=1

converges uniformly with respect to the two variables x and t together in a region R
of the xt plane if the following two conditions are satisfied:

(i) the series

> Xix)
i=1

converges uniformly with respect to x for all x such that (x,t) is in R;

(ii) the functions T;(t) are uniformly bounded and monotonic with respect to i
i=1,2,...) forallt such that (x,t) is in R.

To start the proof, we let S, denote partial sums of series (8):

n
Sux,0) =Y Xi() T0).
i=1
In view of the lemma above, the uniform convergence of that series will be es-

tablished if we prove that to each positive number ¢ there corresponds a positive
integer n., independent of x and ¢, such that

|Sm(x, 1) — Su(x, )| < ¢ whenever n > n,,

for all integersm =n+1,n+ 2, ... and for all points (x, ) in R.
We write the partial sum

Sp(x) = X1(x) + Xo(x) + -+ + Xy (x).
Then, for each pair of integers m and n (m > n),
Sn—= 8 = Xnp1Ti1 + XpoTnpo + -+ X T
= Sn+1 = S Tn1 + Gni2 = S ) Tz + -+ + (S — Sm—1) Tin

= (SnJrl - Sn) 7;’l+1 + (Sn+2 - Sn)Y;l+2 - (anrl - sn) 7;l+2
+- 4+ (Sm - Sn)Tm - (Smfl - Sn)Tm~

By pairing alternate terms here, we find that
) Sp— Sp = Sn1 — ) (T — Thi) + (Sngz — $u) (Tngz — Tiyz)
+--- 4 (sm—l - Sn)(Tm—l - Tm) + (Sm - sn)Tm-
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Suppose now that the functions 7; are nonincreasing with respect to i, so that
they satisfy condition (6), and that they also satisfy the uniform boundedness
condition (5). Then the factors 7,1 — Ty42, Thio — T3, etc., in equation (9)
are nonnegative, and |7;(t)| < M. Since the series with terms X;(x) converges
uniformly, an integer n, exists such that

€
Spai(X) —s,(x)| < — whenever n > n,,
| n+1( ) n( )| IM 3
for all positive integers j, where ¢ is any given positive number and 7, is indepen-
dent of x. Then if n > n, and m > n, it follows from equation (9) that

P
[Sm — Sul < M [(Tip1 — Th2) + (Thgo — Tp3) + - - + | Tl

€ e
=30 (T — T+ 1T < 3N (I Th1 | + 2| Tal).

Hence,
[ S (x,t) — S,(x,0)| < & whenever m > n > ng;

and the uniform convergence of series (8) is established.

The proof is similar when the functions 7; are nondecreasing with respect
toi.

When x is kept fixed, the series with terms X is a series of constants; and the
only requirement placed on it is that it be convergent. Then the theorem shows
that when 7; are bounded and monotonic, the series of terms X; 7; (¢) is uniformly
convergent with respect to ¢.

Extensions of the theorem to cases in which X; are functions of x and ¢,
or both X; and 7; are functions of several variables, become evident when it is
observed that our proof rests on the uniform convergence of the series of terms X
and the bounded monotonic nature of the functions 7.

110. VERIFICATION OF SOLUTION
OF TEMPERATURE PROBLEM

We turn now to the full verification of the solution of the temperature problem

(1) u(x, 1) = kit (x, 1) O0O<x<c t>0),
(2) u(0,1) =0, u(c,t) =0 @t >0,
3) u(x,0) = f(x) O0O<x <o)

that was obtained in Sec. 36. We recall from Example 1 in Sec. 34 that the contin-
uous functions

2 2k
4) up =1, u,,:exp(—n 712 t> cos@ n=1,2,..)
c c
satisfy the homogeneous conditions (1) and (2). In that example, the superposi-
tion theorem in Sec. 33 was, moreover, used to show how the generalized linear
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combination

Q) u=A0u0+ZAnun

n=1

formally satisfies conditions (1) and (2). Expression (5), when written as

cos —,
C

22
(6) u(x,t) = Ao—l—ZA exp( k ) e

n=1

then gave us the formal solution of the boundary value problem when its coeffi-
cients were assigned the values (see Sec. 36)

(7 Aozl/cf(x)dx, An:%/c f(x)cos@dx n=1,2,..).
Cc Jo Cc Jo C

We assume here that f is piecewise smooth (Sec. 9) on 0 < x < ¢. Also, at
a point of discontinuity of f in that interval, we define f(x) as the mean value of
the one-sided limits f(x +) and f(x —). Note how it follows from expressions (7)
that

1 € 2 [€
A= [irwianjal=S [ ifwias (n=1.2...)
¢ Jo ¢ Jo
and hence that there is a positive constant M, independent of #, such that
(8) |[A,l <=M (n=0,1,2,...).
We begin our verification by showing that series (5), with coefficients (7),
actually converges in the region 0 < x < ¢, ¢ > 0 of the x¢ plane and that it satisfies

the homogeneous conditions (1) and (2). To accomplish this, we first note from
expressions (4) and inequalities (8) that if 1, is a fixed positive number,

2 2k
©) |Anun|sMexp(—”f2 fo) =012 )

whenever 0 < x < cand ¢t > £y (Fig. 78). An application of the ratio test shows
that the series

(10) Zn exp( " 2k )

of constants converges when i is any nonnegative integer and, in particular, when
i = 0. So we know from the comparison and absolute convergence tests that
the series (5) converges when 0 <x <c,t > f. One can use series (10) and the
Weierstrass M-test (Sec. 17) to show that the series

(11) D (Aut)e, D (Agita)ax
n=0 n=0
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’\—'\_/_

Osx<sct=4

)

o c X

FIGURE 78

of derivatives converge uniformly on the interval 0 < x < ¢ for any fixed ¢ (t > t).
Likewise, the series
[e.¢]
(12) > (Autty),
n=0

converges uniformly on the semi-infinite interval ¢ > t; for any fixed x (0 < x < ¢).

The uniformity of the convergence of these series ensures that series (5) is
differentiable twice with respect to x and once with respect to ¢, provided that
0<x <c,t > ty. Consequently, if we write
? 9
oxz 0t
and note that Lu, =0(n =0,1,2,...), it follows from the superposition theorem
in Sec. 33 that Lu = 0 when 0 < x < ¢,t > fy. Thus series (5) converges and
satisfies the heat equation (1) in the domain 0 < x < ¢, ¢ > 0 since the positive
number £y can be chosen arbitrarily small.

Writing L = 3/dx and again using the theorem in Sec. 33, we see that series
(5) also satisfies boundary conditions (2). Observe that since the first of series
(11) is uniformly convergent on the interval 0 <x <c for any fixed ¢ (t > t),
the derivative u, (x, t) of series (5) is continuous in x on that interval. Hence the
one-sided limits

L=k

ux(0+7 t) = lim ux(x’ t)’ ux(c_v [) = )lcl_l;n ux(x’ t)
= =
at the endpoints of the interval 0 <x <c (¢ > ty) exist and have the values u, (0, t)
and uy(c, t), respectively. Since conditions (2) are satisfied and since f; can be
chosen arbitrarily small, then,

(13) u,(0+,1) =0, U (c—, 1) =0 (t > 0).

In seeking solutions of boundary value problems, we tacitly require that those
solutions satisfy such continuity conditions at boundary points. Thus, when con-
ditions (2) are part of a boundary value problem, it is understood that conditions
(13) must also be satisfied. As we have just seen, series (5) has that property.
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The nonhomogeneous condition (3) is clearly satisfied by our solution since
series (6) reduces to the Fourier cosine series

(14) Ao+ Y Apcos T 0<x<c)
C

n=1

for f when ¢t = 0; and Theorem 2 in Sec. 15 ensures that series (14) converges to
f(x) when0O<x <c.
It remains to show that

(15) u(x,04) = f(x) 0 <x <o).

This is a continuity requirement that must be satisfied when ¢ =0, just as
conditions (13) must hold on the faces x = 0 and x = ¢. One can show that
solution (6) has this property by appealing to Abel’s test in Sec. 109. According
to that test, the series formed by multiplying the terms of a convergent series of
constants, such as series (14) with x fixed, by corresponding terms of a bounded
sequence of functions of ¢+ whose values never increase with 7, such as

2 2k
exp(—n; t) n=0,1,2,..),

is uniformly convergent with respect to t. So, for any fixed x (0 < x < ¢), the series
in expression (6) converges uniformly with respect to + when ¢ > 0 and thus
represents a function that is continuous in ¢ (¢ > 0). This shows that our solution
u(x,t) is continuous in t when ¢ > 0, in particular when ¢ = 0. That is,

ling u(x,t) = u(x, 0,
—
t>0

or u(x,0+) = u(x, 0), for each fixed x (0 < x < ¢). Property (15) now follows from
the fact that u(x, 0) = f(x) (0 < x < ¢). This completes the verification that the
function (6), with coefficients (7), is a solution of the boundary value problem

(D-G).

111.  UNIQUENESS OF SOLUTIONS
OF THE HEAT EQUATION

Let D denote the domain consisting of all points interior to a closed surface S;
and let D be the closure of that domain, consisting of all points in D and all points
on S. We assume always that the closed surface S is piecewise smooth. That is, it
is a continuous surface consisting of a finite number of parts over each of which
the outward unit normal vector exists and varies continuously from point to point.
Then if U is a function of x, y, and z which is continuous in D, together with its
partial derivatives of the first and second order, a special case of Green’s identity
that we shall need here states that

1) // U g4 = /// (UVPU+ U+ U, + U2)dV.
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Here dAis the area element on S, the symbol dV represents dx dy dz, and dU/dn
is the derivative in the direction of the outward unit vector normal to S.

Consider a homogeneous solid whose interior is the domain D and whose
temperatures at time ¢ are denoted by u(x, y, z, ¢). A fairly general problem in
heat conduction is the following:

(2) u = kViu+q(x,y, z,t) [(x,y,2)in D,t > 0],
(3) ux,y,z,0) = f(x,y,2) [(x,y,z)in D],
4) u=gx,yzt) [(x,y,z)on 8,1 > 0].

This is the problem of determining temperatures in a body, with prescribed initial
temperatures f(x, y, z) and surface temperatures g(x, y, z, t), interior to which
heat may be generated continuously at a rate per unit volume proportional to
q(x,y,z,1).

Suppose that the problem has two solutions

u=u(x,y,zt)), u=uyx,y,z1t)

where both u; and u; are continuous functions in the closed region Dwhent > 0,
while their derivatives of the first order with respect to ¢ and of the first and second
order with respect to x, y, and z are continuous in D whent > 0. Since u; and u,
satisfy the linear equations (2), (3), and (4), their difference

Ux,y,z,t) =u(x,y,2,t) —u(x, y, 2, t)

satisfies the homogeneous problem

(5) U, = kV*U [(x,y,2)in D,t > 0],
(6) Ux,y,z,00 =0 [(x,y,z)in D],
(7) U=0 [(x,y,2)on S, t >0].

Moreover, U and its derivatives have the continuity properties of u; and u,
assumed above.

We shall now show that U = 0 in D when ¢ > 0, so that the two solutions
u1 and u, are identical. That is, not more than one solution of the boundary value
problem in u can exist if the solution is required to satisfy the stated continuity
conditions.

The continuity of U with respect to x, y, z, and f together in the closed region
D when ¢ > 0 implies that the integral

1
8) I(t) = = / / / [Ux,y, z,)]?dV
2 D

Identity (1) is found by applying Gauss’s divergence theorem to the vector field U grad U. See the
book by Taylor and Mann (1983, pp. 492-493), listed in the Bibliography.
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is a continuous function of t when ¢ > 0; and, according to equation (6), 1(0) = 0.
Also, in view of the continuity of U; when t > 0, we may use equation (5) to write

1/(r)=/// UU,dV:k/// UvlUudv (t > 0).
D D

Identity (1) applies to the last integral here because of the continuity of the deriva-
tives of U when ¢t > 0. Thus,

) //DUVZUdV=//SU%dA—///D(Uf—i-Uyz—i-Uf)dV

whent > 0. But U = 0on S, and k > 0; consequently,

F(z):—k/// (U2 +U; +UZ)av <0.
D

The mean value theorem for derivatives applies to I(¢). That is, for each
positive ¢, a number #; (0 < #; < ¢t) exists such that

I(t) — 1(0) = tI'(ty);

and since /(0) = 0 and I(#;) < 0, it follows that I(t) < 0. However, definition (8)
of the integral shows that I(r) > 0. Therefore,

ItH)=0 t = 0);

and so the nonnegative integrand U? cannot have a positive value at any point in
D. For if it did, the continuity of U2 would require that U? be positive throughout
some neighborhood of the point, and that would mean /() > 0. Consequently,

Ux,y,z,t) =0 [(x,y,2)in Dt > 0];

and we arrive at the following theorem on uniqueness.

Theorem 1. Let a function u=u(x, y, z, t) satisfy these conditions of regu-
larity:

(i) it is a continuous function of the variables x, y, z, and t together when the
point (x, y, 2) is in the closure D of a given domain D and t > 0,

(if) the derivatives of u appearing in the heat equation (2) are continuous in the
same sense when t > 0.

If u is a solution of the boundary value problem (2)—(4), it is the only possible
solution satisfying conditions (i) and (ii).

When conditions (i) and (if) in Theorem 1 are added to the requirement that
u is to satisfy the heat equation and the boundary conditions, our boundary value
problem is completely stated; and u will be the only possible solution if it exists.

The condition that u be continuous in D when ¢ = 0 restricts the usefulness
of our theorem. It is clearly not satisfied if the initial temperature function f
in condition (3) fails to be continuous throughout D, or if at some point on S
the initial value g(x, y, z, 0) of the prescribed surface temperature differs from
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the value f(x, y, z). The continuity requirement at ¢t =0 can be relaxed in some
cases.’
The proof of Theorem 1 required that the integral

dU
U—dA
//S dn

in equation (9) either vanish or have a negative value. It vanished because U = 0
on S. Note that it is never positive if condition (4) is replaced by the boundary
condition

du
(10) T hu=g(x,y,z1) [(x,y,2)0n S, > 0]
where h > 0, since in that case dU/dn = —hU and UdU/dn < 0 on S. Thus, our
theorem can be modified as follows.

Theorem 2. The conclusion in Theorem 1 is true if boundary condition (4)
is replaced by condition (10) or if condition (4) is satisfied on part of the surface S
and condition (10) is satisfied on the rest.

EXAMPLE. In the problem of temperature distribution throughout a slab
with insulated faces x = 0 and x = ¢ and initial temperatures f(x) (Sec. 110),
write ¢ = 7 and assume that f is continuous and f” is piecewise continuous on the
interval 0 < x < . Then the Fourier cosine series for f converges uniformly to
f(x) on that interval (Sec. 17). Let u(x, t) denote the sum of the series

o0
(11) Ay + Z A, e "k cos nx O<x<mt=>0),
n=1

which is the formal solution (6), Sec. 110, of the boundary value problem when
¢ = m,the constants2Agand A, (n = 1, 2, ...) being the coefficients in the Fourier
cosine series for fon 0 < x < 7.

One can see from Abel’s test (Sec. 109) that series (11) converges uniformly
with respect to x and ¢ together in the region 0 < x < =, ¢t > 0 of the x¢ plane;
and so u is continuous there. When ¢ > t;, where ¢ is any positive number, the
series obtained by differentiating series (11) term by term any number of times
with respect to x to ¢ is uniformly convergent, according to the Weierstrass M-test
(Sec. 17). Consequently, we now know that u satisfies all of the equations in the
boundary value problem (compare with Sec. 110) and also that u,, u,, and u,, are
continuous functions in the region 0 < x <, ¢t > 0. Thus u satisfies the regularity
conditions (i) and (if) stated in Theorem 1, and Theorem 2 applies to show that
the sum u(x, t) of series (11) is the only solution that satisfies those conditions.

TIntegral transforms can sometimes be used to prove uniqueness of solutions of certain types of
boundary value problems. This is illustrated in the book by Churchill (1972, Sec. 79), listed in the
Bibliography.
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112. VERIFICATION OF SOLUTION
OF VIBRATING STRING PROBLEM

In this section, we shall verify the formal solution that we found in Sec. 37 for the
boundary value problem

1) Yu(x, t) =a2yxx(x,t) O<x<ct>0),
(2) y(0,1) =0, y(c, 1) =0,
3) y(x,0) = f(x),  y(x,0 =0.

The given function f was assumed to be continuous on the interval0 < x < c;
also, f(0) = f(c) = 0. Assuming further that f’ is at least piecewise continuous, we
know (Sec. 15) that f(x) is represented by its Fourier sine series when 0 < x < c.
The coefficients

2 [€ . nmx
4 B,,=—/ f(x)sin — dx n=12,..)
Cc Jo C
in that series are the ones in the series solution
ad nix nmnat
5 X, t) = B, sin — cos ——
5) y(x, 1) n; c ;

that we obtained. So when ¢ = 0, the series in expression (5) converges to f(x);
thatis, y(x,0) = f(x) when 0 < x <c.

The nature of the problem calls for a solution y(x, ¢) that is continuous in x
and t when 0 < x < cand ¢ > 0 and is such that y,(x, ¢) is continuous in ¢ at t = 0.
Hence the prescribed boundary values in conditions (2) and (3) are also limiting
values on the boundary of the domain 0 < x < ¢, ¢ > 0O:

yO0+0=0,  yc—.0=0 (t=0),
y(x’0+)=f(x)a }’t(X,0+)=0 (OSXSC)

In order to verify that series (5) represents a solution, we must prove that
it converges to a continuous function y(x, ¢) satisfying the wave equation (1) and
all of the boundary conditions. But series (5), with coefficients (4), can fail to be
twice differentiable with respect to x and ¢ even when it has a sum that satisfies
the wave equation. This is, in fact, the case with the solution in the example in
Sec. 37, where the coefficients B, were found to be

n:ﬂ?—y};sinng n=1,2,...).
After series (5) is differentiated twice with respect to x or ¢ when those values
of B, are used, it is apparent that the resulting series cannot converge since its
nth term does not tend to zero. The closed form of series (5) that was obtained in
Sec. 45 will, however, enable us to verify our solution. That closed form was

(6) yx, ) = % [F(x + at) + F(x — at)],
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where F is the odd periodic extension of f, with period 2c:

(7) Fx) = f(x) when(0 <x <c¢
and
(8) F(—x) = —F(x), F(x +2c¢) = Fx) for all x.

We turn now to the verification of our solution in the form (6). From our
assumption that f is continuous when 0 < x <c and that f(0) = f(c) =0, we see
that the odd periodic extension F is continuous for all x (Fig. 79). Let us also
assume that " and f" are continuous when 0 < x < c and that

[0y = f"(c)=0.
y
y=fx
\v L~
S —— N
y=F()

FIGURE 79

It is then easy to show that the derivatives ' and F” are continuous everywhere.
For, by recalling that F(x) = —F(—x) and then applying the chain rule, one can
write

d
F'(x) = ~Ix F(—x) = F'(-x),

where F’(—x) denotes the derivative of F evaluated at —x. Thus F’ is an even
periodic function; likewise, F” is an odd periodic function. Consequently, F” and
F" are continuous, as indicated in Fig. 80.

F"(x)
7S ~o =~
/7 S~o / S~ao
¥ == ¥ R UTS
‘'~ o c 2c X
FIGURE 80

In order to show that the function (6) satisfies the wave equation (1), we need
only refer to Sec. 30. It was shown there that the general solution of equation (1)
has the form

yx, 1) =¢x +at) + ¥ (x —at),
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where the arbitrary functions ¢ (1) and v (v) are twice differentiable. The func-
tion (6) evidently has that form. Furthermore, because F is continuous for all x, the
function (6) is continuous for all x and ¢, in particular when 0 < x < cand ¢ > 0.

While it is evident from series (5) that our solution y(x, ¢) satisfies the con-
ditions y(0, ) = y(c, t) = 0 and y(x, 0) = f(x), expression (6) can also be used to
verify this. For example, when x = ¢ in expression (6), one can write

F(c—at)=—F(—c+at) = —F(—c+at +2c) = —F(c+at).

Therefore,

1
y(c, t) = 3 [F(c+at)— F(c+at)] =0.
As for the final boundary condition y;(x, 0) = 0, we observe that
yi(x,t) = % [F'(x +at) — F'(x — at)].

Hence y,(x,0) =0, and the continuity of F’ ensures that y,(x, t) is continuous.
The function (6) is now fully verified as a solution of the boundary value problem
(1)-(3). In Sec. 113, we shall show why it is the only possible solution which,
together with its derivatives of the first and second order, is continuous throughout
the region 0 < x < ¢, t > 0 of the xt plane.

113. UNIQUENESS OF SOLUTIONS
OF THE WAVE EQUATION

Consider the following generalization of the problem verified in Sec. 112 for the
transverse displacements in a stretched string:

(1) Vi (X, 1) = a2 yen (X, 1) + P (x, 1) 0 <x<ct>0),
(2) y0,0) = p@t),  ylc,H)=q@) (t >0,
(3) y(x,0) = f(x), ye(x,0) = g(x) 0<x<o).

Here we require y to be of class C? in the region R: 0 < x < ¢, t > 0, by which
we shall mean that y and its derivatives of the first and second order, including y,,
and yy,, are to be continuous functions in R. The prescribed functions ¢, p, q, f,
and g must be restricted if the problem is to have a solution of class C2.

Suppose that there are two solutions y; (x, t) and y,(x, ¢) in that class. Then
the difference

Y(xa t) = Yl(X, t) - )’2(357 t)

is of class C? in R and satisfies the homogeneous problem

4) Y (x, 1) = a* Yy (x, 1) O<x<ct>0),
5) Y(,1) =0, Y(c,t)=0 t=0),
(6) Y(x,0) =0, Y (x,00=0 O<x<o).

We shall prove that Y = 0 throughout R; thus y; = y,, as stated in the following
theorem.
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Theorem. The boundary value problem (1)—(3) cannot have more than one
solution of class C? in R.

To start the proof, we note that the integrand of the integral

1 [€ 1
(7) 1(t) = 5/ (sz + o Yf) dx >0
0
satisfies conditions such that
¢ 1
(8) () = / (YY + Y,Yn> dx.
0

Since Y,; = a’Y;, and Y;, = Y,,, the integrand here can be written
d
Y. Yo+ YYo= — (i Y).
ax
So in view of equations (5), from which it follows that
Y0, =0, Yi(e,t) =0,
one can write

Hence I(¢) is a constant. But equation (7) shows that /(0) = 0 because Y(x, 0) = 0,
and so Y;(x, 0) = 0; also, Y;(x, 0) = 0. Thus I(¢) = 0. The nonnegative continuous
integrand of that integral must, therefore, vanish; that is,

Y(x,t) =Y, (x,t) =0 O<x<ct=0).

So Y is constant. In fact, Y(x, t) = Osince Y(x, 0) = 0; and the proof of the theorem
is complete.
If y,, instead of y, is prescribed at the endpoint in either or both of conditions
(2), the proof of uniqueness is still valid because condition (9) is again satisfied.
The requirement of continuity on derivatives of y is severe. Solutions of
many simple problems involving a wave equation have discontinuities in their
derivatives.
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APPENDIX 2

SOME FOURIER
SERIES EXPANSIONS

Some of the Fourier series expansions found in this book are listed on this and the
following page.

Fourier Cosine Series
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Fourier Sine Series

4 i sin(2n — 1)x
2n—1

1 n+1

O<x<m

sin nx O<x<m

o0

n_x_zzsmnx O<x<m)

= [(=1)rt! 1—(=D"] . nnx
=2¢? Z[ -2 ) ] sin —~ 0O<x <o)
RS 1 . @2n—Dmx

x(2c —x) = 3 3 sin
e 2n—-1) 2c

0 <x <20

X = 22:(—1)“rl % sin nx 0<x<m)
n
n=1

x (_1)n+1
x(@>-xH =12 E 3 sin nx O<x<m)
n

2 o (_1)n+1

x(1—x?) = — — sin nmx OD<x<1
i~ n
12 K si
x—Dax-==Y T 0<x<
n=1 n
COS TTX 8§: " sin 2nmx O<x<1
X = — — TT. < <
™ 4 4n? —1
2sinhanm
. _ +‘1 .
sinhax = — Zl (=D" g sin nx O<x<m
Fourier Series
. sinhaw  2sinhar S (—1)" o B
e = o + - ;a2+ 2(acosnx nsinnx) (—m <x <m),
where a #£ 0
h 1"
o = sin C+2 mhczcz(_'_i(’z)z(ccos?—nnsin@) (—c<x<o)



APPENDIX 3

SOLUTIONS OF
SOME REGULAR
STURM-LIOUVILLE
PROBLEMS

The eigenvalues and normalized eigenfunctions, together with weight functions,
of some of the regular Sturm-Liouville problems solved in this book are listed in
appendix.

1. X"+1X=0, X'(0) =0, hXc)+ X'()=0 (h > 0).
Solutions: Weight function p(x) = 1;

2h
p— Gn(x) = | ———— coSapx n=12,..),
" he + sin® a,,¢

h
where tano,c = — (o, > 0).
[07

n

2. X"+AX=0, X(0) =0, A X(H+X' 1) =0 (h > 0).
Solutions: Weight function p(x) =1;

/ 2h
)"n :Oti, ¢n(x) = msin(x,,x (n: 1,2,...),

oy

where tan o, = % (o, > 0).

A
3. (x X)) + ;X: 0, X'(1) =0, X()=0.

1
Solutions: Weight function p(x) = —;
x

[ 2
Ap = a2, () =/ cos@ Inx)  (n=1,2,..),

_ (@2n—-Drn

where =
2Inb
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A
4 X)FIX=0,  XW)=0,  X(b)=0.

1
Solutions: Weight function p(x) = e

hn =2, qﬁ,,(x):q/%sin(anlnx) n=12..),

nmw
o, =

where -
Inb

5 (xX)' + %X: 0, X'(1) =0, hX(b)+ X'(b) =0 (h > 0).

1
Solutions: Weight function p(x) = — ;
X

o= ol b(x) = \/ 2hb cos(a, In x) (n=
nE e O T b b+ sin(apInb) -
hb
where tan (o, Inb) = — (o, > 0).
oy

6. X" +1X=0, X'(0) =0, X(c) =0.
Solutions: Weight function p(x) =1;

2
A :aﬁ, dn(x) = \/;cosot,,x n=1,2,..),

_ 2n— 1w
- 2¢c

where
n

7. X' +1X=0, X(0) =0, X'(¢c) =0.
Solutions: Weight function p(x) =1;

2
An = 02, dn(x) = \/;sinanx n=12..),

_ @n—-Drm

where o
2c

8 X"+1X=0, X(0) =0, X1H-X'1)=0.
Solutions: Weight function p(x) =1;
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APP.3 SOLUTIONS OF SOME REGULAR STURM-LIOUVILLE PROBLEMS

9. X" +1X=0, hX0)— X'0)=0 (h > 0), X)) =0.
Solutions: Weight function p(x) =1;

In=n gu(x) = v, Snanl—x  (1=1.2...),
oy
where tana,, = % (o, > 0).

10. (X>X’) + 12X =0, X1 =0, X)) =0.
Solutions: Weight function p(x) = 1;

1 2
A=~ +a?, on(x) = sin(e, In x) n=12..),
4 xInb

nm
where oy = —.
Inb
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SOME FOURIER-BESSEL
SERIES EXPANSIONS

Some of the Fourier-Bessel series expansions found in this book are listed in this
appendix.
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Alternating signs
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B
Bar temperature problems, 129, 355
Bars, vibrating. See Vibrating elastic bars
Bernoulli, Daniel, 111
Bessel functions, 260-325
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defined, 260
differentiation of, 273-274, 286, 292
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recurrence relations, 261, 264, 273-277
shrunken fitting temperatures, 312-314
solid cylinder temperatures, 305-312
Weber’s, of the second kind, order
zero, 268
zeros of, 283-288
See also Fourier-Bessel series
Bessel’s equation
defined, 260
general solutions of, 266269
modified, 272, 283
parametric form of, 271
regular singular points of, 263
Bessel’s inequality, 30, 34, 49, 203-204, 206
Best approximation in the mean, 200-202
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Boundary conditions
Cauchy, 93
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for heat equation, 73-80
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Neumann, 93, 359
periodic, 155-160, 213
Robin, 93
separated, 210
time-dependent, 75-78, 185
types of, 93-94
for wave equation, 82
See also Nonhomogeneous boundary
conditions
Boundary value problems, 113-160
bar temperatures, 118-119
cylindrical coordinates steady
temperatures, 136-140
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Boundary value problems—Cont.
defined, 60
double Fourier series, 152-155
elastic bars, 149-152
historical notes, 111-112
infinite slab temperatures, 104-107
infinite slab with insulated face, 119-121
infinite slab with internally generated
heat, 125-130
infinite slab with prescribed face
temperatures, 114-118
overview, 60-62
with periodic boundary conditions,
155-160, 213
rectangular coordinates steady
temperatures, 131-135
resonance, 146-149
sphere temperatures, 122-125
vibrating string displacements, 107-110,
140-145
See also specific problem types
Bounded solutions, 240-241, 242
Boundedness
of Bessel functions, 279
of linear combinations, 177-178, 182
of piecewise continuous functions, 3
of piecewise smooth functions, 137, 139
uniform, 363, 364, 365
of uniformly continuous functions, 166
Brown, G. H., 127n

C
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Cauchy criterion for uniform convergence, 363
Cauchy-Euler equations
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defined, 139
orthogonal sets of Bessel functions and,
291
semicircular rod steady temperatures, 137
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spherical region Dirichlet problems, 353
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thin disk temperatures, 157
Cauchy’s inequality, 48, 194
Chain rule, 70, 88
Churchill problems, 93n
Circular boundaries, periodic boundary
conditions for, 155-160
Circular membranes, vibrating, 321-325
Class C? solutions, 374, 375
Closed forms of solutions
vibrating elastic bars, 150-151, 254
vibrating strings, 141-142, 372
Closed orthonormal sets of functions, 196,
205n, 208

Closure of domains, 368
Coefficients
of diffusion, 66
thermal, 63, 64
Complementary portion of differential
equations, 148
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Complex conjugates, 216, 294
Concentration of diffusing substances (u),
66
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Conductivity, thermal, 63
Cone-shaped boundaries, 333
Conjugates, complex, 216, 294
Constant flux, as boundary condition, 73
Constants
Euler’s, 267-268
Fourier, 196
separation, 105, 260, 319
Continuous eigenvalues, 175
Continuous functions
class C? solutions, 374, 375
eigenfunction conditions, 211
existence of derivatives and, 26
piecewise, 2—4
uniformly, 166
Continuous spectra, 212
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284,294
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absolute, 49-51, 164, 178, 264, 265, 277,
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differentiation of Fourier series and,
54-55
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Fourier theorems and, 35-43
Fourier theorems on, 35-41
Gibbs phenomenon and, 51-54
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one-sided derivatives and, 25-28
pointwise, 204, 363
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zero property of coefficients and, 28-31
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Cosine function
exponential form, 47, 169
generalized Fourier series
correspondence, 197-199
orthonormal sets of, 192, 193, 197,
198,207
Riemann-Lebesgue lemma for, 165
Cosine integral formula, 173-174
Cosine series, Fourier. See Fourier cosine
series
Cylinder temperatures
hollow, 159
with insulated surface, 118-119, 307-308
with internally generated heat, 314-316
shrunken fittings, 312-314
with surface at zero, 305-307
with surface heat transfer, 308
Cylindrical coordinates
defined, 68
laplacian in, 68-69, 70-71, 260
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D
d’Alembert, Jean Le Rond, 111
d’Alembert’s solution, 89
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Differential equations. See Ordinary
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Differentiation
of Bessel functions, 273-274, 286, 292
chain rule for, 70, 88
of differences of functions, 71
of Fourier series, 54-55
Leibnitz’ rule for, 334
of linear combinations, 96
of products of functions, 71
of series, 50, 54-55, 98
Diffusion coefficient, 66
Diffusion equation, 66
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Diffusivity, thermal, 64
Dirichlet boundary conditions, 93
Dirichlet kernel, 32
Dirichlet, Peter Gustav Lejeune, 111, 112
Dirichlet problems
in cylindrical coordinates, 136-137
defined, 93
rectangular plate steady temperatures,
131
in spherical regions, 352-356
Dirichlet’s integral, 163-165
Discontinuities
convergence and, 51-53
in derivatives of solutions, 375
singular Sturm-Liouville problems and,
212
Discrete spectra, 213
Disks, thin, temperatures in, 156159
Divergent sequences of functions, 204n
Domains, closure of, 368
Double Fourier-Bessel series, 321-323
Double Fourier series, 152-155
Duhamel’s principle, 75-78

E
Eigenfunction expansions method. See
Variation of parameters method
Eigenfunctions
defined, 102-103, 211
expansions of, 227-234
linear independence of, 156, 219
real-valued, 218-220
trigonometric, 350-352
Eigenvalue problems. See Sturm-Liouville
problems
Eigenvalues
continuous, 175
defined, 102-103, 211
nonnegative, 220-221
Elastic vibrating bars. See Vibrating elastic
bars
Elasticity, modulus of, 84
Electrostatic potentials
bounded by planes, 131
as harmonic functions, 66, 131
in spherical regions, 352
Elliptic partial differential equations, 92, 93
Epsilon (¢), 53-54
Equality, approximate, symbol for, 53, 189
Equations of motion
elastic bars, 84
membranes, 86
strings, 82, 144
Error function, 184
Error, mean square, 200, 201, 203-204, 205
Euler, Leonhard, 111
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Euler’s constant, 267-268
Euler’s formula, 19, 278, 336
Even functions
Bessel functions as, 267
cosine and sine integral representation, 174
defined, 14
Fourier cosine series and, 16, 18
Legendre series representation, 349
slab temperature problem example, 235
Even integers, in Bessel functions, 275
Even periodic extensions, 6, 44, 150
Exponential form of Fourier series, 47
Exponential form of trigonometric
functions, 47, 169
Exponential Fourier transform of f(x), 169n
Extensions, periodic. See Periodic extensions

F

Flow of heat, 62

Flux of heat
as boundary condition, 73, 358
defined, 62-63
Newton’s law of cooling, 74

Forced vibrations
elastic bars, 255-256
membranes, 86
resonance, 146-149
strings, 82

Formal solutions, 352
cylindrical wedge temperatures, 320-321
defined, 114
with double Fourier series, 153154
hemisphere temperatures, 357, 359
infinite slab temperatures, 106, 115, 127, 235
rectangular plate steady temperatures,

132,133

semi-infinite solid temperatures, 183
semi-infinite strip temperatures, 180
semicircular rod temperatures, 139
spherical Dirichlet problems, 354
vibrating circular membranes, 322
vibrating elastic bars, 150
vibrating strings, 108-109, 372

Formulas
Euler’s, 19, 278, 336
Fourier integral, 161-163
Rodrigues’, 333-336

Fourier-Bessel series
circular membrane vibration, 321-323
cylindrical wedge temperatures, 319-321
defined, 298-300
expansions of, 300-305, 387-388
infinite cylinder temperatures, 306-307, 308
semi-infinite half-cylinder

temperatures, 318
Fourier constants, 196, 201, 203

Fourier cosine integral formula, 173-174
Fourier cosine series
on arbitrary intervals, 21, 23
coefficient properties, 28-31
convergence of, 6, 30, 51
defined, 4-8, 13
differentiation of, 55
expansions of, 381
generalized, 197-199
integral forms of Bessel functions and,
278
orthonormal sets and, 205-207
for sine function, 8, 40
zero property of coefficients, 31
Fourier integral formula, 161-163
Fourier integral theorem, 169-173
Fourier integrals, 161-188
cosine and sine integrals, 173-174
Dirichlet’s integral, 163-165
Fourier integral theorem, 169-173
general Fourier integral formula, 161-163
lemmas for theorem, 165-169
superposition of solutions and, 177-179
symmetric form, 172
temperatures in semi-infinite solid,
182-187
temperatures in semi-infinite strip,
179-181
temperatures in unlimited medium,
187-188
unbounded interval eigenvalue
problems, 174-177
Fourier, Jean Baptiste Joseph, viii, ix,
111-112
Fourier method, 95-112
double Fourier series, 152-155
eigenvalues and eigenfunctions, 102-104
historical development, 111-112
linear operators and, 95-97
modified, 245-248, 314-316
superposition principle and, 97-102
temperature of infinite slab, 104-107
vibrating string displacements, 107-110
Fourier series
absolute and uniform convergence of,
49-51
on arbitrary intervals, 20-24
defined, 14-18
differentiation of, 54-55
double, 152-155
expansions of, 381-382
generalized, 195-200, 227-234, 345-347
integration of, 55-58
orthonormal sets and, 198-199, 205-207
validity of, 44, 196
Fourier sine integral formula, 173-174, 183



Fourier sine series
on arbitrary intervals, 21, 22-23, 24
coefficient properties, 30-31
convergence of, 9-10, 30, 51
defined, 9-12
expansions of, 382
with Fourier-Bessel series, 320-321
generalized, 197, 199
integral forms of Bessel functions and, 278
orthonormal sets and, 205-207
zero property of coefficients, 31
Fourier theorem
on arbitrary intervals, 4347
defined, 35-38
examples, 39—40
piecewise smooth functions, 38-39
Fourier transform, exponential, 1691
Fourier’s law, 63, 66
Fourier’s ring, 160
Frobenius, method of, 263n
Function spaces, 3, 95, 190
Functions
antiperiodic, 230, 232, 234, 254, 259
average values of, 5, 15, 17
error, 184
even, 14, 16, 18, 174, 235, 267, 349
gamma, 261-262, 269
generating, 283, 340
inner product of, 189-191, 213
Legendre, of the second kind, 331, 333
mean of, 5, 15,17
normalized, 191, 213, 295
norms of, 190, 196, 200, 297-298, 343-345
odd, 14, 16, 18, 174, 237, 267, 349
periodic, 35-36, 44
piecewise continuous, 2—4
potential, 66, 131, 352-354
representation of, historical notes,
111-112
sine integral, 53
square wave, 45, 256
step, 26, 76, 142, 184
triangular wave, 230
trigonometric, 47, 169, 192-193, 197-199,
205-207
uniformly continuous, 166
weight, 213, 216
See also Bessel functions; Harmonic
functions; Piecewise smooth functions
Fundamental intervals, 17

G

Gamma function, 261-262, 269

Gauss’ divergence theorem, 3691

General linear partial differential
equations, defined, 61-62, 92-94
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General solutions
Bessel’s equation, 266-269
hemisphere temperatures, 357
Legendre’s equation, 331
spherical region Dirichlet problems, 353
vibrating elastic bars, 253
wave equation, 87-92, 373
Generalized Fourier series, 195-200,
227-234,345-347
Generating functions
Bessel functions, 283
Legendre polynomials, 340
Gibbs phenomenon, 51-54
Gravitational acceleration, vibrating string
with, 82
Gravitational potentials, 66
Green’s identity, 368-369

H
Half-cylinder temperatures, 318
Hankel’s integral representation, 281
Harmonic functions
bounded, 242
Churchill problems and, 93n
in circular regions, 308
defined, 66
Dirichlet problems and, 93
in rectangular regions, 131
in spherical regions, 352-356
in square cross sections, 238-240
in strips, 188, 242
types of, 66
Hartley, R.V. L., 172n
Heat conduction, postulates of, 63
Heat equation
boundary conditions, 73-80
double Fourier series and, 155
multi-dimensional, 65-67, 369
nonhomogeneous insulated bar, 355
one-dimensional, 62-65, 93
uniqueness of solutions, 368-371
verification of solutions, 183-184, 365-368
Heat generation
heat equation for, 65-66
hemisphere temperatures, 360-361
infinite cylinder temperatures, 314-316
infinite slab temperatures, 125-130
Heat transfer at a surface
cylindrical surfaces, 308
infinite slabs, 234-236
Newton’s law of cooling and, 74
semi-infinite slabs, 240-241
semi-infinite strips, 181
slender wires, 121
square rods, 238-240
Hemisphere temperatures, 356-361
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Historical notes, 111-112
Hollow cylinder temperatures, 159
Hollow sphere temperatures, 355
Homogeneous linear boundary conditions
defined, 62
superposition principle and, 97, 99
Homogeneous linear differential equations
Bessel’s equation as, 263
defined, 62
second-order, general form, 97
superposition principle and, 97-99
vibrating strings, 82
Hooke’s law, 84-85
Horizontal elastic bars, 255, 257-259
Hyperbolic Fourier series, 55
Hyperbolic partial differential equations,
92,93

I
Improper integrals
convergence of, 170
Dirichlet’s integral, 163-165
Fourier integral formula and, 162
Impulse forces, 256
Inequalities
Bessel’s, 30, 34, 49, 203-204, 206
Cauchy’s, 48, 194
Schwarz, 194
triangle, 194
Infinite cylinder temperatures
insulated surface, 307-308
internally generated heat, 314-316
shrunken fittings, 312-314
surface heat transfer, 308
zero surface temperature, 305-307
Infinite rectangular prism temperatures,
154-155
Infinite series, superposition principle and,
97-98
Infinite slab temperatures
Duhamel’s principle application, 77-78
faces at prescribed temperatures, 114-118
Fourier method for, 104-107
insulated faces, 119-121
internally generated heat, 125-130
modified Fourier method for, 234-236,
246-247
uniqueness of solutions, 371
variation of parameters method for, 249-252
verification of solutions, 365-368
Initial value problems
real-valued eigenfunctions and, 218
slab with internally generated heat,
125-128
vibrating strings, 93, 140-145, 147-148
Inner products, 189-191, 213

Insulated surfaces
cylinder temperatures, 118-119
defined, 73
hemisphere temperatures, 357-359
infinite slab temperatures, 104-107,
119-121, 234-236, 249-252
rectangular plate steady temperatures,
131,134
rod temperatures, 74-75
semi-infinite slab temperatures, 74, 133,
240-241
semi-infinite strip temperatures, 179-181
semicircular rod steady temperatures, 137
thin disk temperatures, 156-159
Integral forms
Bessel functions, 277-283
Legendre polynomials, 336-341
Integral theorem, Fourier, 169-173
Integral transforms, 371n
Integrals, Fourier. See Fourier integrals
Integrating factors, 127, 130n
Integration
of convergent series, 50
of Fourier series, 55-58
Hankel’s formula for, 281
of Legendre polynomials, 347
periodicity of integrands and, 36
reduction formula for, 274-276
Integration by parts
Fourier series, 56-57
Kronecker’s method, 11
reduction formula, 275
Internally generated heat. See Heat
generation
Isolated zeros of Bessel functions, 285n
Iterated integrals, 129

K
Kronecker, Leopold, 11
Kronecker’s method, 11

L
Lagrange’s identity, 217, 270
Laplace transforms, 76n
Laplace’s equation
Bessel functions and, 308
defined, 65
as elliptic, 92
Fourier integrals and, 177
generalized, 66
Legendre’s equation and, 326
in polar coordinates, 68, 242
rectangular plate steady
temperatures, 131
semicircular rod temperatures, 137
slab temperatures, 177



solid bounded by concentric spheres, 78
in spherical coordinates, 69, 352
thin disk temperatures, 157
vibrating membranes, 86
Laplace’s integral form for Legendre
polynomials, 336-341
Laplacian
in cylindrical coordinates, 68-69, 70-71, 260
defined, 65
in polar coordinates, 68, 72
in spherical coordinates, 69, 71-72
Least squares approximation, 200n
Left-hand derivatives, 26, 27, 37
Left-hand limits, 2, 26
Legendre functions of the second kind, 331,
333
Legendre polynomials, 326-361
defined, 328-331
of degree n, 330-331
generating function for, 340
graphs of, 331
hemisphere temperatures, 356-361
Laplace’s integral form of, 336-341
Legendre series, 345-350
Legendre’s equation solutions,
326-328, 351
orthogonal sets of, 341-343
orthonormal sets of, 343-345
recurrence relations, 327, 332, 335-336
Rodrigues’ formula for, 333-336
spherical coordinates application,
352-356
trigonometric eigenfunctions, 350-352
zeros of, 350
Legendre series, 345-350
Legendre’s equation, 326-328, 351
Leibnitz, Gottfried Wilhelm, 111
Leibnitz’ rule, 334
Lim. (limit in the mean), 203
Limits
for Bessel functions, 281
of derivatives, one-sided, 27-28, 33, 367
in the mean, 203
one-sided, 2, 3, 25, 26, 27-28, 32-33, 36, 38
Linear boundary conditions, defined, 61-62
Linear boundary value problems, defined,
60-62
Linear combinations
best approximation in the mean and,
201,202
boundedness of, 177, 182
computational aid for coefficients of, 12
defined, 95
of eigenfunctions, 156, 219
of Legendre polynomials, 349
superposition principle and, 177
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Linear differential equations, defined, 61-62
See also Homogeneous linear differential

equations

Linear independence of eigenfunctions,
156, 219

Linear operators, 95-97

Linearly independent functions, orthogonal
sets of, 194

Liouville, Joseph, 211n

M
M-test, Weierstrass, 50, 170, 366, 371
Maclaurin series, 267, 270, 285, 326, 340
Mean
best approximation in, 200-202
convergence in, 203, 204n
of functions, 5, 15, 17
limit in, 203
Mean square deviation, 190
Mean square error, 200, 201, 203-204, 205
Mean value of one-sided limits
Fourier-Bessel series, 300
Fourier integrals, 161, 170
Fourier series, 36, 38
Legendre series, 347
Mean value theorem, 27-28, 370
Mean value theorem for derivatives, 77
Membrane analogy, 87
Membranes, vibrating
circular, 321-325
damped, 325
double Fourier series solution, 152-154
static transverse displacements, 86
wave equation for, 85-87
Methods
Frobenius, 263n
undetermined coefficients, 148
See also Fourier method; Separation of
variables method; Variation of
parameters method
Modified Bessel functions, 271-272, 292
Modified Bessel’s equation, 272, 283
Modified Fourier method, 245-248, 314-316
Modulus of elasticity, 84
Monotonic sequences, 363, 364
Multi-dimensional heat equation, 65-67, 369
Music
from membranes, 154, 324
from strings, 80, 111
wave equation and, 85

N

Negative zeros of Bessel functions, 287
Neumann boundary conditions, 93, 359
Newton, Isaac, 111

Newton’s law of cooling, 74, 308



396 1NDEx

Newton’s second law of motion, 81, 84
Nomenclature
approximate equality, 53
cylindrical coordinates, 68n
density (8), 63
epsilon (&), 53-54
Gibbs phenomenon (o), 53
one-sided derivatives, 25
one-sided limits, 2
one-sided limits of derivatives, 27
partial differential equations, 61-62
specific heat (o), 63
tilde (~), 5-6
Nonhomogeneous boundary conditions
cylindrical wedge temperatures, 319, 320
infinite slab temperatures, 106, 116, 249
modified Fourier method and, 246
multiple, 144
semi-infinite slab temperatures, 240, 241
shrunken fitting temperatures, 312
superposition principle and, 178-179
thin disk temperatures, 157, 158
vibrating circular membranes, 321, 322
vibrating strings, 107, 108
Nonhomogeneous partial differential
equations
cylinder with internally generated heat,
314-316
one-dimensional heat flow, 65
superposition principle, 102
variation of parameters method for,
125-127, 253, 314-316
wave equation, 82
Nonlinear ordinary differential equations,
102
Nonlinear partial differential equations, 62
Nonnegative eigenvalues, 220-221
Normalized functions, 191, 213, 295
Norms
of Bessel functions, 297-298
best approximation in the mean and, 200
defined, 190
of Legendre polynomials, 343-345
positive, 196

(0]
Odd functions
Bessel functions as, 267
cosine and sine integral representation, 174
defined, 14
Fourier sine series and, 16, 18
Legendre series representation, 349
Odd integers in Bessel functions, 275
Odd periodic extensions, 10, 44, 141
One-dimensional heat equation
cylindrical coordinates, 68—69

defined, 62-65
as parabolic, 92
superposition example, 99-100
verification of solution, 365-368
One-dimensional wave equation
general solution method, 87-92
as hyperbolic, 92
superposition example, 100-101
vibrating elastic bars, 84-85
vibrating strings, 80-82
One-sided derivatives, 25-28, 32, 37
One-sided limits
mean value of, 36, 38
one-sided derivatives and, 25, 26, 27-28
piecewise continuous functions, 2, 3, 32-33
One-sided limits of derivatives, 27-28,
33,367
Ordinary derivatives, 26
Ordinary differential equations
continuity conditions, 211
eigenvalues and eigenfunctions for,
102-104
general solutions of Bessel’s equation,
148
integrating factors, 127, 130n
superposition principle and, 98, 219
uniqueness of solutions, 218
Ordinary points, 326
Orthogonal sets
of Bessel functions, 288-294
defined, 191, 213
of Legendre polynomials, 341-343
Orthogonality
defined, 190-191
of eigenfunctions, 213-218, 290, 342-343
Orthonormal sets of functions, 189-209
applications to Fourier series, 205-207
Bessel functions, 295-298
Bessel’s inequality and, 203-204
best approximation in the mean, 200-202
closed, 196, 205n, 208
complete, 205, 2057, 206-207, 208
defined, 191
examples of, 191-193
generalized Fourier series and, 195-200
inner products, 189-191
Legendre polynomials, 342, 343-345
normalized functions and, 191
orthogonal functions and, 190-191
Parseval’s equation and, 205
trigonometric functions, 192-193, 197-199

P

Parabolic partial differential equations,
92,93

Parametric form of Bessel’s equation, 271



Parseval’s equation, 205, 207, 282
Partial derivatives, nomenclature for, 61-62
Partial differential equations
boundary conditions, 73-80, 92-94
general form, 61-62, 92
laplacian in, 65, 67-73
linear boundary value problems, 60-62
multi-dimensional equations, 65-67
one-dimensional heat equation, 62-65
one-dimensional wave equation, 87-92
types of, 61-62, 92-94
vibrating bars, 84-85, 86
vibrating membranes, 85-87
vibrating strings, 80-83
Particular solutions of differential
equations, 148
Periodic boundary conditions, 155-160, 213,
321
Periodic extensions
in closed form solutions, 150, 373
even, 6,44, 150
for Fourier series, 16, 44
Fourier theorem and, 38
odd, 10, 44, 141
vibrating elastic bar displacements, 150
for vibrating string, 141
Periodic functions, 35-36, 44
Periodicity of integrands, 36
Piecewise continuous functions, 2—4
Piecewise smooth functions
defined, 27
Fourier-Bessel series and, 300
Fourier integral formula and, 161
Fourier series convergence and, 38, 40
Legendre series representation, 347-348
Piecewise smooth surfaces, 368
Plate temperatures
rectangular, 131-133, 134
semi-infinite, 74, 133-134, 240-241
Pointwise convergence, 204, 363
Poisson’s equation
defined, 66
as elliptic, 92
semi-infinite half-cylinder temperatures,
318
semi-infinite plate temperatures, 135
vibrating membranes, 87
Poisson’s integral formula, 159
Polar coordinates
defined, 68
Laplace’s equation in, 68
laplacian in, 68, 72
Sturm-Liouville problems in, 242-244
Polynomials, Legendre. See Legendre
polynomials
Positive norms, 196
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Positive zeros of Bessel functions, 283, 286
Postulates of heat conduction, 63
Potentials

bounded by planes, 131

as harmonic functions, 66

in spherical regions, 352-354
Principle of superposition

Fourier integrals and, 177-179

Fourier method and, 97-102

nonhomogeneous boundary conditions,

144

Prisms, temperatures in, 154-155
Products of functions

differentiation of, 71, 334

exponential, 277-278

one-sided derivatives and, 26-27
Products of linear operators, 96, 97
Pure recurrence relations, 274

R

Radio-frequency heating, 127n

Ratio tests, 264, 328, 366

Real-valued eigenfunctions, 218-220

Rectangular plate steady temperatures,
131-133, 134

Rectangular prisms, temperatures in,
154-155

Recurrence relations

Bessel functions, 261, 264, 273-277
Legendre polynomials, 327, 332, 335-336

Reduction formulas, 275, 337-338

Regular singular points, 263

Regular Sturm-Liouville problems,
210-212, 383-385

Representation of functions, historical
notes, 111-112

Resonance, 146-149, 259

Riemann-Lebesgue lemma, 31, 165-167, 281

Right-hand derivatives, 25, 26-27, 32, 33, 37

Right-hand limits, 2, 25

Ring, Fourier’s, 160

Robin boundary conditions, 93

Robin, Victor Gustave, 93n

Rod temperatures, 74-75, 137-139, 238-240

Rodrigues’ formula, 333-336

Rolle’s theorem, 285

S

Schwarz inequality, 194

Second-order linear differential equations,
61-62, 92-94, 97

Semi-infinite half-cylinder temperatures,
318

Semi-infinite plate/slab temperatures, 74,
133-134, 240-241

Semi-infinite solid temperatures, 182-187
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Semi-infinite strips, 179-181, 242
Semi-infinite vibrating strings, 181
Semicircular cross-sections, 137-139,
242-244
Separated boundary conditions, 210
Separated solutions, 105
Separation constants, 105, 260, 319
Separation of variables method
Bessel’s equation and, 260
cylindrical wedge temperatures, 319-321
defined, 105-106
Fourier work, 111
infinite slab temperatures, 105-106, 249
Legendre’s equation and, 326, 352-353
nonhomogeneous boundary conditions,
116
in polar coordinates, 242-243, 260
rectangular plate steady temperatures,
131
semi-infinite solid temperatures, 182-184
spherical region Dirichlet problems,
352-353
vibrating circular membranes, 321-323
vibrating elastic bars, 253
Series
differentiation of, 50, 54-55, 98
integration of, 50
Legendre, 345-350
Maclaurin, 267, 270, 285, 326, 340
Sturm-Liouville, 227-231
superposition principle and, 97-102
unstable components, 148
validity of, 44, 196
See also Fourier cosine series; Fourier
series; Fourier sine series;
Fourier-Bessel series; Uniform
convergence
Shrunken fitting temperatures, 312-314
Sigma (o)
Gibbs phenomenon, 53
specific heat, 63
Signs, alternating
Bessel function derivatives, 286
Legendre polynomials, 349
Sine function
exponential form, 47, 169
Fourier cosine series for, 8, 40
generalized Fourier series
correspondence, 197, 199

orthonormal sets of, 192, 193, 197, 198, 207

Riemann-Lebesgue lemma for, 165-167
Sine integral formula, 173-174, 183
Sine integral function Si (x), 53
Sine series, Fourier. See Fourier sine series
Singular points, regular, 263
Singular Sturm-Liouville problems

Bessel function orthogonal sets and,
288-294
cylindrical wedge temperatures, 320
defined, 212-213
hemisphere temperatures, 358
Legendre polynomial orthogonal sets
and, 341-343
trigonometric eigenfunctions, 350-352
Slab temperature problems. See Infinite slab
temperatures; Semi-infinite slab
temperatures
Smooth surfaces, 62, 368
Soap films, membrane analogy and, 87
Solid sphere temperatures, 245, 354
Solutions
approximation of, 117
closed forms, 141-142, 150-151, 254, 352
d’Alembert’s, 89
separated, 105
uniqueness of, 60-61, 218, 368-371,
374-375
verification of, 365-368, 372-374
See also Formal solutions
Sound, wave equation application to, 85
Space of functions, 3, 95, 190
Specific heat, 63-64
Spectrum of Sturm-Liouville problems, 211,
212-213
Spherical coordinates
defined, 69
Laplace’s equation in, 69
laplacian in, 69, 71-72
Legendre series application, 352-356
Spherical region temperature problems,
78-80, 122-125, 245, 352-356
Square plate temperatures, 134, 135
Square rod temperatures, 238-240
Square wave function, 45, 256
Steady temperature problems
cylinders, 159, 309
cylindrical coordinates, 136-140, 308
disks, 156-159
hemispheres, 356-361
hollow cylinders, 159
infinite slabs, 117
Laplace’s equation for, 65
rectangular plates, 131-133, 134
rods, 74-75, 137-139, 238-240
semi-infinite plates, 133-134
semi-infinite strips, 179-181
spherical regions, 352, 354-356
square cross sections, 238-240
wedge-shaped plates, 140
Step functions, 26, 76, 142, 184
Strings. See Vibrating strings
Sturm, Jacques Charles Frangois, 211n



Sturm-Liouville equation, 210
Sturm-Liouville problems, 210-259
circular boundaries, 155-156
in cylindrical coordinates, 136, 137, 244
double Fourier series and, 153
eigenfunction expansions, 227-234
eigenvalues and eigenfunctions for,
102-104
elastic bars, 252-259
infinite slab temperatures, 105, 234-238
Legendre polynomials and, 341-343
modified Fourier method and, 245-248
nonnegative eigenvalues, 220-221
orthogonal sets of Bessel functions and,
288-294
orthogonality of eigenfunctions, 213-218
overview, 102-104, 113-114
with periodic boundary conditions,
156-159, 213
in polar coordinates, 242-244
real-valued eigenfunctions, 218-220
rectangular plate steady temperatures,
131-132
regular type, 210-212
semi-infinite slab temperatures, 74,
133-134, 240-241
singular type, 212-213, 288-294, 320,
341-343, 350-352, 358
solution methods, 102-104, 155-159,
221-227
solutions, list of, 383-385
in spherical coordinates, 245
steady temperatures, 238-242
thin disk temperatures, 157
unbounded intervals, 174-177
variation of parameters method for,
249-252
vibrating membranes, 153
vibrating strings, 108, 142
Sturm-Liouville series, 227-231
Successive integration by parts, 11
Sums of convergent series
Abel’s test and, 362-363
as continuous function, 50
Fourier series, 40
infinite series, 98
Sums of linear operators, 96
Superposition principle
Fourier integrals and, 177-179
Fourier method and, 97-102
nonhomogeneous boundary conditions,
144
ordinary differential equations, 98, 219
Surface conductance, 74
Surface heat transfer. See Heat transfer at a
surface
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Surfaces, smooth, 62, 368
Symmetric form of Fourier integral
formula, 172

T
Taylor, Brook, 111
Temperature problems
bars, 129, 355
cylinders, 118-119, 159-160, 305-308,
312-316
cylindrical wedges, 319-321
hemispheres, 356-361
infinite slabs, 77-78, 104-107, 114-118,
119-121, 125-130, 234-236, 246-247,
249-252, 365-368, 371
with prescribed face temperatures, 73, 75,
77
prisms, 154-155
rectangular plates, 131-133, 134
rods, 74-75, 137-139, 238-240
semi-infinite plates/slabs, 74, 133134,
240-241
semi-infinite solids, 182-187
semi-infinite strips, 179-181, 242
spheres, 78-80, 122-125, 245, 352-356
unlimited media, 187-188
wires, 79, 121, 159-160
Tensile forces, 80-81, 85
Théorie analytique de la chaleur (Fourier),
111
Thermal conductivity, 63
Thermal diffusivity, 64, 67
Thin disk temperatures, 156-159
Three-dimensional heat equation, 65, 369
Tilde symbol (~), 5-6
Time-dependent boundary conditions,
75-78, 185
Time-dependent boundary value problems,
125-127
Transforms
Fourier, exponential, 1691
integral, 371n
Laplace, 76n
Traveling waves, 89
Triangle inequality, 194
Triangular wave function, 230, 255, 256
Trigonometric eigenfunctions, 350-352
Trigonometric functions
exponential form of, 47, 169
orthonormal sets of, 192-193, 197-199,
205-207
Two-dimensional heat equation, 65, 67
Two-dimensional wave equation, 85-87
Two-series solutions
double Fourier-Bessel series, 321-323
double Fourier series, 152-155
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Two-series solutions—Cont.
Fourier sine series and Fourier-Bessel
series, 319-321

U
Unbounded intervals, 174-177, 212
Undetermined coefficients, method of, 148
Uniform convergence

Abel’s test for, 362-365, 368, 371

Cauchy criterion for, 363

of Fourier series, 49-51

of improper integrals, 170, 178

of series, 49-50
Uniformly bounded sequences, 363, 364, 365
Uniformly continuous functions, 166
Uniqueness of solutions

heat equation, 368-371

ordinary differential equations, 218

partial differential equations, 60-61

wave equation, 374-375
Unlimited media, temperatures in, 187-188
Unstable components, 148

v
Validity of series representations
Dirichlet work, 112
Fourier series, 44
generalized Fourier series, 196, 229
Variation of parameters method
cylinder with internally generated heat,
314-316
hemisphere with internally generated
heat, 360-361
slab with insulated face, 249-252

slab with internally generated heat, 125-127

vertically hung elastic bar, 252-255
vibrating strings, 257
Vectors
analogy to orthonormal sets, 4, 190,
195-196
best approximation in the mean and,
201-202
Velocity potentials, 66
Verification of solutions
heat equation, 183-184, 365-368
wave equation, 372-374
Vertically hung elastic bars, 252-255
Vibrating elastic bars
general solution method, 149-152
variation of parameters method for,
252-255
wave equation for, 84-85

Vibrating membranes
circular, 321-325
damped, 325
double Fourier series solution for,
152-154
wave equation for, 85-87
Vibrating strings
with air resistance, 144
end conditions, 82, 88-90
equations of motion, 82, 144
Fourier method for, 107-110
historical notes, 111-112
with prescribed initial conditions, 93,
140-145
resonance, 146-149
semi-infinite, 181
uniqueness of solutions, 374-375
variation of parameters method for, 257
verification of solutions, 372-374
wave equation for, 80-82
Vibrating wires, 83, 142

W
Wave equation
general solution method, 87-92
one-dimensional, 80-82, 84-85, 87-92
resonance and, 146
two-dimensional, 85-87
uniqueness of solutions, 374-375
verification of solutions, 372-374
Wave functions
square, 45, 256
triangular, 230, 255, 256
Waves, traveling, 89
Weber’s Bessel function of the second kind,
order zero, 268
Wedge-shaped regions, temperatures in,
140, 319-321
Weierstrass M-test, 50, 170, 366, 371
Weight functions, 213, 216
Wires
temperatures in, 79, 121, 159-160
vibrating, 83, 142

Y
Young’s modulus of elasticity, 84

Z
Zero property of Fourier coefficients, 28-31
Zeros

Bessel functions, 283-288

Legendre polynomials, 350
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