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Preface

Category theory is becoming a central hub for all of puremathematics. It is unmatched

in its ability to organize and layer abstractions, to find commonalities between struc-

tures of all sorts, and to facilitate communication between different mathematical

communities.

But it has also been branching out into science, informatics, and industry. We believe

that it has the potential to be a major cohesive force in the world, building rigorous

bridges between disparate worlds, both theoretical and practical. The motto at MIT is

mens et manus, Latin for mind and hand. We believe that category theory—and pure

math in general—has stayed in the realm of mind for too long; it is ripe to be brought

to hand.

Purpose and audience

The purpose of this book is to offer a self-contained tour of applied category theory.

It is an invitation to discover advanced topics in category theory through concrete

real-world examples. Rather than try to give a comprehensive treatment of these

topics—which include adjoint functors, enriched categories, proarrow equipments,

toposes, and much more—we merely provide a taste of each. We want to give readers

some insight into how it feels to work with these structures as well as some ideas about

how they might show up in practice.

The audience for this book is quite diverse: anyone who finds the above description

intriguing. This could include amotivatedhigh school studentwhohasn’t seen calculus

yet but has loved reading a weird book on mathematical logic they found at the

library. Or amachine-learning researcherwhowants to understandwhat vector spaces,

design theory, and dynamical systems could possibly have in common. Or a pure

mathematician who wants to imagine what sorts of applications their work might

have. Or a recently-retired programmerwho’s always had an eerie feeling that category

theory is what they’ve been looking for to tie it all together, but who’s found the usual

books on the subject impenetrable.
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For example, we find it something of a travesty that in 2018 there is almost no

introductory material available on monoidal categories. Even beautiful modern intro-

ductions to category theory, e.g. by Riehl or Leinster, do not include anything on this

rather central topic. The only exceptions we can think of are [CK17, Chapter 3] and

[CP10], each of which has a very user-friendly introduction to monoidal categories;

however, readers who are not drawn to physics may not think to look there.

The basic idea of monoidal categories is certainly not too abstract; modern human

intuition seems to include a pre-theoretical understanding of monoidal categories that

is just waiting to be formalized. Is there anyone who wouldn’t correctly understand

the basic idea being communicated in the following diagram?

make

lemon

filling

make

meringue

separate

egg

fill crust

add

meringue

prepare lemon meringue pie

prepared crust

lemon

butter

sugar

egg

sugar

yolk

white

lemon

filling

unbaked

lemon pie

meringue

unbaked

pie

Manyapplied category theory topics seemto takemonoidal categories as their jumping-

off point. So one aimof this book is to provide a reference—even if unconventional—for

this important topic.

We hope this book inspires both new visions and new questions. We intend it to be

self-contained in the sense that it is approachable with minimal prerequisites, but not

in the sense that the complete story is told here. On the contrary, we hope that readers

use this as an invitation to further reading, to orient themselves in what is becoming a

large literature, and to discover new applications for themselves.

This book is, unashamedly, our take on the subject. While the abstract structures

we explore are important to any category theorist, the specific topics have simply

been chosen to our personal taste. Our examples are ones that we find simple but

powerful, concrete but representative, entertaining but in a way that feels important

and expansive at the same time. We hope our readers will enjoy themselves and learn

a lot in the process.
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How to read this book

The basic idea of category theory—which threads through every chapter—is that if

one pays careful attention to structures and coherence, the resulting systems will

be extremely reliable and interoperable. For example, a category involves several

structures: a collection of objects, a collection of morphisms relating objects, and a

formula for combining any chain of morphisms into a morphism. But these structures

need to cohere or work together in a simple commonsense way: a chain of chains is itself

a long chain, so combining a chain of chains should be the same as combining the long

chain. That’s it!

We will see structures and coherence come up in pretty much every definition we

give: “here are some things and here are how they fit together.” We ask the reader to

be on the lookout for structures and coherence as they read the book, and to realize

that as we layer abstraction upon abstraction, it is the coherence that makes all the parts

work together harmoniously in concert.

Each chapter in this book is motivated by a real-world topic, such as electrical cir-

cuits, control theory, cascade failures, information integration, and hybrid systems.

These motivations lead us into and through various sorts of category-theoretic con-

cepts. We generally have one motivating idea and one category-theoretic purpose per

chapter, and this forms the title of the chapter, e.g. Chapter 4 is “Collaborative design:

profunctors, categorification, and monoidal categories.”

In many math books, the difficulty is roughly a monotonically-increasing function

of the page number. In this book, this occurs in each chapter, but not so much in the

book as a whole. The chapters start out fairly easy and progress in difficulty.

Page number

D
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Most math books

D
i
ffi
c
u
l
t
y

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 End

This book

The upshot is that if you find the end of a chapter very difficult, hope is certainly not

lost: you can start on the next one and make good progress. This format lends itself

to giving you a first taste now, but also leaving open the opportunity for you to come

back to the book at a later date and get more deeply into it. But by all means, if you

have the gumption to work through each chapter to its end, we very much encourage

that!

We include about 240 exercises throughout the text, with solutions in Appendix A.

Usually these exercises are fairly straightforward; the only thing they demand is that

the reader changes their mental state from passive to active, rereads the previous
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paragraphs with intent, and puts the pieces together. A reader becomes a studentwhen

they work the exercises; until then they are more of a tourist, riding on a bus and

listening off and on to the tour guide. Hey, there’s nothing wrong with that, but we do

encourage you to get off the bus and make direct contact with the native population

and local architecture as often as you can.
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Personal note

Ourmotivations to apply category theoryoutsideofmathare, perhapsnaively, grounded

in the hope it can help bring humanity together to solve our big problems. But category

theory is a tool for thinking, and like any tool it can be used for purposes we align with

and those we don’t.

In this personal note, we ask that readers try to use what they learn in this book to

do something they would call “good,” in terms of contributing to the society they’d

want to live in. For example, if you’re planning to study this material with others,

consider specifically inviting someone from an under-represented minority—a group

that is more highly represented in society than in upper-level math classes—to your

study group. As another example, perhaps you can use the material in this book to

design software that helps people relate to and align with each other. What’s the

mathematics of a well-functioning society?

Thewaywe use our tools affects all our lives. Our society has seen the results—both

thewonders and thewaste—resulting from rampant selfishness. Wewould be honored

if readers found ways to use category theory as part of an effort to connect people, to

create common ground, to explore the cross-cutting categories in which life, society,

https://forum.azimuthproject.org/categories/applied-category-theory-course
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and environment can be represented, and to end the ignorance entailed by limiting

ourselves to a singular ontological perspective on anything.

If you do something of the sort, please let us and the community know about it.

Brendan Fong and David I. Spivak

Cambridge MA, October 2018
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Chapter 1

Generative effects:
Orders and Galois connections

In this book, we explore a wide variety of situations—in the world of science, engineer-

ing, and commerce—where we see something we might call compositionality. These

are cases in which systems or relationships can be combined to form new systems or

relationships. In each case we find category-theoretic constructs—developed for their

use in pure math—which beautifully describe the compositionality of the situation.

This chapter, being the first of the book, must serve this goal in two capacities.

First, it must provide motivating examples of compositionality, as well as the relevant

categorical formulations. Second, it must provide the mathematical foundation for the

rest of the book. Since we are starting with minimal assumptions about the reader’s

background, we must begin slowly and build up throughout the book. As a result,

examples in the early chapters are necessarily simplified. However, we hope the reader

will already begin to see the sort of structural approach to modeling that category

theory brings to the fore.

1.1 More than the sum of their parts

We motivate this first chapter by noticing that while many real-world structures are

compositional, the results of observing them are often not. The reason is that ob-

servation is inherently “lossy”: in order to extract information from something, one

must drop the details. For example, one stores a real number by rounding it to some

precision. But if the details are actually relevant in a given system operation, then the

observed result of that operation will not be as expected. This is clear in the case of

roundoff error, but it also shows up in non-numerical domains: observing a complex

system is rarely enough to predict its behavior because the observation is lossy.

Acentral theme in category theory is the studyof structures and structure-preserving

maps. Amap f : X → Y is a kind of observation of object X via a specified relationship

it has with another object, Y. For example, think of X as the subject of an experiment

1
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and Y as a meter connected to X, which allows us to extract certain features of X by

looking at the reaction of Y.

Asking which aspects of X one wants to preserve under the observation f becomes

the question “what category are you working in?.” As an example, there are many

functions f from R to R, and we can think of them as observations: rather than view

x “directly”, we only observe f (x). Out of all the functions f : R → R, only some of

them preserve the order of numbers, only some of them preserve the distance between

numbers, only some of them preserve the sum of numbers, etc. Let’s check in with an

exercise; a solution can be found in Chapter 1.

Exercise 1.1. Some terminology: a function f : R→ R is said to be

(a) order-preserving if x ≤ y implies f (x) ≤ f (y), for all x , y ∈ R;1
(b) metric-preserving if |x − y | � | f (x) − f (y)|;
(c) addition-preserving if f (x + y) � f (x) + f (y).

For each of the three properties defined above—call it foo—find an f that is foo-
preserving and an example of an f that is not foo-preserving. ♦

In category theory we want to keep control over which aspects of our systems are

being preserved under various observations. As we said above, the less structure is

preserved by our observation of a system, themore “surprises” occurwhenwe observe

its operations. One might call these surprises generative effects.
In using category theory to explore generative effects, we follow the basic ideas

from work by Adam [Ada17]. He goes much more deeply into the issue than we can

here; see Section 1.5. But as mentioned above, we must also use this chapter to give an

order-theoretic warm-up for the full-fledged category theory to come.

1.1.1 A first look at generative effects

To explore the notion of a generative effect we need a sort of system, a sort of observa-

tion, and a system-level operation that is not preserved by the observation. Let’s start

with a simple example.

A simple system. Consider three points; we’ll call them •, ◦ and ∗. In this example, a

systemwill simply be a way of connecting these points together. We might think of our

points as sites on a power grid, with a system describing connection by power lines, or

as people susceptible to some disease, with a system describing interactions that can

lead to contagion. As an abstract example of a system, there is a system where • and ◦

1
We are often taught to view functions f : R → R as plots on an (x , y)-axis, where x is the domain

(independent) variable and y is the codomain (dependent) variable. In this book, we do not adhere to

that naming convention; e.g. in Exercise 1.1, both x and y are being “plugged in” as input to f . As an

example consider the function f (x) � x2
. Then f being order-preserving would say that for any x , y ∈ R,

if x ≤ y then x2 ≤ y2
; is that true?
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are connected, but neither are connected to ∗. We shall draw this like so:

• ∗

◦

Connections are symmetric, so if a is connected to b, then b is connected to a. Connec-
tions are also transitive, meaning that if a is connected to b, and b is connected to c, then
a is connected to c; that is, all a, b, and c are connected. Friendship is not transitive—my

friend’s friend is not necessarily my friend—but possible communication of a concept

or a disease is.

Here we depict two more systems, one in which none of the points are connected,

and one in which all three points are connected.

• ∗

◦

• ∗

◦

There are five systems in all, and we depict them just below.

Now that we have defined the sort of systemwe want to discuss, suppose that Alice

is observing this system. Her observation of interest, which we call Φ, extracts a single

feature from a system, namely whether the point • is connected to the point ∗; this
is what she wants to know. Her observation of the system will be an assignment of

either true or false; she assigns true if • is connected to ∗, and false otherwise. So

Φ assigns the value true to the following two systems:

• ∗

◦

• ∗

◦

and Φ assigns the value false to the three remaining systems:

• ∗

◦

• ∗

◦

• ∗

◦
(1.2)

The last piece of setup is to give a sort of operation that Alice wants to perform on

the systems themselves. It’s a very common operation—one that will come up many

times throughout the book—called join. If the reader has been following the story arc,

the expectation here is that Alice’s connectivity observation will not be compositional

with respect to the operation of system joining; that is, there will be generative effects.

Let’s see what this means.
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Joining our simple systems. Joining two systems A and B is performed simply by

combining their connections. That is, we shall say the join of systems A and B, denote
it A ∨ B, has a connection between points x and y if there are some points z1 , . . . , zn

such that each of the following are true in at least one of A or B: x is connected to z1,

zi is connected to zi+1, and zn is connected to y. In a three-point system, the above

definition is overkill, but we want to say something that works for systems with any

number of elements. The high-level way to say it is “take the transitive closure of

the union of the connections in A and B.” In our three-element system, it means for

example that

• ∗

◦
∨

• ∗

◦
�

• ∗

◦

and

• ∗

◦
∨

• ∗

◦
�

• ∗

◦ (1.3)

Exercise 1.4. What is the result of joining the following two systems?

11• 12• 13•

21• 22• 23•

11• 12• 13•

21• 22• 23•

∨

♦

We are now ready to see the generative effect. We don’t want to build it up too

much—this example has been made as simple as possible—but we will see that Alice’s

observation fails to preserve the join operation. We’ve been denoting her observation—

measuringwhether • and ∗ are connected—by the symbolΦ; it returns a boolean result,

either true or false.

We see above in Eq. (1.2) thatΦ( • ∗◦ ) � Φ( • ∗◦ ) � false: in both cases • is not connected
to ∗. On the other hand, when we join these two systems as in Eq. (1.3), we see that

Φ( • ∗◦ ∨ • ∗
◦ ) � Φ( • ∗◦ ) � true: in the joined system, • is connected to ∗. The question that

Alice is interested in, that of Φ, is inherently lossy with respect to join, and there is no

way to fix it without a more detailed observation, one that includes not only ∗ and •
but also ◦.

While this was a simple example, it should be noted that whether the potential for

such effects exist—i.e. determining whether an observation is operation-preserving—

can be incredibly important information to know. For example, Alice could be in charge

of putting together the views of two local authorities regarding possible contagion

between an infected person • and a vulnerable person ∗. Alice has noticed that if they

separately extract information from their raw data and combine the results, it gives a

different answer than if they combine their raw data and extract information from it.
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1.1.2 Ordering systems

Category theory is all about organizing and layering structures. In this section we

will explain how the operation of joining systems can be derived from a more basic

structure: order. We will see that while joining is not preserved by Alice’s connectivity

observation Φ, order is.

To begin, we note that the systems themselves are ordered in a hierarchy. Given

systems A and B, we say that A ≤ B if, whenever x is connected to y in A, then x is

connected to y in B. For example,

• ∗

◦
≤
• ∗

◦

This notion of ≤ leads to the following diagram:

• ∗

◦

• ∗

◦

• ∗

◦

• ∗

◦

• ∗

◦

(1.5)

where an arrow from system A to system B means A ≤ B. Such diagrams are known

as Hasse diagrams.
As we were saying above, the notion of join is derived from this order. Indeed for

any two systems A and B in the Hasse diagram (1.5), the joined system A ∨ B is the

smallest system that is bigger than both A and B. That is, A ≤ (A∨ B) and B ≤ (A∨ B),
and for any C, if A ≤ C and B ≤ C then (A ∨ B) ≤ C. Let’s walk through this with an

exercise.

Exercise 1.6.
1. Write down all the partitions of a two element set {•, ∗}, order them as above,

and draw the Hasse diagram.

2. Now do the same thing for a four element-set, say {1, 2, 3, 4}. There should be 15

partitions.
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Choose any two systems in your 15-element Hasse diagram, call them A and B.
3. What is A ∨ B, using the definition given in the paragraph above Eq. (1.3)?

4. Is it true that A ≤ (A ∨ B) and B ≤ (A ∨ B)?
5. What are all the systems C for which both A ≤ C and B ≤ C.

6. Is it true that in each case, (A ∨ B) ≤ C? ♦

The set B � {true, false} of booleans also has an order, false ≤ true:
true

false

Thus false ≤ false, false ≤ true, and true ≤ true, but true � false. In other

words, A ≤ B if A implies B.2
For any A, B in B, we can again write A∨ B to mean the least element that is greater

than both A and B.

Exercise 1.7. Using the order false ≤ true on B � {true, false}, what is:

1. true ∨ false?
2. false ∨ true?
3. true ∨ true?
4. false ∨ false? ♦

Let’s return to our systemswith •, ◦, and ∗, andAlice’s “• is connected to ∗” function,
which we called Φ. It takes any such system and returns either true or false. Note

that the mapΦ preserves the ≤ order: if A ≤ B and there is a connection between • and
∗ in A, then there is such a connection in B too. The possibility of a generative effect is

captured in the inequality

Φ(A) ∨Φ(B) ≤ Φ(A ∨ B). (1.8)

We saw on page 4 that this can be a strict inequality: we showed two systems A and B
with Φ(A) � Φ(B) � false, so Φ(A) ∨ Φ(B) � false, but where Φ(A ∨ B) � true. In
this case, a generative effect exists.

These ideas capture the most basic ideas in category theory. Most directly, we have

seen that the mapΦ preserves some structure but not others: it preserves order but not

join. In fact, we have seen here hints of more complex notions from category theory,

without making them explicit; these include the notions of category, functor, colimit,

and adjunction. In this chapter we will explore these ideas in the elementary setting of

ordered sets.

1.2 What is order?

Above we informally spoke of two different ordered sets: the order on system connec-

tivity and the order on booleans false ≤ true. Then we related these two ordered

2
In mathematical logic, false implies true but true does not imply false. That is “P implies Q”

means, “if P is true, then Q is true too, but if P is not true, I’m making no claims.”
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sets by means of Alice’s observation Φ. Before continuing, we need to make such

ideas more precise. We begin in Section 1.2.1 with a review of sets and relations. In

Section 1.2.2 we will give the definition of a preorder—short for preordered set—and

a good number of examples.

1.2.1 Review of sets, relations, and functions

We will not give a definition of set here, but informally we will think of a set as a

collection of things, known as elements. These things could be all the leaves on a

certain tree, or the names of your favorite fruits, or simply some symbols a, b, c. For

example, we write A � {h , 1} to denote the set, called A, that contains exactly two

elements, one called h and one called 1. The set {h , h , 1, h , 1} is exactly the same as A
because they both contain the same elements, h and 1, and repeating an element more

than once in the notation doesn’t change the set.3 For an arbitrary set X, wewrite x ∈ X
if x is element of X; so we have h ∈ A and 1 ∈ A, but 0 < A.

Example 1.9. Here are some important sets from mathematics—and the notation we

will use—that will appear again in this book.

• � denotes the empty set; it has no elements.

• {1} denotes a set with one element; it has one element, 1.

• B denotes the set of booleans; it has two elements, true and false.

• N denotes the set of natural numbers; it has elements 0, 1, 2, 3, . . . , 90
717 , . . ..

• n, for any n ∈ N, denotes the nth ordinal; it has n elements 1, 2, . . . , n. For example,

0 � �, 1 � {1}, and 5 � {1, 2, 3, 4, 5}.
• Z, the set of integers; it has elements . . . ,−2,−1, 0, 1, 2, . . . , 90

717 , . . ..

• R, the set of real numbers; it has elements like π, 3.14, 5 ∗
√

2, e , e2 ,−1457, 90
717

, etc.

Given sets X and Y, we say that X is a subset of Y, and write X ⊆ Y, if every element

in X is also in Y. For example {h} ⊆ A. Note that the empty set � B {} is a subset

of every other set.4 Given a set Y and a property P that is either true or false for each

element of Y, we write {y ∈ Y | P(y)} to mean the subset of those y’s that satisfy P.

Exercise 1.10.
1. Is it true that N � {n ∈ Z | n ≥ 0}?
2. Is it true that N � {n ∈ Z | n ≥ 1}?
3. Is it true that � � {n ∈ Z | 1 < n < 2}? ♦

If both X1 and X2 are subsets of Y, their union, denoted X1 ∪ X2, is also a subset of

Y, namely the one containing the elements in X1 and the elements in X2 but no more.

3
If you want a notion where “h , 1” is different than “h , h , 1, h , 1”, you can use something called bags,

where the number of times an element is listed matters, or lists, where order also matters. All of these are

important concepts in applied category theory, but sets will come up the most for us.

4
When we write Z B foo, it means “assign the meaning foo to variable Z”, whereas Z � foomeans

simply that Z is equal to foo, perhaps as discovered via some calculation. In particular, Z B foo implies

Z � foo but not vice versa; indeed it would not be proper to write 3 + 2 B 5 or {} B �.
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For example if Y � {1, 2, 3, 4} and X1 � {1, 2} and X2 � {2, 4}, then X1 ∪X2 � {1, 2, 4}.
Note that � ∪ X � X for any X ⊆ Y.

Similarly, if both X1 and X2 are subsets of Y, then their intersection, denoted X1∩X2,

is also a subset of Y, namely the one containing all the elements of Y that are both in

X1 and in X2, and no others. So {1, 2, 3} ∩ {2, 5} � {2}.
What if we need to union or intersect a lot of subsets? For example, consider the

sets X0 � �, X1 � {1}, X2 � {1, 2}, etc. as subsets of N, and we want to know what the

union of all of them is. This union is written

⋃
n∈N Xn , and it is the subset of N that

contains every element of every Xn , but no others. Namely,

⋃
n∈N Xn � {n ∈ N | n ≥ 1}.

Similarly one canwrite

⋂
n∈N Xn for the intersection of all of them, which will be empty

in the above case.

Given two sets X and Y, the product X×Y of X and Y is the set of pairs (x , y), where

x ∈ X and y ∈ Y.

Finally, we may want to take a disjoint union of two sets, even if they have elements

in common. Given two sets X and Y, their disjoint union X tY is the set of pairs of the

form (x , 1) or (y , 2), where x ∈ X and y ∈ Y.

Exercise 1.11. Let A B {h , 1} and B B {1, 2, 3}.
1. There are eight subsets of B; write them out.

2. Take any two nonempty subsets of B and write out their union.

3. There are six elements in A × B; write them out. ♦

4. There are five elements of At B; write them out.

5. If we consider A and B as subsets of the set {h , 1, 2, 3}, there are four elements of

A ∪ B; write them out.

Relationships between different sets—for example between the set of trees in your

neighborhood and the set of your favorite fruits—are captured using subsets and

product sets.

Definition 1.12. Let X and Y be sets. A relation between X and Y is a subset R ⊆ X × Y.

A binary relation on X is a relation between X and X, i.e. a subset R ⊆ X × X.

It is convenient to use something called infix notation for binary relations R ⊆ A×A.

This means one picks a symbol, say?, and writes a ? b to mean (a , b) ∈ R.

Example 1.13. There is a binary relation onRwith infix notation ≤. Rather than writing

(5, 6) ∈ R, we write 5 ≤ 6.

Other examples of infix notation for relations are �, ≈, <, >. In number theory, they

are interested inwhether one number divideswithout remainder into another number;

this relation is denoted with infix notation |, so 5|10.

Partitions and equivalence relations. We can now define partitions more formally.
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Definition 1.14. If A is a set, a partition of A consists of a set P and, for each p ∈ P, a
nonempty subset Ap ⊆ A, such that

A �

⋃
p∈P

Ap and if p , q then Ap ∩ Aq � �. (1.15)

We may denote the partition by {Ap}p∈P . We refer to P as the set of part labels and if

p ∈ P is a part label, we refer to Ap as the pth part. The condition (1.15) says that each

element a ∈ A is in exactly one part.

We consider two different partitions {Ap}p∈P and {A′p′}p′∈P′ of A to be the same if for

each p ∈ P there exists a p′ ∈ P′ with Ap � A′p′. In other words, if two ways to divide A
into parts are exactly the same—the only change is in the labels—then we don’t make

a distinction between them.

Exercise 1.16. Suppose that A is a set and {Ap}p∈P and {A′p′}p′∈P′ are two partitions of

A such that for each p ∈ P there exists a p′ ∈ P′ with Ap � A′p′.
1. Show that for each p ∈ P there is at most one p′ ∈ P′ such that Ap � A′p′
2. Show that for each p′ ∈ P′ there is a p ∈ P such that Ap � A′p′. ♦

Exercise 1.17. Consider the partition shown below:

11• 12• 13•

21• 22• 23•

For any two elements a , b ∈ {11, 12, 13, 21, 22, 23}, let’s allow ourselves to write a

twiddle symbol a ∼ b between them if a and b are both in the same part. Write down

every pair of elements (a , b) that are in the same part. There should be 10.5 ♦

Wewill see in Proposition 1.19 that there is a strong relationship between partitions

and something called equivalence relations, which we define next.

Definition 1.18. Let A be a set. An equivalence relation on A is a binary relation, let’s

give it infix notation ∼, satisfying the following three properties:

(a) a ∼ a, for all a ∈ A,

(b) a ∼ b iff
a b ∼ a, for all a , b ∈ A, and

(c) if a ∼ b and b ∼ c then a ∼ c, for all a , b , c ∈ A.

These properties are called reflexivity, symmetry, and transitivity, respectively.
a
‘Iff’ is short for ‘if and only if’.

5
Hint: whenever someone speaks of “two elements a , b in a set A”, the two elements may be the same!
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Proposition 1.19. Let A be a set. There is a one-to-one correspondence between the

ways to partition A and the equivalence relations on A.

Proof. We first show that every partition gives rise to an equivalence relation, and then

that every equivalence relation gives rise to a partition. Our two constructions will be

mutually inverse, proving the proposition.

Suppose we are given a partition {Ap}p∈P ; we define a relation ∼ and show it is an

equivalence relation. Define a ∼ b to mean that a and b are in the same part: there is

some p ∈ P such that a ∈ Ap and b ∈ Ap . It is obvious that a is in the same part as

itself. Similarly, it is obvious that if a is in the same part as b then b is in the same part

as a, and that if further b is in the same part as c then a is in the same part as c. Thus
∼ is an equivalence relation as defined in Definition 1.18.

Suppose given an equivalence relation ∼; we will form a partition on A by saying

what the parts are. Say that a subset X ⊆ A is (∼)-closed if, for every x ∈ X and

x′ ∼ x, we have x′ ∈ X. Say that a subset X ⊆ A is (∼)-connected if it is nonempty and

x ∼ y for every x , y ∈ X. Then the parts corresponding to ∼ are exactly the (∼)-closed,
(∼)-connected subsets. It is not hard to check that these indeed form a partition. �

Exercise 1.20. Let’s complete the “it’s not hard to check” part in the proof of Proposi-

tion 1.19. Suppose that ∼ is an equivalence relation on a set A, and let P be the set of

(∼)-closed and (∼)-connected subsets {Ap}p∈P .

1. Show that each part Ap is nonempty.

2. Show that if p , q, i.e. if Ap and Aq are not exactly the same set, then Ap∩Aq � �.
3. Show that A �

⋃
p∈P Ap . ♦

Definition 1.21. Given a set A and an equivalence relation ∼ on A, we say that the

quotient A/∼ of A under ∼ is the set of parts of the corresponding partition.

Functions. Themost frequently used sort of relation between sets is that of functions.

Definition 1.22. Let S and T be sets. A function from S to T is a subset F ⊆ S × T such

that for all s ∈ S there exists a unique t ∈ T with (s , t) ∈ F.
The function F is often denoted F : S → T. From now on, we write F(s) � t, or

sometimes s 7→ t, to mean (s , t) ∈ F. For any t ∈ T, the preimage of t along F is the

subset {s ∈ S | F(s) � t}.
A function is called surjective, or a surjection, if for all t ∈ T there exists s ∈ S with

F(s) � t. A function is called injective, or an injection, if for all t ∈ T and s1 , s2 ∈ S
with F(s1) � t and F(s2) � t, we have s1 � s2. A function is called bĳective if it is both
surjective and injective.
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We use various decorations on arrows,→,�,�,
�−→ to denote these special sorts of

functions. Here is a table with the name, arrow decoration, and an example of each

sort of function:

arbitrary function surjective function injective function bĳective function

3→ 3 3� 2 2� 3 3

�−→ 3

•
•
•

•
•
•

•
•
•

•
•

•
•

•
•
•

•
•
•

•
•
•

Example 1.23. An important but very simple sort of function is the identity function on

a set X, denoted idX . It is the bĳective function idX(x) � x.

•
•
•

•
•
•

For notational consistency with Definition 1.22, the arrows in Example 1.23 might

be drawn as 7→ rather thand. Thed-style arrows were drawn because we thought it

was prettier, i.e. easier on the eye. Beauty is important too; an imbalanced preference

for strict correctness over beauty becomes pedantry. But outside of pictures, we will be

careful.

Exercise 1.24. In the following, do not use any examples already drawn above.

1. Find two sets A and B and a function f : A→ B that is injective but not surjective.

2. Find two sets A and B and a function f : A→ B that is surjective but not injective.

Now consider the four relations shown here:

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

For each relation, answer the following two questions.

3. Is it a function?

4. If not, why not? If so, is it injective, surjective, both (i.e. bĳective), or neither? ♦

Exercise 1.25. Suppose that A is a set and f : A → � is a function to the empty set.

Show that A is empty. ♦

Example 1.26. A partition on a set A can also be understood in terms of surjective

functions out of A. Given a surjective function f : A� P, where P is any other set, the

preimages f −1(p) ⊆ A, one for each element p ∈ P, form a partition of A. Here is an

example.
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Consider the partition of S B {11, 12, 13, 21, 22, 23} shown below:

11• 12• 13•

21• 22• 23•

S B

It has been partitioned into four parts, so let P � {a , b , c , d} and let f : S � P be given

by

f (11) � a , f (12) � a , f (13) � b , f (21) � c , f (22) � d , f (23) � d

Exercise 1.27. Write down a surjection corresponding to each of the five partitions in

Eq. (1.5). ♦

Definition 1.28. If F : X → Y is a function and G : Y → Z is a function, their composite
is the function X → Z defined to be G(F(x)) for any x ∈ X. It is often denoted G◦F, but
we prefer to denote it F # G. It takes any element x ∈ X, evaluates F to get an element

F(x) ∈ Y and then evaluates G to get an element G(F(x)).

Example 1.29. If X is any set and x ∈ X is any element, we can think of x as a function

{1} → X, namely the function sending 1 to x. For example, the three functions

{1} → {1, 2, 3} shown below correspond to the three elements of {1, 2, 3}:

•
•1
•2
•3

•
•1
•2
•3

•
•1
•2
•3

Suppose given a function F : X → Y and an element of X, thought of as a function

x : {1} → X. Then evaluating F at x is given by the composite, F(x) � x # F.

1.2.2 Preorders

In Section 1.1, we several times used the symbol ≤ to denote a sort of order. Here is a

formal definition of what it means for a set to have an order.

Definition 1.30. A preorder relation on a set X is a binary relation on X, here denoted

with infix notation ≤, such that

(a) x ≤ x; and
(b) if x ≤ y and y ≤ z, then x ≤ z.

The first condition is called reflexivity and the second is called transitivity. If x ≤ y and
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y ≤ x, we write x � y and say x and y are equivalent. We call a pair (X, ≤) consisting
of a set equipped with a preorder relation a preorder.

Remark 1.31. Observe that reflexivity and transitivity are familiar from Definition 1.18:

preorders are just equivalence relations without the symmetry condition.

Example 1.32 (Discrete preorders). Every set X can be considered as a discrete preorder

(X,�). This means that the only order relations on X are of the form x ≤ x; if x , y
then neither x ≤ y or y ≤ x hold.

We depict discrete preorders as simply a collection of points:

• • •

Example 1.33 (Codiscrete preorders). Fromevery setwemayalso construct its codiscrete

preorder (X, ≤) by equipping it with the total binary relation X × X ⊆ X × X. This is a

very trivial structure: it means that for all x and y in X we have x ≤ y (and hence also

y ≤ x).

Example 1.34 (Booleans). ThebooleansB � {false, true} formapreorderwithfalse ≤
true.

false

true

Remark 1.35 (Partial orders are skeletal preorders). A preorder is a partial order if we

additionally have that

(c) x � y implies x � y.
In category theory terminology, the requirement that x � y implies x � y is known

as skeletality, so partial orders are skeletal preorders. For short, we also use the term poset,
a contraction of partially ordered set.

The difference between preorders and partial orders is rather minor. A partial order

already is a preorder, and every preorder can be made into a partial order by equating

any two elements x , y for which x � y, i.e. for which x ≤ y and y ≤ x.
For example, any discrete preorder is already a partial order, while any codiscrete

preorder simply becomes the unique partial order on a one element set.

We have already introduced a few examples of preorders using Hasse diagrams. It

will be convenient to continue to do this, so let us be a bit more formal about what we

mean. First, we need to define a graph.
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Definition 1.36. A graph G � (V,A, s , t) consists of a set V whose elements are called

vertices, a set A whose elements are called arrows, and two functions s , t : A→ V known

as the source and target functions respectively. Given a ∈ A with s(a) � v and t(a) � w,

we say that a is an arrow from v to w.

By a path in G we mean any sequence of arrows such that the target of one arrow is

the source of the next. This includes sequences of length 1, which are just arrows a ∈ A
in G, and sequences of length 0, which just start and end at the same vertex v, without

traversing any arrows.

Example 1.37. Here is a picture of a graph:

G �

1• 2•

3• 4•

a

b

c
e

d

It has V � {1, 2, 3, 4} and A � {a , b , c , d , e}. The source and target functions, s , t : A→
V are given by the following partially-filled-in tables (see Exercise 1.38):

arrow a source s(a) ∈ V target t(a) ∈ V
a 1 ?

b 1 3

c ? ?

d ? ?

e ? ?

There is one path from 2 to 3, namely the arrow e is a path of length 1. There are no

paths from 4 to 3, but there is one path from 4 to 4, namely the path of length 0. There

are infinitely many paths 1→ 2 because one can loop and loop and loop through d as

many times as one pleases.

Exercise 1.38. Fill in the table from Example 1.37. ♦

Remark 1.39. From every graph we can get a preorder. Indeed, a Hasse diagram is a

graph G � (V,A, s , t) that gives a presentation of a preorder (P, ≤). The elements of P
are the vertices V in G, and the order ≤ is given by v ≤ w iff6 there is a path v → w.

For any vertex v, there is always a path v → v, and this translates into the reflexivity

law from Definition 1.30. The fact that paths u → v and v → w can be concatenated to

a path u → w translates into the transitivity law.

6
The word ‘iff’ is a common mathematical shorthand for the phrase “if and only if”, and we use it to

connect two statements that each imply the other, and hence are logically equivalent.
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Exercise 1.40. Whatpreorder relation (P, ≤) is depicted by the graphG in Example 1.37?

That is, what are the elements of P andwrite down every pair (p1 , p2) forwhich p1 ≤ p2.

♦

Exercise 1.41. Does a collection of points, like the one in Example 1.32, count as a

Hasse diagram? ♦

Exercise 1.42. Let X be the set of partitions of {•, ◦, ∗}; it has five elements and an

order by coarseness, as shown in the Hasse diagram Eq. (1.5). Write down every pair

(x , y) of elements in X such that x ≤ y. There should be 12. ♦

Remark 1.43. In Remark 1.35 we discussed partial orders—preorders with the property

that whenever two elements are equivalent, they are the same—and then said that this

property is fairly inconsequential: any preorder can be converted to a partial order

that’s “equivalent” category-theoretically. A partial order is like a preorder with a

fancy haircut: some mathematicians might not even notice it.

However, there are other types of preorders that are more special and noticeable.

For example, a total order has the following additional property:

(d) for all x , y, either x ≤ y or y ≤ x.
We say two elements x , y of a preorder are comparable if either x ≤ y or y ≤ x, so a total

order is a preorder where every two elements are comparable.

Exercise 1.44. Is it correct to say that a discrete preorder is one where no two elements

are comparable? ♦

Example 1.45 (Natural numbers). The natural numbers N B {0, 1, 2, 3, . . .} are a pre-

order with the order given by the usual size ordering, e.g. 0 ≤ 1 and 5 ≤ 100. This is

a total order: either m ≤ n or n ≤ m for all m , n. One can see that its Hasse diagram

looks like a line:

0• 1• 2• 3• · · ·

What made Eq. (1.5) not look like a line is that there are non-comparable elements a
and b—namely all those in the middle row—which satisfy neither a ≤ b nor b ≤ a.

Note that for any set S, there are many different ways of assigning an order to S.
Indeed, for the set N, we could also use the discrete ordering: only write n ≤ m if

n � m. Another ordering is the reverse ordering, like 5 ≤ 3 and 3 ≤ 2, like how golf is

scored (5 is worse than 3).

Yet another ordering on N is given by division: we say that n ≤ m if n divides into

m without remainder. In this ordering 2 ≤ 4, for example, but 2 � 3, since there is a

remainder when 2 is divided into 3.

Exercise 1.46. Write down the numbers 1, 2, . . . , 10 and draw an arrow a → b if a
divides perfectly into b. Is it a total order? ♦
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Example 1.47 (Real numbers). The real numbers R also form a preorder with the “usual

ordering”, e.g. −500 ≤ −499 ≤ 0 ≤
√

2 ≤ 100/3.

Exercise 1.48. Is the usual ≤ ordering on the set R of real numbers a total order? ♦

Example 1.49 (Partition from preorder). Given a preorder, i.e. a pre-ordered set (P, ≤),
we defined the notion of equivalence of elements, denoted x � y, to mean x ≤ y and

y ≤ x. This is an equivalence relation, so it induces a partition on P. (The phrase

“A induces B” means that we have an automatic way to turn an A into a B. In this

case, we’re saying that we have an automatic way to turn equivalence relations into

partitions, which we do; see Proposition 1.19.)

For example, the preorder whose Hasse diagram is drawn on the left corresponds

to the partition drawn on the right.

•

•

•

•

11

21

11

21

•

•

•

•

12

22

12

22

•

•

•

•

13

23

13

23

•

•

•

•

14

24

14

24

Example 1.50 (Power set). Given a set X, the set of subsets of X is known as the power
set of X; we denote it P(X). The power set can naturally be given an order by inclusion

of subsets (and from now on, whenever we speak of the power set as an ordered set,

this is the order we mean).

For example, taking X � {0, 1, 2}, we depict P(X) as

X

{0, 1} {0, 2} {1, 2}

{0} {1} {2}

�

See the cube? The Hasse diagram for the power set of a finite set, say P{1, 2, . . . , n},a
always looks like a cube of dimension n.

a
Note that we omit the parentheses here, writing PX instead of P(X); throughout this book we will

omit parentheses if we judge the presentation is cleaner and it is unlikely to cause confusion.

Exercise 1.51. Draw the Hasse diagrams for P(�), P{1}, and P{1, 2}. ♦
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Example 1.52 (Partitions). We talked about getting a partition from a preorder; now let’s

think about how we might order the set Prt(A) of all partitions of A, for some set A. In

fact, we have done this before in Eq. (1.5). Namely, we order on partitions by fineness:

a partition P is finer than a partition Q if, for every part p ∈ P there is a part q ∈ Q such

that Ap ⊆ Aq . We could also say that Q is coarser than P.
Recall from Example 1.26 that partitions on A can be thought of as surjective func-

tions out of A. Then f : A � P is finer than 1 : A � Q if there is a function h : P → Q
such that f # h � 1.

Exercise 1.53. For any set S there is a coarsest partition, having just one part. What

surjective function does it correspond to?

There is also a finest partition, where everything is in its own partition. What

surjective function does it correspond to? ♦

Example 1.54 (Upper sets). Given a preorder (P, ≤), an upper set in P is a subset U of P
satisfying the condition that if p ∈ U and p ≤ q, then q ∈ U. “If p is an element then so

is anything bigger.” Write U(P) for the set of upper sets in P. We can give the set U an

order by letting U ≤ V if U is contained in V .

For example, if (B, ≤) is the booleans (Example 1.34), then its preorder of uppersets

U(B) is

�

{true}

{true, false}

The subset {false} ⊆ B is not an upper set, because false ≤ true and true < {false}.

Exercise 1.55. Prove that the preorder of upper sets on a discrete preorder (see

Example 1.32) on a set X is simply the power set P(X). ♦

Example 1.56 (Product preorder). Given preorders (P, ≤) and (Q , ≤), we may define a

preorder structure on the product set P × Q by setting (p , q) ≤ (p′, q′) if and only if

p ≤ p′ and q ≤ q′. We call this the product preorder. This is a basic example of a more

general construction known as the product of categories.

Exercise 1.57. Draw the Hasse diagram for the product of the two preorders drawn
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below:

c• b•

•
a

2•

•
1

For bonus points, compute the upper set preorder on the result. ♦

Example 1.58 (Opposite preorder). Given a preorder (P, ≤), we may define the opposite

preorder (P, ≤op) to have the same set of elements, but with p ≤op q if and only if q ≤ p.

1.2.3 Monotone maps

Wehave said that the categorical perspective emphasizes relationships between things.

For example, a preorder is a setting—or world—in which we have one sort of relation-

ship, ≤, and any two objects may be, or may not be, so-related. Jumping up a level,

the categorical perspective emphasizes that preorders themselves—each a miniature

world composed of many relationships—can be related to one another.

The most important sort of relationship between preorders is called amonotone map.
These are functions that preserve preorder relations—in some sense mappings that

respect ≤—and are hence considered the right notion of structure-preserving map for

preorders.

Definition 1.59. A monotone map between preorders (A, ≤A) and (B, ≤B) is a function

f : A→ B such that, for all elements x , y ∈ A, if x ≤A y then f (x) ≤B f (y).

A monotone map A → B between two preorders associates to each element of

preorder A an element of the preorder B. We depict this by drawing a dotted arrow

from each element x ∈ A to its image f (x) ∈ B. Note that the order must be preserved

in order to count as a valid monotone map, so if element x is above element y in the

lefthand preorder A, then the image f (x)will be above the image f (y) in the righthand

preorder.

•

•

• •

•

•

•

•
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Example 1.60. Let B and N be the preorders of booleans from Example 1.34 and N the

preorder of natural numbers from Example 1.45. The map B→ N sending false to 17

and true to 24 is a monotone map, because it preserves order.

false true

0 1 · · · 17 18 · · · 23 24 · · ·

Example 1.61 (The tree of life). Consider the set of all animal classifications, for example

‘tiger’, ‘mammal’, ‘sapiens’, ‘carnivore’, etc.. These are ordered by specificity: since

‘tiger’ is a type of ‘mammal’, we write tiger ≤mammal. The result is a preorder, which

in fact forms a tree, often called the tree of life. At the top of the following diagram we

see a small part of it:

•
sapiens

•
habilis

•
lion

•
tiger

•
homo

•
panthera

•
primate

•
carnivore

•
mammal

•
species

•
genus

•
family

•
order

•
class

•
phylum

•
kingdom

At the bottomwe see the hierarchical structure as a preorder. The dashed arrows show

a monotone map, call it F, from the classifications to the hierarchy. It is monotone

because it preserves order: whenever there is a path x → y upstairs, there is a path

F(x) → F(y) downstairs.

Example 1.62. Given a finite set X, recall the power setP(X) and its natural order relation

from Example 1.50. The map |·| : P(X) → N sending each subset S to its number of

elements |S |, also called its cardinality, is a monotone map.

Exercise 1.63. Let X � {0, 1, 2}.
1. Draw the Hasse diagram for P(X).
2. Draw the Hasse diagram for the preorder 0 ≤ 1 ≤ 2 ≤ 3.
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3. Draw the cardinalitymap |·| fromExample 1.62 as dashed lines between them. ♦

Example 1.64. Recall the notion of upper set from Example 1.54. Given a preorder

(P, ≤), the map U(P) → P(P) sending each upper set of (P, ≤) to itself—considered as

a subset of P—is a monotone map.

Exercise 1.65. Consider the preorder B. The Hasse diagram for U(B) was drawn in

Example 1.54, and you drew the Hasse diagram for P(B) in Exercise 1.51. Now draw

the monotone map between them, as described in Example 1.64. ♦

Exercise 1.66. Let (P, ≤) be a preorder, and recall the notion of opposite preorder from

Example 1.58.

1. Show that the set ↑ p B {p′ ∈ P | p ≤ p′} is an upper set, for any p ∈ P.
2. Show that this construction defines a monotone map ↑ : Pop → U(P).
3. Show that if p ≤ p′ in P if and only if ↑(p′) ⊆ ↑(p).
4. Draw a picture of the map ↑ in the case where P is the preorder (b ≥ a ≤ c) from

Example 1.56.

This is known as the Yoneda lemma for preorders. The if and only if condition proved

in part 3 implies that, up to equivalence, to know an element is the same as knowing

its upper set—that is, knowing its web of relationships with the other elements of

the preorder. The general Yoneda lemma is a powerful tool in category theory, and a

fascinating philosophical idea besides. ♦

Exercise 1.67. As you yourself well know, a monotone map f : (P, ≤P) → (Q , ≤Q)
consists of a function f : P → Q that satisfies a “monotonicity” property. Show that

when (P, ≤P) is adiscretepreorder, then every functionP → Q satisfies themonotonicity

property, regardless of the order ≤Q . ♦

Example 1.68. Recall from Example 1.52 that given a set X we define Prt(X) to be the

set of partitions on X, and that a partition may be defined using a surjective function

s : X � P for some set P.
Any surjective function f : X � Y induces a monotone map f ∗ : Prt(Y) → Prt(X),

going “backwards.” It is defined by sending a partition s : Y � P to the composite

f # s : X � P.7

Exercise 1.69. Choose two sets X and Y with at least three elements each and choose

a surjective, non-identity function f : X � Y between them. Write down two different

partitions P and Q of Y, and then find f ∗(P) and f ∗(Q). ♦

The following proposition, Proposition 1.70, is straightforward to check. Recall the

definition of the identity function from Example 1.23 and the definition of composition

from Definition 1.28.

7
We will later see that any function f : X → Y, not necessarily surjective, induces a monotone map

f ∗ : Prt(Y) → Prt(X), but it involves an extra step. See Section 1.4.2.
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Proposition 1.70. For any preorder (P, ≤P), the identity function is monotone.

If (Q , ≤Q) and (R, ≤R) are preorders and f : P → Q and 1 : Q → R are monotone,

then ( f # 1) : P → R is also monotone.

Exercise 1.71. Check the two claims made in Proposition 1.70. ♦

Example 1.72. Recall again the definition of opposite preorder from Example 1.58. The

identity function idP : P → P is a monotone map (P, ≤) → (P, ≤op) if and only if for

all p , q ∈ P we have q ≤ p whenever p ≤ q. For historical reasons connected to linear

algebra, when this is true, we call (P, ≤) a dagger preorder.
But in fact, we have seen dagger preorders before in another guise. Indeed, if (P, ≤)

is a dagger preorder, then the relation ≤ is symmetric: p ≤ q if and only if q ≤ p, and it

is also reflexive and transitive by definition of preorder. So in fact ≤ is an equivalence

relation (Definition 1.18).

Exercise 1.73. Recall the notion of skeletal preorders (Remark 1.35) and discrete

preorders (Example 1.32). Show that a skeletal dagger preorder is just a discrete

preorder, and hence can be identified with a set. ♦

Remark 1.74. We say that an A “can be identified with” a B when any A gives us a

unique B and any B gives us a unique A, and both round-trips—from an A to a B and

back to an A, or from a B to an A and back to a B—return us where we started. For

example, any discrete preorder (P, ≤) has an underlying set P, and any set P can be

made into a discrete preorder (p1 ≤ p2 iff p1 � p2), and the round-trips return us where

we started. So what’s the difference? It’s like the notion of object-permanence from child

development jargon: we can recognize “the same chair, just moved from one room to

another.” A chair in the room of sets can be moved to a chair in the room of preorders.

The lighting is different but the chair is the same.

Eventually, we will be able to understand this notion in terms of equivalence of cate-
gories, which are related to isomorphisms, whichwewill explore next inDefinition 1.75.

Definition 1.75. Let (P, ≤P) and (Q , ≤Q) be preorders. Amonotone function f : P → Q
is called an isomorphism if there exists a monotone function 1 : Q → P such that

f # 1 � idP and 1 # f � idQ . This means that for any p ∈ P and q ∈ Q, we have

p � 1( f (p)) and q � f (1(q)).

We refer to 1 as the inverse of f , and vice versa: f is the inverse of 1.

If there is an isomorphism P → Q, we say that P and Q are isomorphic.

An isomorphism between preorders is basically just a relabeling of the elements.
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Example 1.76. Here are theHasse diagrams for three preorders P, Q, and R, all of which

are isomorphic:

P B

e•

d•
c• b•

a•

Q B

z•

x•
y
•

v• w•

R B

z•

x•
y
•

v• w•

The map f : P → Q given by f (a) � v, f (b) � w, f (c) � x, f (d) � y, and f (e) � z has

an inverse.

In fact Q and R are the same preorder. One may be confused by the fact that there

is an arrow x → z in the Hasse diagram for R and not one in Q, but in fact this arrow

is superfluous. By the transitivity property of preorders (Definition 1.30), since x ≤ y
and y ≤ z, we must have x ≤ z, whether it is drawn or not. Similarly, we could have

drawn an arrow v → y in either Q or R and it would not have changed the preorder.

Recall the preorder B � {false, true}, where false ≤ true. As simple as this

preorder is, it is also one of the most important.

Exercise 1.77. Show that the map Φ from Section 1.1.1, which was roughly given by

‘Is • connected to ∗?’ is a monotone map Prt({∗, •, ◦}) → B; see also Eq. (1.5). ♦

Proposition 1.78. Let P be a preorder. Monotone maps P → B are in one-to-one

correspondence with upper sets of P.

Proof. Let f : P → B be a monotone map. We will show that the subset f −1(true) ⊆ P
is an upper set. Suppose p ∈ f −1(true) and p ≤ q; then true � f (p) ≤ f (q). But in

B, if true ≤ f (q) then true � f (q). This implies q ∈ f −1(true) and thus shows that

f −1(true) is an upper set.

Conversely, if U is an upper set in P, define fU : P → B such that fU(p) � truewhen

p ∈ U, and fU(p) � falsewhen p < U. This is a monotone map, because if p ≤ q, then
either p ∈ U, so q ∈ U and f (p) � true � f (q), or p < U, so f (p) � false ≤ f (q).

These two constructions are mutually inverse, and hence prove the proposition. �

Exercise 1.79 (Pullbackmap). Let P and Q be preorders, and f : P → Q be amonotone

map. Then we can define a monotone map f ∗ : U(Q) → U(P) sending an upper set

U ⊆ Q to the upper set f −1(U) ⊆ P. We call this the pullback along f .
Viewing upper sets as a monotone maps to B as in Proposition 1.78, the pullback

can be understood in terms of composition. Indeed, show that the f ∗ is defined by

taking u : Q → B to ( f # u) : P → B. ♦
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1.3 Meets and joins

As we have said, a preorder is a set P endowed with an order ≤ relating the elements.

With respect to this order, certain elements of P may have distinctive characterizations,

either absolutely or in relation to other elements. We have discussed joins before, but

we discuss them again now that we have built up some formalism.

1.3.1 Definition and basic examples

Consider the preorder (R, ≤) of real numbers ordered in the usual way. The subset

N ⊆ R has many lower bounds, namely −1.5 is a lower bound: every element of N is

bigger than −1.5. But within all lower bounds for N ⊆ R, one is distinctive: a greatest
lower bound—also called a meet—namely 0. It is a lower bound, and there is no lower

bound forN that is above it. However, the setN ⊆ R has no upper bound, and certainly

no least upper bound—which would be called a join. On the other hand, the set{
1

n + 1

���� n ∈ N
}
�

{
1,

1

2

,
1

3

,
1

4

, . . .

}
⊆ R

has both a greatest lower bound (meet), namely 0, and a least upper bound (join),

namely 1.

These notions will have correlates in category theory, called limits and colimits,

which we will discuss in Chapter 3. More generally, we say these distinctive character-

izations are universal properties, since, for example, a greatest lower bound is greatest

among all lower bounds. For now, however, we simply want to make the definition of

greatest lower bounds and least upper bounds, called meets and joins, precise.

Exercise 1.80.
1. Why is 0 a lower bound for { 1

n+1
| n ∈ N} ⊆ R?

2. Why is 0 a greatest lower bound (meet)? ♦

Definition 1.81. Let (P, ≤) be a preorder, and let A ⊆ P be a subset. We say that an

element p ∈ P is a meet of A if

(a) for all a ∈ A, we have p ≤ a, and
(b) for all q such that q ≤ a for all a ∈ A, we have that q ≤ p.

We write p �
∧

A, p �
∧

a∈A a, or, if the dummy variable a is clear from context, just

p �
∧

A a. If A just consists of two elements, say A � {a , b}, we can denote

∧
A simply

by a ∧ b.
Similarly, we say that p is a join of A if

(a) for all a ∈ A we have a ≤ p, and
(b) for all q such that a ≤ q for all a ∈ A, we have that p ≤ q.

We write p �
∨

A or p �
∨

a∈A a, or when A � {a , b} we may simply write p � a ∨ b.
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Remark 1.82. In Definition 1.81, we committed a seemingly egregious abuse of notation.

We will see next in Example 1.84 that there could be two different meets of A ⊆ P, say
p �

∧
A and q �

∧
A with p , q, which does not make sense if p , q!

But in fact, as we use the symbol

∧
A, this abuse won’t matter because any two

meets p , q are automatically isomorphic: the very definition of meet forces both p ≤ q
and q ≤ p, and thus we have p � q. So for any x ∈ P, we have p ≤ x iff q ≤ x and

x ≤ p iff x ≤ q. Thus as long as we are only interested in elements of P based on their

relationships to other elements (and in category theory, this is the case: we should only

care about things based on how they interact with other things, rather than on some

sort of “internal essence”), the distinction between p and q will never matter.

This foreshadows a major theme of—as well as standard abuse of notation in—

category theory, where any two things defined by the same universal property are

automatically equivalent in a way known as ‘unique up to unique isomorphism’; this

means that we generally do not run into trouble if we pretend they are equal. We’ll

pick up this theme of ‘the’ vs ‘a’ again in Remark 3.85.

Example 1.83 (Meets or joins may not exist). Note that, in an arbitrary preorder (P, ≤),
a subset A need not have a meet or a join. Consider the three element set P � {p , q , r}
with the discrete ordering. The set A � {p , q} does not have a join in P because if x
was a join, we would need p ≤ x and q ≤ x, and there is no such element x.

Example 1.84 (Multiple meets or joins may exist). It may also be the case that a subset

A has more than one meet or join. Here is an example.

a• b•

c• d•

Let A be the subset {a , b} in the preorder specified by this Hasse diagram. Then both

c and d are meets of A: any element less than both a and b is also less than c, and also

less than d. Note that, as in Remark 1.82, c ≤ d and d ≤ c, so c � d. Such will always

the case when there is more than one meet: any two meets of the same subset will be

isomorphic.

Exercise 1.85. Let (P, ≤) be a preorder and p ∈ P an element. Consider the set A � {p}
with one element.

1. Show that

∧
A � p.

2. Show that if P is in fact a partial order, then

∧
A � p.

3. Are the analogous facts true when

∧
is replaced by

∨
? ♦
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Example 1.86. In any partial order P, we have p ∨ p � p ∧ p � p. The reason is that our

notation says p ∨ p means

∨{p , p}. But {p , p} � {p} (see Section 1.2.1), so p ∨ p � p by

Exercise 1.85.

Example 1.87. In a power set P(X), the meet of a collection of subsets, say A, B ⊆ X is

their intersection A ∧ B � A ∩ B, while the join is their union, A ∨ B � A ∪ B.

A B

A ∨ B

A
∧

B
Perhaps this justifies the terminology: the joining of two sets is their union, themeeting

of two sets is their intersection.

Example 1.88. In the booleans B � {false, true} (Example 1.34), the meet of any two

elements is given by AND and the join of any two elements is given by OR (recall

Exercise 1.7).

Example 1.89. In a total order, the meet of a set is its infimum, while the join of a set is

its supremum. Note that B is a total order, and this generalizes Example 1.88.

Exercise 1.90. Recall the division ordering on N from Example 1.45: we write n |m
if n divides perfectly into m. The meet of any two numbers in this preorder has a

common name, that you may have learned when you were around 10 years old; what

is it? Similarly the join of any two numbers has a common name; what is it? ♦

Proposition 1.91. Suppose (P, ≤) is a preorder and A ⊆ B ⊆ P are subsets that have

meets. Then

∧
B ≤ ∧

A.

Similarly, if A and B have joins, then

∨
A ≤ ∨

B.

Proof. Let m �
∧

A and n �
∧

B. Then for any a ∈ A we also have a ∈ B, so n ≤ a
because n is a lower bound for B. Thus n is also a lower bound for A and hence n ≤ m,

because m is A’s greatest lower bound. The second claim is proved similarly. �
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1.3.2 Back to observations and generative effects

In the thesis [Ada17], Adam thinks of monotone maps as observations. A monotone

map Φ : P → Q is a phenomenon (we might say “feature”) of P as observed by Q. He

defines the generative effect of such a map Φ to be its failure to preserve joins (or more

generally, for categories, its failure to preserve colimits).

Definition 1.92. We say that a monotone map f : P → Q preserves meets if f (a ∧ b) �
f (a) ∧ f (b) for all a , b ∈ P. We similarly say f preserves joins if f (a ∨ b) � f (a) ∨ f (b)
for all a , b ∈ P.

Definition 1.93. We say that a monotone map f : P → Q has a generative effect if there
exist elements a , b ∈ P such that

f (a) ∨ f (b) � f (a ∨ b).

In Definition 1.93, if we think of Φ as a observation or measurement of the systems

a and b, then the left hand side f (a) ∨ f (b) may be interpreted as the combination of

the observation of a with the observation of b. On the other hand, the right hand side

f (a ∨ b) is the observation of the combined system a ∨ b. The inequality implies that

we see something when we observe the combined system that we could not expect

by merely combining our observations of the pieces. That is, that there are generative

effects from the interconnection of the two systems.

Exercise 1.94. In Definition 1.93, we defined generativity of f as the inequality

f (a ∨ b) , f (a) ∨ f (b), but in the subsequent text we seemed to imply there would be

not just a difference, but more stuff in f (a ∨ b) than in f (a) ∨ f (b).
Prove that for anymonotonemap f : P → Q, if a , b ∈ P have a join and f (a), f (b) ∈ Q

have a join, then indeed f (a) ∨ f (b) ≤ f (a ∨ b). ♦

In his work on generative effects, Adam restricts his attention to generative maps

that preserve meets (but do not preserve joins). The preservation of meets implies that

the map Φ behaves well when restricting to subsystems, even though it can throw up

surprises when joining systems.

This discussion naturally leads intoGalois connections, which are pairs ofmonotone

maps between preorders, one of which preserves all joins and the other of which

preserves all meets.

1.4 Galois connections

The preservation of meets and joins, and in particular issues concerning generative

effects, is tightly related to the theory of Galois connections, which is a special case of a

more general theory we will discuss later, namely that of adjunctions. We will use some

adjunction terminology when describing Galois connections.



1.4. GALOIS CONNECTIONS 27

1.4.1 Definition and examples of Galois connections

Galois connections between preorders were first considered by Évariste Galois—who

didn’t call them by that name—in the context of a connection he found between “field

extensions” and “automorphism groups.” Wewill not discuss this further, but the idea

is that given two preorders P and Q, a Galois connection is a pair of maps back and

forth—from P to Q and from Q to P—with certain properties, which make it like a

relaxed version of isomorphisms. To be a bit more precise, preorder isomorphisms are

examples of Galois connections, but Galois connections need not be preorder isomor-

phisms.

Definition 1.95. A Galois connection between preorders P and Q is a pair of monotone

maps f : P → Q and 1 : Q → P such that

f (p) ≤ q if and only if p ≤ 1(q). (1.96)

We say that f is the left adjoint and 1 is the right adjoint of the Galois connection.

Example 1.97. Consider the map (3×−) : Z→ Rwhich sends x ∈ Z to 3x, which we can

consider as a real number 3x ∈ Z ⊆ R. Let’s find a left adjoint for the map (3 × −).
Write dze for the smallest natural number above z ∈ R, and write bzc for the largest

integer below z ∈ R, e.g. d3.14e � 4 and b3.14c � 3.
a
As the left adjoint R→ Z, let’s see

if d−/3e works.

It is easily checked that

dx/3e ≤ y if and only if x ≤ 3y.

Success! Thus we have a Galois connection between d−/3e and (3 × −).
a
By “above” and “below,” we mean greater than or equal to or less than or equal to; the latter being a

mouthful. Anyway, b3c � 3 � d3e.

Exercise 1.98. In Example 1.97 we found a left adjoint for the monotone map (3 ×
−) : Z→ R. Now find a right adjoint for the same map, and show it is correct. ♦

Exercise 1.99. Consider the preorder P � Q � 3.

1. Let f , 1 be the monotone maps shown below:

P
1• 2• 3• P

Q •
1

•
2

•
3

Q

f 1

Is it the case that f is left adjoint to 1? Check that for each 1 ≤ p , q ≤ 3, one has

f (p) ≤ q iff p ≤ 1(q).
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2. Let f , 1 be the monotone maps shown below:

P
1• 2• 3• P

Q •
1

•
2

•
3

Q

f 1

Is it the case that f is left adjoint to 1? ♦

Remark 1.100. The pictures in Exercise 1.99 suggest the following idea. If P and Q are

total orders and f : P → Q and 1 : Q → P are drawn with arrows bending counter-

clockwise, then f is left adjoint to 1 iff the arrows do not cross. With a little bit of

thought, this can be formalised. We think this is a pretty neat way of visualizing Galois

connections between total orders!

Exercise 1.101.
1. Does d−/3e have a left adjoint L : Z→ R?

2. If not, why? If so, does its left adjoint have a left adjoint? ♦

1.4.2 Back to partitions

Recall from Example 1.52 that we can understand the set Prt(S) of partitions on a set S
in terms of surjective functions out of S.

Suppose we are given any function 1 : S → T. We will show that this function 1

induces a Galois connection 1! : Prt(S) � Prt(T) : 1∗, between preorder of S-partitions
and the preorder of T-partitions. The way you might explain it to a seasoned category

theorist is:

The left adjoint is given by taking any surjection out of S and pushing out

along 1 to get a surjection out of T. The right adjoint is given by taking any

surjection out of T, composing with 1 to get a function out of S, and then

taking the epi-mono factorization to get a surjection out of S.

S T

P P tS T

1

c

p

S T

im(1 # c) P

1

1#c
c

By the end of this book, the reader will understand pushouts and epi-mono factoriza-

tions, so he or she will be able to make sense of the above statement. But for now we

will explain the process in more down-to-earth terms.

Start with 1 : S → T; we first want to understand 1! : Prt(S) → Prt(T). So start with

a partition ∼S of S. To begin the process of obtaining a partition ∼T on T, say that two

elements t1 , t2 ∈ T are in the same part, t1 ∼T t2, if there exist s1 , s2 ∈ S with such

that s1 ∼S s2 and 1(s1) � t1 and 1(s2) � t2. However, the result of doing so will not
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necessarily be transitive—you may get t1 ∼T t2 and t2 ∼T t3 without t1 ∼?

T t3—and

partitions must be transitive. So complete the process by just adding in the missing

pieces (take the transitive closure). The result is 1!(∼S) B∼T .

Again starting with 1, we want to get the right adjoint 1∗ : Prt(T) → Prt(S). So start

with a partition∼T ofT. Get a partition∼S on S by saying that s1 ∼S s2 iff 1(s1) ∼T 1(s2).
The result is 1∗(∼T) B∼S.

Example 1.102. Let S � {1, 2, 3, 4}, T � {12, 3, 4}, and 1 : S → T by 1(1) B 1(2) B 12,

1(3) B 3, and 1(4) B 4. The partition shown left below is translated by 1! to the

partition shown on the right.

1• 2•

3• 4•

partitioned S

3• 4•

12•

T

3• 4•

12•

partitioned T

{

Exercise 1.103. There are 15 different partitions of a set with four elements. Choose 6

different ones and for each one, call it c : S � P, find 1!(c), where S, T, and 1 : S → T
are the same as they were in Example 1.102. ♦

Example 1.104. Let S, T be as below, and let 1 : S → T be the function shown in blue.

Here is a picture of how 1∗ takes a partition on T and “pulls it back” to a partition on S:

•

•

11

21

•

•

11

21

•

•

11

21

•

•

12

22

•

•

12

22

•

•

12

22

•

•

13

23

•

•

13

23

•

•

13

23

•

•

14

24

•

•

14

24

S Partitioned T

{

Partitioned S

Exercise 1.105. There are five partitions possible on a set with three elements, say

T � {12, 3, 4}. Using the same S and 1 : S → T as in Example 1.102, determine the

partition 1∗(c) on S for each of the five partitions c : T � P. ♦

To check that for any function 1 : S → T, the monotone map 1! : Prt(S) → Prt(T)
really is left adjoint to 1∗ : Prt(T) → Prt(S) would take too much time for this sketch.

But the following exercise gives some evidence.

Exercise 1.106. Let S, T, and 1 : S→ T be as in Example 1.102.

1. Choose a nontrivial partition c : S � P and let 1!(c) be its push forward partition

on T.
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2. Choose any coarser partition d : T � P′, i.e. where 1!(c) ≤ d.
3. Choose any non-coarser partition e : T � Q, i.e. where 1!(c) � e. (If you can’t do

this, revise your answer for #1.)

4. Find 1∗(d) and 1∗(e).
5. The adjunction formula Eq. (1.96) in this case says that since 1!(c) ≤ d and

1!(c) � e, we should have c ≤ 1∗(d) and c � 1∗(e). Show that this is true. ♦

1.4.3 Basic theory of Galois connections

Proposition 1.107. Suppose that f : P → Q and 1 : Q → P are monotone maps. The

following are equivalent

(a) f and 1 form a Galois connection where f is left adjoint to 1,

(b) for every p ∈ P and q ∈ Q we have

p ≤ 1( f (p)) and f (1(q)) ≤ q. (1.108)

Proof. Suppose f is left adjoint to 1. Take any p ∈ P, and let q B f (p). By reflexivity,

we have f (p) ≤ q, so by the Definition 1.95 of Galois connection we have p ≤ 1(q), but
this means p ≤ 1( f (p)). The proof that f (1(q)) ≤ q is similar.

Now suppose that Eq. (1.108) holds for all p ∈ P and q ∈ Q. We want show that

f (p) ≤ q iff p ≤ 1(q). Suppose f (p) ≤ q; then since 1 is monotonic, 1( f (p)) ≤ 1(q), but
p ≤ 1( f (p)) so p ≤ 1(q). The proof that p ≤ 1(q) implies f (p) ≤ q is similar. �

Exercise 1.109. Complete the proof of Proposition 1.107 by showing that

1. if f is left adjoint to 1 then for any q ∈ Q, we have f (1(q)) ≤ q, and
2. if Eq. (1.108) holds, then holds p ≤ 1(q) iff f (p) ≤ q holds, for all p ∈ P and

q ∈ Q. ♦

If we replace ≤ with � in Eq. (1.108), we get back the definition of isomorphism

(Definition 1.75); this is why we said at the beginning of Section 1.4.1 that Galois

connections are a kind of relaxed version of isomorphisms.

Exercise 1.110.
1. Show that if f : P → Q has a right adjoint 1, then it is unique up to isomorphism.

That means, for any other right adjoint 1′, we have 1(q) � 1′(q) for all q ∈ Q.

2. Is the same true for left adjoints? That is, if h : P → Q has a left adjoint, is it

necessarily unique up to isomorphism? ♦
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Proposition 1.111 (Right adjoints preserve meets). Let f : P → Q be left adjoint to

1 : Q → P. Suppose A ⊆ Q any subset, and let 1(A) B {1(a) | a ∈ A} be its image.

Then if A has a meet

∧
A ∈ Q then 1(A) has a meet

∧
1(A) in P, and we have

1

(∧
A
)
�

∧
1(A).

That is, right adjoints preserve meets. Similarly, left adjoints preserve joins: if A ⊆ P is

any subset that has a join

∨
A ∈ P, then f (A) has a join ∨

f (A) in Q, and we have

f
(∨

A
)
�

∨
f (A).

Proof. Let f : P → Q and 1 : Q → P be adjoint monotone maps, with 1 right adjoint to

f . Let A ⊆ Q be any subset and let m B
∧

A be its meet. Then since 1 is monotone

1(m) ≤ 1(a) for all a ∈ A, so 1(m) is a lower bound for the set 1(A). We will be done if

we can show 1(m) is a greatest lower bound.

So take any other lower bound b for 1(A); that is suppose that for all a ∈ A, we have

b ≤ 1(a) and we want to show b ≤ 1(m). Then by definition of 1 being a right adjoint

(Definition 1.95), we also have f (b) ≤ a. This means that f (b) is a lower bound for A in

Q. Since the meet m is the greatest lower bound, we have f (b) ≤ m. Once again using

the Galois connection, b ≤ 1(m), proving that 1(m) is indeed the greatest lower bound

for 1(A), as desired.
The second claim is proved similarly; see Exercise 1.112. �

Exercise 1.112. Complete the proof of Proposition 1.111 by showing that left adjoints

preserve joins. ♦

Since left adjoints preserve joins, we know that they cannot have generative effects.

In fact, we will see in Theorem 1.115 that a monotone map does not have generative

effects—i.e. it preserves joins—if and only if it is a left adjoint to some other monotone.

Example 1.113. Right adjoints need not preserve joins. Here is an example:

1• 2•

3.9•

4•

P B

1• 2•

4•

�: Q
1

f

Let 1 be the map that preserves labels, and let f be the map that preserves labels as far

as possible but with f (3.9) B 4. Both are f and 1 monotonic, and one can check that 1
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is right adjoint to f (see Exercise 1.114). But 1 does not preserve joins because 1∨ 2 � 4

holds in Q, whereas 1(1) ∨ 1(2) � 1 ∨ 2 � 3.9 , 4 � 1(4) in P.

Exercise 1.114. To be sure that 1 really is right adjoint to f in Example 1.113, there

are twelve tiny things to check; do so. That is, for every p ∈ P and q ∈ Q, check that

f (p) ≤ q iff p ≤ 1(q). ♦

Theorem 1.115 (Adjoint functor theorem for preorders). Suppose Q is a preorder that

has all meets and let P be any preorder. A monotone map 1 : Q → P preserves meets

if and only if it is a right adjoint.

Similarly, if P has all joins and Q is any preorder, a monotone map f : P → Q
preserves joins if and only if it is a left adjoint.

Proof. Wewill only prove the claim aboutmeets; the claim about joins follows similarly.

We proved one direction in Proposition 1.111, namely that right adjoints preserve

meets. For the other, suppose that 1 is a monotone map that preserves meets; we shall

construct a left adjoint f . We define our candidate f : P → Q on any p ∈ P by

f (p) B
∧
{q ∈ Q | p ≤ 1(q)}; (1.116)

this meet is well defined because Q has all meets, but for f to really be a candidate, we

need to show it is monotone. So suppose that p ≤ p′. Then {q′ ∈ Q | p′ ≤ 1(q′)} ⊆ {q ∈
Q | p ≤ 1(q)}. By Proposition 1.91, this implies f (p) ≤ f (p′). Thus f is monotone.

By Proposition 1.111, it suffices to show that p0 ≤ 1( f (p0)) and that f (1(q0)) ≤ q0

for all p0 ∈ P and q0 ∈ Q. For the first, we have

p0 ≤
∧
{1(q) ∈ P | p0 ≤ 1(q)} � 1

(∧
{q ∈ Q | p0 ≤ 1(q)}

)
� 1( f (p0)),

where the first inequality follows from the fact that if p0 is below every element of a

set, then it is below their meet, and the isomorphism is by definition of 1 preserving

meets. For the second, we have

f (1(q0)) �
∧
{q ∈ Q | 1(q0) ≤ 1(q)} ≤

∧
{q0} � q0 ,

where the first inequality follows from Proposition 1.91 since {q0} ⊆ {q ∈ Q | 1(q0) ≤
1(q)}, and the fact that

∧{q0} � q0. �

Example 1.117. Let f : A→ B be a function between sets. We can imagine A as a set of

apples, B as a set of buckets, and f as putting each apple in a bucket.

Then we have the monotone map f ∗ : P(Y) → P(X) that category theorists call

“pullback along f .” This map takes a subset B′ ⊆ B to its preimage f −1(B′) ⊆ A: that

is, it takes a collection B′ of buckets, and tells you all the apples that they contain in

total. This operation is monotonic (more buckets means more apples) and it has both

a left and a right adjoint.
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The left adjoint f!(A) is given by the direct image: it maps a subset A′ ⊆ A to

f!(A′) B {b ∈ B | there exists a ∈ A′ such that f (a) � b}

This map takes a set A′ of apples, and tells you all the buckets that contain at least one

of those apples.

The right adjoint f∗ maps a subset A′ ⊆ A to

f∗(A′) B {b ∈ B | for all a such that f (a) � b , we have a ∈ A′}

This map takes a set A′ of apples, and tells you all the buckets b that are all-A′: all the
apples in b are from the chosen subset A′. Note that if a bucket doesn’t contain any

apples at all, then vacuously all its apples are from A′, so empty buckets count as far

as f∗ is concerned.
Notice that all three of these operations turn out to be interesting: start with a set

B′ of buckets and return all the apples in them, or start with a set A′ of apples and

either find the buckets that contain at least one apple from A′, or the buckets whose

only apples are from A′. But we did not invent these mappings f ∗, f!, and f∗: they were

induced by the function f . They were automatic. It is one of the pleasures of category

theory that adjoints so often turn out to have interesting semantic interpretations.

Exercise 1.118. Choose sets X and Y with between two and four elements each, and

choose a function f : X → Y.

1. Choose two different subsets B1 , B2 ⊆ Y and find f ∗(B1) and f ∗(B2).
2. Choose two different subsets A1 ,A2 ⊆ X and find f!(A1) and f!(A2).
3. With the same A1 ,A2 ⊆ X, find f∗(A1) and f∗(A2). ♦

1.4.4 Closure operators

Given a Galois connection with f : P → Q left adjoint to 1 : Q → P, we may compose

f and 1 to arrive at a monotone map f # 1 : P → P from preorder P to itself. This

monotone map has the property that p ≤ ( f # 1)(p), and that ( f # 1 # f # 1)(p) � ( f # 1)(p)
for any p ∈ P. This is an example of a closure operator.8

Exercise 1.119. Suppose that f is left adjoint to 1. Use Proposition 1.107 to show the

following.

1. p ≤ ( f # 1)(p).
2. ( f # 1 # f # 1)(p) � ( f # 1)(p). To prove this, show inequalities in both directions,

≤ and ≥. ♦

Definition 1.120. A closure operator j : P → P on a preorder P is a monotone map such

that for all p ∈ P we have

8
The other composite 1 # f satisfies the dual properties: (1 # f )(q) ≤ q and (1 # f # 1 # f )(q) � (1 # f )(q)

for all q ∈ Q. This is called an interior operator, though we will not discuss this concept further.
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(a) p ≤ j(p);
(b) j( j(p)) � j(p).

Example 1.121. Here is an example of closure operators from computation, very roughly

presented. Imagine computation as a process of rewriting input expressions to output

expressions. For example, a computer can rewrite the expression 7+2+3 as the expres-

sion 12. The set of arithmetic expressions has a partial order according to whether one

expression can be rewritten as another.

We might think of a computer program, then, as a method of taking an expression

and reducing it to another expression. So it is a map j : exp → exp. It furthermore is

desirable to require that this computer program is a closure operator. Monotonicity

means that if an expression x can be rewritten into expression y, then the reduction j(x)
can be rewritten into j(y). Moreover, the requirement x ≤ j(x) implies that j can only

turn one expression into another if doing so is a permissible rewrite. The requirement

j( j(x)) � j(x) implies if you try to reduce an expression that has already been reduced,

the computer program leaves it as is. These properties provide useful structure in the

analysis of program semantics.

Example 1.122 (Adjunctions from closure operators). Just as every adjunction gives rise

to a closure operator, from every closure operator we may construct an adjunction.

Let P be a preorder and let j : P → P be a closure operator. We can define a preorder

fix j to have elements the fixed points of j; that is,

fix j B {p ∈ P | j(p) � p}.

This is a subset of P, and inherits an order as a result; hence fix j is a sub-preorder of P.
Note that j(p) is a fixed point for all p ∈ P, since j( j(p)) � j(p).

We define an adjunction with left adjoint j : P → fix j sending p to j(p), and right

adjoint 1 : fix j → P simply the inclusion of the sub-preorder. To see it’s really an

adjunction, we need to see that for any p ∈ P and q ∈ fix j , we have j(p) ≤ q if and

only if p ≤ q. Let’s check it. Since p ≤ j(p), we have that j(p) ≤ q implies p ≤ q by

transitivity. Conversely, since q is a fixed point, p ≤ q implies j(p) ≤ j(q) � q.

Example 1.123. Another example of closure operators comes from logic. This will be

discussed in the final chapter of the book, in particular Section 7.4.5, but we will give a

quick overview here. In essence, logic is the study of when one formal statement—or

proposition—implies another. For example, if n is prime then n is not a multiple of

6, or if it is raining then the ground is getting wetter. Here “n is prime”, “n is not a

multiple of 6”, “it is raining”, and “the ground is getting wetter” are propositions, and



1.4. GALOIS CONNECTIONS 35

we gave two implications.

Take the set of all propositions, and order them by p ≤ q iff p implies q, denoted
p ⇒ q. Since p ⇒ p and since whenever p ⇒ q and q ⇒ r, we also have p ⇒ r, this is
indeed a preorder.

A closure operator on it is often called a modal operator. It is a function j from

propositions to propositions, for which p ⇒ j(p) and j( j(p)) � j(p). An example of a

j is “assuming Bob is in San Diego....” Think of this as a proposition B; so “assuming

Bob is in San Diego, p” means B⇒ p. Let’s see why B⇒ − is a closure operator.

If ‘p’ is true then “assuming Bob is in San Diego, p” is still true. Suppose that

“assuming Bob is in San Diego it is the case that, assuming Bob is in San Diego, p’ is
true.” It follows that “assuming Bob is in San Diego, p” is true. So we have seen, at

least informally, that “assuming Bob is in San Diego...” is a closure operator.

1.4.5 Level shifting

The last thing we want to discuss in this chapter is a phenomenon that happens often

in category theory, something we might informally call “level-shifting.” It is easier to

give an example of this than to explain it directly.

Given any set S, there is a set Rel(S) of binary relations on S. An element R ∈ Rel(S)
is formally a subset R ⊆ S × S. The set Rel(S) can be given an order via the subset

relation, R ⊆ R′, i.e. if whenever R(s1 , s2) holds then so does R′(s1 , s2).
For example, the Hasse diagram for Rel({1}) is:

�• {(1,1)}•

Exercise 1.124. Draw the Hasse diagram for the preorder Rel({1, 2}) of all binary
relations on the set {1, 2}. ♦

For any set S, there is also a set Pos(S), consisting of all the preorder relations on S.
In fact there is a preorder structure v on Pos(S), again given by inclusion: ≤ is below

≤′ (we’ll write ≤v≤′) if a ≤ b implies a ≤′ b for every a , b ∈ S. A preorder of preorder

structures? That’s what we mean by a level shift.

Every preorder relation is—in particular—a relation, so we have an inclusion

Pos(S) → Rel(S). This is the right adjoint of a Galois connection. Its left adjoint

is a monotone map Cl: Rel(S) → Pos(S) given by taking any relation R, writing it in

infix notation using ≤, and taking the reflexive and transitive closure, i.e. adding s ≤ s
for every s and adding s ≤ u whenever s ≤ t and t ≤ u.

Exercise 1.125. Let S � {1, 2, 3}. Let’s try to understand the adjunction discussed

above.

1. Come up with any preorder relation ≤ on S, and define U(≤) to be the subset

U(≤) B {(s1 , s2) | s1 ≤ s2} ⊆ S×S, i.e. U(≤) is the image of ≤ under the inclusion

Pos(S) → Rel(S), the relation ‘underlying’ the preorder.
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2. Come up with any two binary relations Q ⊆ S × S and Q′ ⊆ S × S such that

Q ⊆ U(≤) but Q′ 6⊆ U(≤). Note that your choice of Q ,Q′ do not have to come

from preorders.

We now want to check that in this case, the closure operation Cl is really left adjoint to

the ‘underlying relation’ map U.

3. Concretely (without using the assertion that there is some sort of adjunction),

show that Cl(Q) v ≤, where v is the order on Pos(S), defined immediately above

this exercise.

4. Concretely show that Cl(Q′) @ ≤. ♦

1.5 Summary and further reading

In this first chapter, we set the stage for category theory by introducing one of the

simplest interesting sorts of example: preorders. From this seemingly simple structure,

a bunch of further structure emerges: monotonemaps, meets, joins, andmore. In terms

of modeling real world phenomena, we thought of preorders as the states of a system,

and monotone maps as describing a way to use one system to observe another. From

this point of view, generative effects occur when observations of the whole cannot be

deduced by combining observations of the parts.

In the final section we introduced Galois connections. A Galois connection, or

adjunction, is a pair of maps that are like inverses, but allowed to be more “relaxed” by

getting the orders involved. Perhaps surprisingly, it turns out adjunctions are closely

related to joins and meets: if a preorder P has all joins, then a monotone map out of P
is a left adjoint if and only if it preserves joins; similarly for meets and right adjoints.

The next two chapters build significantly on this material, but in two different

directions. Chapter 2 adds a new operation on the underlying set: it introduces the

idea of a monoidal structure on preorders. This allows us to construct an element a ⊗ b
of a preorder P from any elements a , b ∈ P, in a way that respects the order. On the

other hand, Chapter 3 adds new structure on the order itself: it introduces the idea

of a morphism, which describes not only whether a ≤ b, but gives a name f for how

a relates to b. This structure is known as a category. These generalizations are both

fundamental to the story of compositionality, and in Chapter 4 we’ll see them meet in

the concept of a monoidal category. The lessons we have learned in this chapter will

illuminate the more highly-structured generalizations in the chapters to come. Indeed,

it is a useful principle in studying category theory to try to understand concepts first

in the setting of preorders—where often much of the complexity is stripped away and

one can develop some intuition—before considering the general case.

But perhaps youmight be interested in exploring some ideas in this chapter in other

directions. While we won’t return to them in this book, we learned about generative

effects from Elie Adam’s thesis [Ada17], and a much richer treatment of generative
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effect canbe found there. In particular, hediscusses abelian categories and cohomology,

providing a way to detect generative effects in quite a general setting.

Another important application of preorders, monotone maps, and Galois connec-

tions is to the analysis of programming languages. In this setting, preorders describe

the possible states of a computer, andmonotone maps describe the action of programs,

or relationships between different ways of modeling computation states. Galois con-

nections are useful for showing how different models may be closely related, and for

transporting program analysis from one framework to another. For more detail on this,

see Chapter 4 of the textbook [NNH99].





Chapter 2

Resource theories:
Monoidal preorders and enrichment

2.1 Getting from a to b

You can’t make an omelette without breaking an egg. To obtain the things we want

requires resources, and the process of transforming what we have into what we want

is often an intricate one. In this chapter, we will discuss how monoidal preorders can

help us think about this matter.

Consider the following three questions you might ask yourself:

• Given what I have, is it possible to get what I want?

• Given what I have, what is the minimum cost to get what I want?

• Given what I have, what is the set of ways to get what I want?

These questions are about resources—those youhave and those youwant—but perhaps

more importantly, they are about moving from have to want: possibility of, cost of, and

ways to.

Such questions come up not only in our lives, but also in science and industry.

In chemistry, one asks whether a certain set of compounds can be transformed into

another set, how much energy such a reaction will require, or what methods exist for

making it happen. In manufacturing, one asks similar questions.

From an external point of view, both a chemist and an industrial firm might be

regarded as store-houses of information on the above subjects. The chemist knows

which compounds she can make given other ones, and how to do so; the firm has

stored knowledge of the same sort. The research work of the chemist and the firm is to

use what they know in order to derive—or discover—new knowledge.

This is roughly the first goal of this chapter: to discuss a formalism for expressing

recipes—methods for transforming one set of resources into another—and for deriving

new recipes from old. The idea here is not complicated, neither in life nor in our

mathematical formalism. The value added then is to simply see how it works, so we

39
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can build on it within the book, and so others can build on it in their own work.

We briefly discuss the categorical approach to this idea—namely that of monoidal
preorders—for building new recipes from old. The following wiring diagram shows,

assuming one knows how to implement each of the interior boxes, how to implement

the preparation of a lemon meringue pie:

make

lemon

filling

make

meringue

separate

egg

fill crust

add

meringue

prepare lemon meringue pie

prepared crust

lemon

butter

sugar

egg

sugar

yolk

white

lemon

filling

unbaked

lemon pie

meringue

unbaked

pie

(2.1)

The wires show resources: we start with prepared crust, lemon, butter, sugar, and egg

resources, and we end up with an unbaked pie resource. We could take this whole

method and combine it with others, e.g. baking the pie:

prepare lemon meringue pie

bake pie

oven

unbaked

pie

baked pie

oven

In the above example we see that resources are not always consumed when they are

used. For example, we use an oven to convert—or catalyze the transformation of—an

unbaked pie into a baked pie, and we get the oven back after we are done. It’s a nice

feature of ovens! To use economic terms, the oven is a “means of production” for pies.

String diagrams are important mathematical objects that will come up repeatedly

in this book. They were invented in the mathematical context—more specifically in the

context of monoidal categories—by Joyal and Street [JS93], but they have been used

less formally by engineers and scientists in various contexts for a long time.

As we said above, our first goal in this chapter is to use monoidal preorders, and

the corresponding wiring diagrams, as a formal language for recipes from old. Our

second goal is to discuss something calledV-categories for variousmonoidal preorders

V.
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A V-category is a set of objects, which one may think of as points on a map, where

V somehow “structures the question” of getting from point a to point b. The examples

of monoidal preorders V that we will be most interested in are called Bool and Cost.
Roughly speaking, a Bool-category is a set of points where the question of getting from

point a to point b has a true / false answer. A Cost-category is a set of points where

the question of getting from a to b has an answer d ∈ [0,∞], a cost.
This story works in more generality than monoidal preorders. Indeed, in Chapter 4

we will discuss something called a monoidal category, a notion which generalizes

monoidal preorders, and we will generalize the definition of V-category accordingly.

In this more general setting, V-categories can also address our third question above,

describing methods of getting between points. For example a Set-category is a set of

points where the question of getting from point a to point b has a set of answers

(elements of which might be called methods).

We will begin in Section 2.2 by defining symmetric monoidal preorders, giving a

few preliminary examples, and discussing wiring diagrams. We then give many more

examples of symmetricmonoidal preorders, including both some real-world examples,

in the form of resource theories, and some mathematical examples that will come up

again throughout the book. In Section 2.3 we discuss enrichment and V-categories—

how a monoidal preorder V can “structure the question” of getting from a to b—and

then give some important constructions onV-categories (Section 2.4), and analyze them

using a sort of matrix multiplication technique (Section 2.5).

2.2 Symmetric monoidal preorders

In Section 1.2.2 we introduced preorders. The notation for a preorder, namely (X, ≤),
refers to two pieces of structure: a set called X and a relation called ≤ that is reflexive

and transitive.

We want to add to the concept of preorders a way of combining elements in X, an

operation taking two elements and adding or multiplying them together. However,

the operation does not have to literally be addition or multiplication; it only needs to

satisfy some of the properties one expects from them.

2.2.1 Definition and first examples

We begin with a formal definition of symmetric monoidal preorders.

Definition 2.2. A symmetric monoidal structure on a preorder (X, ≤) consists of two

constituents:

(i) an element I ∈ X, called the monoidal unit, and
(ii) a function ⊗ : X × X → X, called the monoidal product.

These constituents must satisfy the following properties, where we write ⊗(x1 , x2) �
x1 ⊗ x2:
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(a) for all x1 , x2 , y1 , y2 ∈ X, if x1 ≤ y1 and x2 ≤ y2, then x1 ⊗ x2 ≤ y1 ⊗ y2,

(b) for all x ∈ X, the equations I ⊗ x � x and x ⊗ I � x hold,

(c) for all x , y , z ∈ X, the equation (x ⊗ y) ⊗ z � x ⊗ (y ⊗ z) holds, and
(d) for all x , y ∈ X, the equation x ⊗ y � y ⊗ x holds.

We call these conditionsmonotonicity, unitality, associativity, and symmetry respectively.
A preorder equipped with a symmetric monoidal structure, (X, ≤, I , ⊗), is called a

symmetric monoidal preorder.

Anyone can propose a set X, an order ≤ on X, an element I in X, and a binary

operation ⊗ on X and ask whether (X, ≤, I , ⊗) is a symmetric monoidal preorder. And

it will indeed be one, as long as it satisfies rules a, b, c, and d of Definition 2.2.

Remark 2.3. It is often useful to replace�with � throughout Definition 2.2. The result is

a perfectly good notion, called a weak monoidal structure. The reason we chose equality

is that it makes equations look simpler, which we hope aids first-time readers.

The notation for the monoidal unit and the monoidal product may vary: monoidal

units we have seen include I (as in the definition), 0, 1, true, false, {∗}, and more.

Monoidal products we have seen include ⊗ (as in the definition), +, ∗, ∧, ∨, and ×. The
preferred notation in a given setting is whatever best helps our brains remember what

we’re trying to do; the names I and ⊗ are just defaults.

Example 2.4. There is a well-known preorder structure, denoted ≤, on the set R of real

numbers; e.g. −5 ≤
√

2. We propose 0 as a monoidal unit and + : R × R → R as a

monoidal product. Does (R, ≤, 0,+) satisfy the conditions of Definition 2.2?

If x1 ≤ y1 and x2 ≤ y2, it is true that x1 + x2 ≤ y1 + y2. It is also true that 0 + x � x
and x + 0 � x, that (x + y) + z � x + (y + z), and that x + y � y + x. Thus (R, ≤, 0,+)
satisfies the conditions of being a symmetric monoidal preorder.

Exercise 2.5. Consider again the preorder (R, ≤) from Example 2.4. Someone proposes

1 as a monoidal unit and ∗ (usual multiplication) as a monoidal product. But an expert

walks by and says “that won’t work.” Figure out why, or prove the expert wrong! ♦

Example 2.6. A monoid consists of a set M, a function ∗ : M ×M → M called the monoid
multiplication, and an element e ∈ M called the monoid unit, such that, when you write

∗(m , n) as m ∗ n, i.e. using infix notation, the equations

m ∗ e � m , e ∗ m � m , (m ∗ n) ∗ p � m ∗ (n ∗ p) (2.7)

hold for all m , n , p ∈ M. It is called commutative if also m ∗ n � n ∗ m.

Every set S determines a discrete preorder DiscS (where m ≤ n iff m � n; see
Example 1.32), and it is easy to check that if (M, e , ∗) is a commutative monoid then

(DiscM ,�, e , ∗) is a symmetric monoidal preorder.
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Exercise 2.8. We said it was easy to check that if (M, ∗, e) is a commutative monoid

then (DiscM ,�, ∗, e) is a symmetric monoidal preorder. Are we telling the truth? ♦

Example 2.9. Here is a non-example for people who know the game “standard poker.”

Let H be the set of all poker hands, where a hand means a choice of five cards from the

standard 52-card deck. As an order, put h ≤ h′ if h′ beats or equals h in poker.

One could propose a monoidal product ⊗ : H × H → H by assigning h1 ⊗ h2 to be

“the best hand one can form out of the ten cards in h1 and h2.” If some cards are in

both h1 and h2, just throw the duplicates away. So for example {2♥, 3♥, 4♥, 6♠, 7♠} ⊗
{2♥, 5♥, 6♥, 6♠, 7♠} � {2♥, 3♥, 4♥, 5♥, 6♥}, because the latter is the best hand you

can make with the former two.

This proposal for a monoidal structure will fail the condition (a) of Definition 2.2: it

could be the case that h1 ≤ i1 and h2 ≤ i2, and yet not be the case that h1 ⊗ h2 ≤ i1 ⊗ i2.

For example, consider this case:

h1 B {2♥, 3♥, 10♠, J♠, Q♠} i1 B {4♣, 4♠, 6♥, 6♦, 10♦}
h2 B {2♦, 3♦, 4♦, K♠, A♠} i2 B {5♠, 5♥, 7♥, J♦, Q♦}.

Here, h1 ≤ i1 and h2 ≤ i2, but h1 ⊗ h2 � {10♠, J♠, Q♠, K♠, A♠} is the best possible

hand and beats i1 ⊗ i2 � {5♠, 5♥, 6♥, 6♦, Q♦}.

Subsections 2.2.3 and 2.2.4 are dedicated to examples of symmetric monoidal pre-

orders. Some are aligned with the notion of resource theories, others come from pure

math. When discussing the former, we will use wiring diagrams, so here is a quick

primer.

2.2.2 Introducing wiring diagrams

Wiring diagrams are visual representations for building new relationships from old. In

a preorder without a monoidal structure, the only sort of relationship between objects

is ≤, and the only way you build a new ≤ relationship from old ones is by chaining

them together. We denote the relationship x ≤ y by

≤x y
(2.10)

We can chain some number of these ≤-relationships—say 0, 1, 2, or 3 of them—together

in series as shown here

≤x0 ≤x0 x1 ≤ ≤x0 x1 x2 ≤ ≤ ≤x0 x1 x2 x3 · · ·

(2.11)
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If we add a symmetric monoidal structure, we can combine relationships not only

in series but also in parallel. Here is an example:

≤

≤

≤t

u

v
w x

y

z
(2.12)

Different styles ofwiringdiagrams In fact, wewill see later that there aremany styles

of wiring diagrams. When we are dealing with preorders, the sort of wiring diagram

we can draw is that with single-input, single-output boxes connected in series. When

we are dealing with symmetric monoidal preorders, we can have more complex boxes

and more complex wiring diagrams, including parallel composition. Later we will see

that for other sorts of categorical structures, there are other styles of wiring diagrams:

(2.13)

Wiring diagrams for symmetric monoidal preorders The style of wiring diagram

thatmakes sense in any symmetricmonoidal preorder is that shown in Eq. (2.12): boxes

can have multiple inputs and outputs, and they may be arranged in series and parallel.

Symmetric monoidal preorders and their wiring diagrams are tightly coupled with

each other. How so?

The answer is that a monoidal preorder (X, ≤, I , ⊗) has some notion of element

(x ∈ X), relationship (≤), and combination (using transitivity and ⊗), and so do wiring

diagrams: the wires represent elements, the boxes represent relationships, and the

wiring diagrams themselves show how relationships can be combined. We call boxes

and wires icons; we will encounter several more icons in this chapter, and throughout

the book.

To get a bit more rigorous about the connection, let’s start with amonoidal preorder

(X, ≤, I , ⊗) as in Definition 2.2. Wiring diagrams have wires on the left and the right.

Each element x ∈ X can be made the label of a wire. Note that given two objects x , y,
we can either draw two wires in parallel—one labeled x and one labeled y—or we can

draw one wire labeled x ⊗ y.

x

y x ⊗ y

We consider wires in parallel to represent the monoidal product of their labels, so we

consider both cases above to represent the element x ⊗ y. Note also that a wire labeled
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I or an absence of wires:

I
nothing

both represent the monoidal unit I; another way of thinking of this is that the unit is

the empty monoidal product.

Awiring diagram runs between a set of parallel wires on the left and a set of parallel

wires on the right. We say that a wiring diagram is valid if the monoidal product of

the elements on the left is less than the monoidal product of those on the right. For

example, if we have the inequality x ≤ y, the the diagram that is a box with a wire

labeled x on the left and a wire labeled y on the right is valid; see the first box below:

≤x y ≤
x1

x2

y1

y2

y3

The validity of the second box corresponds to the inequality x1 ⊗ x2 ≤ y1 ⊗ y2 ⊗ y3.

Before going on to the properties from Definition 2.2, let us pause for an example of

what we’ve discussed so far.

Example 2.14. Recall the symmetric monoidal preorder (R, ≤, 0,+) from Example 2.4.

The wiring diagrams for it allow wires labeled by real numbers. Drawing wires in

parallel corresponds to adding their labels, and the wire labeled 0 is equivalent to no

wires at all.

3.14 −1

3.14

−1

=

2.14 0

= nothing

And here we express a couple facts about (R, ≤, 0,+) in this language: 4 ≤ 7 and

2 + 5 ≤ −1 + 5 + 3.

≤
4 7

≤
2

5

−1

5

3

We now return to how the properties of symmetric monoidal preorders correspond

to properties of this sort of wiring diagram. Let’s first talk about the order structure:

conditions (a)—reflexivity—and (b)—transitivity—from Definition 1.30. Reflexivity

says that x ≤ x, this means the diagram just consisting of a wire

x

is always valid. Transitivity allows us to connect facts together: it says that if x ≤ y
and y ≤ z, then x ≤ z. This means that if the diagrams

≤x y
and ≤y z
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are valid, we can put them together and obtain the valid diagram

≤x ≤y z

Next let’s talk about theproperties (a)–(d) fromthedefinitionof symmetricmonoidal

structure (Definition 2.2). Property (a) says that if x1 ≤ y1 and x2 ≤ y2 then x1 ⊗ x2 ≤
y1 ⊗ y2. This corresponds to the idea that stacking any two valid boxes in parallel is

still valid:

≤

≤
≤{

x1

x2

y1

y2

x1

x2

y1

y2

Condition (b), that I ⊗ x � x and x ⊗ I � x, says we don’t need to worry about I or

blank space; in particular diagrams such as the following are valid:

x

nothing
x

Condition (c), that (x ⊗ y) ⊗ z � x ⊗ (y ⊗ z) says that we don’t have to worry about

whether we build up diagrams from the top or from the bottom

x

y
=

x ⊗ y

z

=

x

y ⊗ z
=

y

z

But this looks much harder than it is: the associative property should be thought of as

saying that there is no distinction between the stuff on the very left above and the stuff

on the very right, i.e.

x

y

z

=

x
y

z

and indeed a diagram that moves from one to the other is valid.

Finally, the symmetry condition (d), that x ⊗ y � y ⊗ x, says that a diagram is valid

even if its wires cross:

x
y

y
x

y
x

x
y

One may regard the pair of crossing wires as another icon in our iconography, in

addition to the boxes and wires we already have.
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Wiring diagrams as graphical proofs Given a monoidal preorder X � (X, ≤, I , ⊗), a
wiring diagram is a graphical proof of something about X. Each box in the diagram

has a left side and a right side, say x and y, and represents the assertion that x ≤ y.

≤x y

A wiring diagram is a bunch of interior boxes connected together inside an exterior

box. It represents a graphical proof that says: if all of the interior assertions are correct,

then so is the exterior assertion.

≤

≤

≤t

u

v

w x

y

z

(2.15)

The inner boxes in Eq. (2.15) translate into the assertions:

t ≤ v + w w + u ≤ x + z v + x ≤ y (2.16)

and the outer box translates into the assertion:

t + u ≤ y + z. (2.17)

The whole wiring diagram 2.15 says “if you know that the assertions in 2.16 are true,

then I am a proof that the assertion in 2.17 is also true.” What exactly is the proof that

diagram 2.15 represents? It is the proof

t + u ≤ v + w + u ≤ v + x + z ≤ y + z. (2.18)

Indeed, each inequality here is a vertical slice of the diagram 2.15, and the transitivity

of these inequalities is expressed by connecting these vertical slices together.

Example 2.19. Recall the lemon meringue pie wiring diagram from Eq. (2.1). It has five

interior boxes, such as “separate egg” and “fill crust,” and it has one exterior box called

“prepare lemon meringue pie.” Each box is the assertion that, given the collection of

resources on the left, say an egg, you can transform it into the collection of resources on

the right, say an egg white and an egg yolk. The whole string diagram is a proof that

if each of the interior assertions is true—i.e. you really do know how to separate eggs,

make lemon filling, make meringue, fill crust, and add meringue—then the exterior

assertion is true: you can prepare a lemon meringue pie.

Exercise 2.20. The string of inequalities in Eq. (2.18) is not quite a proof, because

technically there is no such thing as v +w + u, for example. Instead, there is (v +w)+ u
and v + (w + u), and so on.
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1. Formally prove, using only the rules of symmetric monoidal preorders (Defi-

nition 2.2), that given the assertions in Eq. (2.16), the conclusion in Eq. (2.17)

follows.

2. Reflexivity and transitivity should show up in your proof. Make sure you are

explicit about where they do.

3. How can you look at the wiring diagram Eq. (2.12) and know that the symmetry

axiom (Definition 2.2(d)) does not need to be invoked? ♦

We next discuss some examples of symmetric monoidal preorders. We begin in

Section 2.2.3 with some more concrete examples, from science, commerce, and infor-

matics. Then in Section 2.2.4 we discuss some examples arising from pure math, some

of which will get a good deal of use later on, e.g. in Chapter 4.

2.2.3 Applied examples

Resource theories are studies of how resources are exchanged in a given arena. For

example, in social resource theory one studies a marketplace where combinations of

goods can be traded for—as well as converted into—other combinations of goods.

Whereas marketplaces are very dynamic, and an apple might be tradable for an

orange on Sunday but not on Monday, what we mean by resource theory in this

chapter is a static notion: deciding “what buys what,” once and for all.1 This sort of

static notion of conversion might occur in chemistry: the chemical reactions that are

possible one day will quite likely be possible on a different day as well. Manufacturing

may be somewhere in between: the set of production techniques—whereby a company

can convert one set of resources into another—do not change much from day to day.

We learned about resource theories from [CFS16; Fri17], who go much further than

we will; see Section 2.6 for more information. In this section we will focus only on

the main idea. While there are many beautiful mathematical examples of symmetric

monoidal preorders, as we will see in Section 2.2.4, there are also ad hoc examples

coming from life experience. In the next chapter, on databases, we will see the same

theme: while there are some beautiful mathematical categories out there, database

schemas are ad hoc organizational patterns of information. Describing something as

“ad hoc” is often considered derogatory, but it just means “formed, arranged, or done

for aparticularpurposeonly.” There is nothingwrongwithdoing things for aparticular

purpose; it’s common outside of pure math and pure art. Let’s get to it.

Chemistry In high school chemistry, we work with chemical equations, where mate-

rial collections such as

H2O, NaCl, 2NaOH, CH4 + 3O2

1
Using some sort of temporal theory, e.g. the one presented in Chapter 7, one could take the notion

here and have it change in time.
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are put together in the form of reaction equations, such as

2H2O + 2Na→ 2NaOH + H2.

The collection on the left, 2H2O + 2Na is called the reactant, and the collection on the

right, 2NaOH + H2 is called the product.
We can consider reaction equations such as the one above as taking place inside a

single symmetricmonoidal preorder (Mat,→, 0,+). HereMat is the set of all collections

of atoms and molecules, sometimes called materials. So we have NaCl ∈ Mat and

4H2O + 6Ne ∈ Mat.

The set Mat has a preorder structure denoted by the → symbol, which is the

preferred symbol in the setting of chemistry. To be clear, → is taking the place of

the order relation ≤ from Definition 2.2. The + symbol is the preferred notation for

the monoidal product in the chemistry setting, taking the place of ⊗. While it does not

come up in practice, we use 0 to denote the monoidal unit.

Exercise 2.21. Here is an exercise for people familiar with reaction equations: check

that conditions (a), (b), (c), and (d) of Definition 2.2 hold. ♦

An important notion in chemistry is that of catalysis: one compound catalyzes a

certain reaction. For example, one might have the following set of reactions:

y + k → y′ + k′ x + y′→ z′ z′ + k′→ z + k (2.22)

Using the laws of monoidal preorders, we obtain the composed reaction

x + y + k → x + y′ + k′→ z′ + k′→ z + k. (2.23)

Here k is the catalyst because it is found both in the reactant and the product of the

reaction. It is said to catalyze the reaction x + y → z. The idea is that the reaction

x+ y → z cannot take place given the reactions in Eq. (2.22). But if k is present, meaning

if we add k to both sides, the resulting reaction can take place.

The wiring diagram for the reaction in Eq. (2.23) is shown in Eq. (2.24). The three

interior boxes correspond to the three reactions given in Eq. (2.22), and the exterior box

corresponds to the composite reaction x + y + k → z + k.

→

→

→
y

k

x

y′

k′

z′

z

k

(2.24)

Manufacturing Whether we are talking about baking pies, building smart phones,

or following pharmaceutical recipes, manufacturing firms need to store basic recipes,

and build new recipes by combining simpler recipes in schemes like the one shown in

Eq. (2.1) or Eq. (2.24).
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The basic idea in manufacturing is exactly the same as that for chemistry, except

there is an important assumption we can make in manufacturing that does not hold

for chemical reactions:

You can trash anything you want, and it disappears from view.

This simple assumption has caused the world some significant problems, but it is still

in effect. In ourmeringue pie example, we can ask: “what happened to the egg shell, or

the paper wrapping the stick of butter”? The answer is they were trashed, i.e. thrown

in the garbage bin. It would certainly clutter our diagram and our thinking if we had

to carry these resources through the diagram:

make

lemon

filling

make

meringue

separate

egg

fill crust

add

meringue

prepare lemon meringue pie, keeping track of waste

crust

lemon

butter

sugar

egg

sugar

yolk

egg shells

white

lemon

filling

lemon peel

butter wrapper

unbaked

lemon pie

meringue

unbaked

pie

Instead, in our daily lives and in manufacturing, we do not have to hold on to

something if we don’t need it; we can just discard it. In terms of wiring diagrams, this

can be shown using a new icon , as follows:

•discard

(2.25)

To model this concept of waste using monoidal categories, one just adds an addi-

tional axiom to (a), (b), (c), and (d) from Definition 2.2:

(e) x ≤ I for all x ∈ X. (discard axiom)

It says that every x can be converted into the monoidal unit I. In the notation of the

chemistry section, we would write instead x → 0: any x yields nothing. But this is

certainly not accepted in the chemistry setting. For example,

H2O + NaCl→?

H2O
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is certainly not a legal chemical equation. It is easy to throw things away in manufac-

turing, because we assume that we have access to—the ability to grab onto and directly

manipulate—each item produced. In chemistry, when you have 10
23

of substance A
dissolved in something else, you cannot just simply discard A. So axiom (e) is valid in

manufacturing but not in chemistry.

Recall that in Section 2.2.2 we said that there were many different styles of wiring

diagrams. Nowwe’re saying that adding thediscard axiomchanges thewiringdiagram

style, in that it adds this new discard icon that allows wires to terminate, as shown in

Eq. (2.25). In informatics, we will change the wiring diagram style yet again.

Informatics A major difference between information and a physical object is that

information can be copied. Whereas one cup of butter never becomes two, it is easy for

a single email to be sent to two different people. It is much easier to copy a music file

than it is to copy a CD. Here we do not mean “copy the information from one compact

disc onto another”—of course that’s easy—instead, we mean that it’s quite difficult

to copy the physical disc, thereby forming a second physical disc! In diagrams, the

distinction is between the relation

copy cd

Beyoncé cd

blank cd

Beyoncé cd

Beyoncé cd

and the relation

no, I mean

literally copy cd!

Beyoncé cd

Beyoncé cd

Beyoncé cd

The former is possible, the latter is magic.

Of course material objects can sometimes be copied; cell mitosis is a case in point.

But this is a remarkable biological process, certainly not something that is expected

for ordinary material objects. In the physical world, we would make mitosis a box

transforming one cell into two. But in (classical, not quantum) information, everything

can be copied, so we add a new icon to our repertoire.

Namely, in wiring diagram notation, copying information appears as a new icon,

, allowing us to split wires:

write •
calendar

maps

email

email

email
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Now with two copies of the email, we can send one to Alice and one to Bob.

write •

send to Alice

send to Bob

calendar

maps

email

email

email

email sent to Alice

email sent to Bob

(2.26)

Information can also be discarded, at least in the conventional way of thinking, so

in addition to axioms (a) to (d) fromDefinition 2.2, we can keep axiom (e) from page 50

and add a new copy axiom:

(f) x ≤ x + x for all x ∈ X. (copy axiom)

allowing us to make mathematical sense of diagrams like Eq. (2.26).

Now that we have examples of monoidal preorders under our belts, let’s discuss

some nice mathematical examples.

2.2.4 Abstract examples

In this sectionwe discuss several mathematical examples of symmetricmonoidal struc-

tures on preorders.

The Booleans The simplest nontrivial preorder is the booleans: B � {true, false}
with false ≤ true. There are two different symmetric monoidal structures on it.

Example 2.27 (Booleans with AND). We can define amonoidal structure onB by letting

the monoidal unit be true and the monoidal product be ∧ (AND). If one thinks of

false � 0 and true � 1, then ∧ corresponds to the usual multiplication operation ∗.
That is, with this correspondence, the two tables below match up:

∧ false true

false false false

true false true

∗ 0 1

0 0 0

1 0 1

(2.28)

One can check that all the properties in Definition 2.2 hold, so we have a monoidal

preorder which we denote Bool B (B, ≤, true,∧).

Bool will be important when we get to the notion of enrichment. Enriching in a

monoidal preorder V � (V, ≤, I , ⊗) means “letting V structure the question of getting

from a to b.” All of the structures of a monoidal preorder—i.e. the set V , the ordering

relation ≤, the monoidal unit I, and the monoidal product ⊗—play a role in how

enrichment works.
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For example, let’s look at the case of Bool � (B, ≤, true,∧). The fact that its

underlying set is B � {false, true} will translate into saying that “getting from a to b
is a true/false question.” The fact that true is the monoidal unit will translate into

saying “you can always get from a to a.” The fact that ∧ is the monoidal product will

translate into saying “if you can get from a to b AND you can get from b to c then you

can get from a to c.” Finally, the “if-then” form of the previous sentence is coming from

the order relation ≤. We will make this more precise in Section 2.3.

We will be able to play the same game with other monoidal preorders, as we will

see after we define a monoidal preorder called Cost in Example 2.37.

Some other monoidal preorders It is a bit imprecise to call Bool “the” boolean

monoidal preorder, because there is another monoidal structure on (B, ≤), which we

describe in Exercise 2.29. The first structure, however, seems to be more useful in

practice than the second.

Exercise 2.29. Let (B, ≤) be as above, but now consider the monoidal product to be ∨
(OR).

∨ false true

false false true

true true true

max 0 1

0 0 1

1 1 1

What must the monoidal unit be in order to satisfy the conditions of Definition 2.2?

Does it satisfy the rest of the conditions? ♦

In Example 2.30 and Exercise 2.31 we give two different monoidal structures on the

preorder (N, ≤) of natural numbers, where ≤ is the usual ordering (0 ≤ 1 and 5 ≤ 16).

Example 2.30 (Natural numbers with addition). There is a monoidal structure on (N, ≤)
where the monoidal unit is 0 and the monoidal product is +, i.e. 6 + 4 � 10. It is easy

to check that x1 ≤ y1 and x2 ≤ y2 implies x1 + x2 ≤ y1 + y2, as well as all the other

conditions of Definition 2.2.

Exercise 2.31. Show there is a monoidal structure on (N, ≤) where the monoidal

product is ∗, i.e. 6 ∗ 4 � 24. What should the monoidal unit be? ♦

Example 2.32 (Divisibility and multiplication). Recall from Example 1.45 that there is

a “divisibility” order on N: we write m |n to mean that m divides into n without

remainder. So 1|m for all m and 4|12.

There is a monoidal structure on (N, | ), where the monoidal unit is 1 and the

monoidal product is ∗, i.e. 6 ∗ 4 � 24. Then if x1 |y1 and x2 |y2, then (x1 ∗ x2)|(y1 ∗ y2).
Indeed, if there is some p1 , p2 ∈ N such that x1 ∗ p1 � y1 and x2 ∗ p2 � y2, then

(p1 ∗ p2) ∗ (x1 ∗ x2) � y1 ∗ y2.
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Exercise 2.33. Again taking the divisibility order (N, | ). Someone proposes 0 as

the monoidal unit and + as the monoidal product. Does that proposal satisfy the

conditions of Definition 2.2? Why or why not? ♦

Exercise 2.34. Consider the preorder (P, ≤)with Hasse diagram no→ maybe→ yes .
We propose a monoidal structure with yes as the monoidal unit and “min” as the

monoidal product.

1. Make sense of “min” by filling in the multiplication table with elements of P.

min no maybe yes

no ? ? ?

maybe ? ? ?

yes ? ? ?

2. Check the axioms of Definition 2.2 hold for NMY B (P, ≤, yes,min), given your

definition of min. If not, change your definition of min. ♦

Exercise 2.35. Let S be a set and let P(S) be its power set, the set of all subsets of

S, including the empty subset, � ⊆ S, and the “everything” subset, S ⊆ S. We can

give P(S) an order: A ≤ B is given by the subset relation A ⊆ B, as discussed in

Example 1.50. We propose a symmetric monoidal structure on P(S) with monoidal

unit S and monoidal product given by intersection A ∩ B.
Does it satisfy the conditions of Definition 2.2? ♦

Exercise 2.36. Let PropN denote the set of all mathematical statements one can make

about a natural number, where we consider two statements to be the same if one is true

if and only if the other is true. For example “n is prime” is an element of PropN, and so

are “n � 2” and “n ≥ 11.” The statements “n + 2 � 5” and “n is the least odd prime”

are considered the same. Given P,Q ∈ PropN, we say P ≤ Q if for all n ∈ N, whenever

P(n) is true, so is Q(n).
Define amonoidal unit and amonoidal product on PropN that satisfy the conditions

of Definition 2.2. ♦

The monoidal preorder Cost As we said above, when we enrich in monoidal pre-

orders we see them as different ways to structure the question of “getting from here

to there.” We will explain this in more detail in Section 2.3. The following monoidal

preorder will eventually structure a notion of distance or cost for getting from here to

there.

Example 2.37 (Lawvere’s monoidal preorder, Cost). Let [0,∞] denote the set of non-

negative real numbers—such as 0, 1, 15.333, and 2π—together with ∞. Consider the

preorder ([0,∞], ≥), with the usual notion of ≥, where of course∞ ≥ x for all x ∈ [0,∞].
There is a monoidal structure on this preorder, where the monoidal unit is 0 and

the monoidal product is +. In particular, x +∞ � ∞ for any x ∈ [0,∞]. Let’s call this



2.2. SYMMETRIC MONOIDAL PREORDERS 55

monoidal preorder

Cost B ([0,∞], ≥, 0,+),

because we can think of the elements of [0,∞] as costs. In terms of structuring “getting

from here to there,” Cost seems to say “getting from a to b is a question of cost.” The

monoidal unit being 0 will translate into saying that you can always get from a to a at

no cost. Themonoidal product being+will translate into saying that the cost of getting

from a to c is at most the cost of getting from a to b plus the cost of getting from b to c.
Finally, the “at most” in the previous sentence is coming from the ≥.

The opposite of a monoidal preorder One can take the opposite of any preorder, just

flip the order: (X, ≤)op B (X, ≥); see Example 1.58. Proposition 2.38 says that if the

preorder had a symmetric monoidal structure, so does its opposite.

Proposition 2.38. Suppose X � (X, ≤) is a preorder and Xop � (X, ≥) is its opposite. If
(X, ≤, I , ⊗) is a symmetric monoidal preorder then so is its opposite, (X, ≥, I , ⊗).

Proof. Let’s first check monotonicity. Suppose x1 ≥ y1 and x2 ≥ y2 in Xop
; we need to

show that x1 ⊗ x2 ≥ y1 ⊗ y2. But by definition of opposite order, we have y1 ≤ x1 and

y2 ≤ x2 in X, and thus y1 ⊗ y2 ≤ x1 ⊗ x2 in X. Thus indeed x1 ⊗ x2 ≥ y1 ⊗ y2 in Xop
.

The other three conditions are even easier; see Exercise 2.39. �

Exercise 2.39. Complete the proof of Proposition 2.38 by proving that the three

remaining conditions of Definition 2.2 are satisfied. ♦

Exercise 2.40. Since Cost is a symmetric monoidal preorder, Proposition 2.38 says that

Costop is too.

1. What is Costop as a preorder?

2. What is its monoidal unit?

3. What is its monoidal product? ♦

2.2.5 Monoidal monotone maps

Recall from Example 1.49 that for any preorder (X, ≤), there is an induced equivalence

relation � on X, where x � x′ iff both x ≤ x′ and x′ ≤ x.

Definition 2.41. LetP � (P, ≤P , IP , ⊗P) andQ � (Q , ≤Q , IQ , ⊗Q) bemonoidal preorders.

A monoidal monotone from P to Q is a monotone map f : (P, ≤P) → (Q , ≤Q), satisfying
two conditions:

(a) IQ ≤Q f (IP), and
(b) f (p1) ⊗Q f (p2) ≤Q f (p1 ⊗P p2)

for all p1 , p2 ∈ P.
There are strengthenings of these conditions that are also important. If f satisfies

the following conditions, it is called a strong monoidal monotone:
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(a’) IQ � f (IP), and
(b’) f (p1) ⊗Q f (p2) � f (p1 ⊗P p2);

and if it satisfies the following conditions it is called a strict monoidal monotone:
(a”) IQ � f (IP), and
(b”) f (p1) ⊗Q f (p2) � f (p1 ⊗P p2).

Monoidal monotones are examples of monoidal functors, which we will see various

incarnations of throughout the book; see Definition 6.68. What we call monoidal

monotones could also be called lax monoidal monotones, and there is a dual notion of

oplax monoidal monotones, where the inequalities in (a) and (b) are reversed; we will not

use oplaxity in this book.

Example 2.42. There is a monoidal monotone i : (N, ≤, 0,+) → (R, ≤, 0,+), where i(n) �
n for all n ∈ N. It is clearly monotonic, m ≤ n implies i(m) ≤ i(n). It is even strict

monoidal because i(0) � 0 and i(m + n) � i(m) + i(n).
There is also a monoidal monotone f : (R, ≤, 0,+) → (N, ≤, 0,+) going the other

way. Here f (x) B bxc is the floor function, e.g. f (3.14) � 3. It is monotonic because

x ≤ y implies f (x) ≤ f (y). Also f (0) � 0 and f (x)+ f (y) ≤ f (x+ y), so it is a monoidal

monotone. But it is not strict or even strong because f (0.5) + f (0.5) , f (0.5 + 0.5).

Recall Bool � (B, ≤, true,∧) from Example 2.27 and Cost � ([0,∞], ≥, 0,+) from
Example 2.37. There is a monoidal monotone 1 : Bool→ Cost, given by 1(false) B ∞
and 1(true) B 0.

Exercise 2.43.
1. Check that the map 1 : (B, ≤, true,∧) → ([0,∞], ≥, 0,+) presented above indeed

• is monotonic,

• satisfies condition (a) of Definition 2.41, and

• satisfies condition (b) of Definition 2.41.

2. Is 1 strict? ♦

Exercise 2.44. Let Bool and Cost be as above, and consider the following quasi-inverse

functions d , u : [0,∞] → B defined as follows:

d(x) B
{
false if x > 0

true if x � 0

u(x) B
{
false if x � ∞
true if x < ∞

1. Is d monotonic?

2. Does d satisfy conditions (a) and (b) of Definition 2.41?

3. Is d strict?

4. Is u monotonic?

5. Does u satisfy conditions (a) and (b) of Definition 2.41?

6. Is u strict? ♦

Exercise 2.45.
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1. Is (N, ≤, 1, ∗) a monoidal preorder, where ∗ is the usual multiplication of natural

numbers?

2. If not, why not? If so, does there exist a monoidal monotone (N, ≤, 0,+) → (N, ≤
, 1, ∗)? If not; why not? If so, find it.

3. Is (Z, ≤, ∗, 1) a monoidal preorder? ♦

2.3 Enrichment

In this section we will introduce V-categories, where V is a symmetric monoidal pre-

order. We will see that Bool-categories are preorders, and that Cost-categories are a

nice generalization of the notion of metric space.

2.3.1 V-categories

While V-categories can be defined even when V is not symmetric, i.e. just obeys con-

ditions (a)–(c) of Definition 2.2, certain things don’t work quite right. For example,

we will see later in Exercise 2.75 that the symmetry condition is necessary in order for

products of V-categories to exist. Anyway, here’s the definition.

Definition 2.46. Let V � (V, ≤, I , ⊗) be a symmetric monoidal preorder. A V-category
X consists of two constituents, satisfying two properties. To specify X,

(i) one specifies a set Ob(X), elements of which are called objects;
(ii) for every two objects x , y, one specifies an element X(x , y) ∈ V , called the hom-

object.2

The above constituents are required to satisfy two properties:

(a) for every object x ∈ Ob(X)we have I ≤ X(x , x), and
(b) for every three objects x , y , z ∈ Ob(X), we have X(x , y) ⊗ X(y , z) ≤ X(x , z).

We call V the base of the enrichment for X or say that X is enriched in V.

Example 2.47. As we shall see in the next subsection, from every preorder we can

construct a Bool-category, and vice versa. So, to get a feel for V-categories, let us

2
Theword “hom” is short for homomorphism and reflects the origins of this subject. Amore descriptive

name forX(x , y)might bemapping object, but we use “hom”mainly because it is an important jargonword

to know in the field.
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consider the preorder generated by the Hasse diagram:

t

s

q r

p

(2.48)

How does this correspond to a Bool-category X? Well, the objects of X are simply

the elements of the preorder, i.e. Ob(X) � {p , q , r, s , t}. Next, for every pair of objects

(x , y) we need an element of B � {false, true}: simply take true if x ≤ y, and false
if otherwise. So for example, since s ≤ t and t � s, we have X(s , t) � true and

X(t , s) � false. Recalling from Example 2.27 that the monoidal unit I of Bool is true,
it’s straightforward to check that this obeys both (a) and (b), sowe have aBool-category.

In general, it’s sometimes convenient to represent a V-category X with a square

matrix. The rows and columns of the matrix correspond to the objects of X, and the

(x , y)th entry is simply the hom-object X(x , y). So, for example, the above preorder in

Eq. (2.48) can be represented by the matrix

·≤· p q r s t
p true true true true true

q false true false true true

r false false true true true

s false false false true true

t false false false false true

2.3.2 Preorders as Bool-categories

Our colleague Peter Gates has called category theory “a primordial ooze,” because so

much of it can be defined in terms of other parts of it. There is nowhere to rightly call

the beginning, because that beginning can be defined in terms of something else. So

be it; this is part of the fun.

Theorem 2.49. There is a one-to-one correspondence between preorders and Bool-
categories.

Here we find ourselves in the ooze, because we are saying that preorders are the

same as Bool-categories, whereas Bool is itself a preorder. “So then Bool is like...

enriched in itself?” Yes, every preorder, including Bool, is enriched in Bool, as we will

now see.
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Proof of Theorem 2.49. Let’s check that we can construct a preorder from any Bool-
category. Since B � {false, true}, Definition 2.46 says a Bool-category consists of two

things:

(i) a set Ob(X), and
(ii) for every x , y ∈ Ob(X) an element X(x , y) ∈ B, i.e. either X(x , y) � true or

X(x , y) � false.
We will use these two things to begin forming a preorder whose elements are the

objects of X. So let’s call the preorder (X, ≤), and let X B Ob(X). For the ≤ relation,

let’s declare x ≤ y iff X(x , y) � true. We have the makings of a preorder, but for it to

work, the ≤ relation must be reflexive and transitive. Let’s see if we get these from the

properties guaranteed by Definition 2.46:

(a) for every element x ∈ X we have true ≤ X(x , x),
(b) for every three elements x , y , z ∈ X we have X(x , y) ∧ X(y , z) ≤ X(x , z).

For b ∈ Bool, if true ≤ b then b � true, so the first statement says X(x , x) � true,
which means x ≤ x. For the second statement, one can consult Eq. (2.28). Since

false ≤ b for all b ∈ B, the only way statement (b) has any force is if X(x , y) � true
and X(y , z) � true, in which case it forces X(x , z) � true. This condition exactly

translates as saying that x ≤ y and y ≤ z implies x ≤ z. Thus we have obtained

reflexivity and transitivity from the two axioms of Bool-categories.
In Example 2.47, we constructed a Bool-category from a preorder. We leave it to the

reader to generalize this example and show that the two constructions are inverses; see

Exercise 2.50. �

Exercise 2.50.
1. Start with a preorder (P, ≤), and use it to define a Bool-category as we did in

Example 2.47. In the proof of Theorem 2.49 we showed how to turn that Bool-
category back into a preorder. Show that doing so, you get the preorder you

started with.

2. Similarly, show that if you turn a Bool-category into a preorder using the above

proof, and then turn the preorder back into a Bool-category using your method,

you get the Bool-category you started with. ♦

We now discuss a beautiful application of the notion of enriched categories: metric

spaces.

2.3.3 Lawvere metric spaces

Metric spaces offer a precise way to describe spaces of points, each pair of which is

separated by some distance. Here is the usual definition:

Definition 2.51. A metric space (X, d) consists of:
(i) a set X, elements of which are called points, and
(ii) a function d : X × X → R≥0, where d(x , y) is called the distance between x and y.
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These constituents must satisfy four properties:

(a) for every x ∈ X, we have d(x , x) � 0,

(b) for every x , y ∈ X, if d(x , y) � 0 then x � y,
(c) for every x , y ∈ X, we have d(x , y) � d(y , x), and
(d) for every x , y , z ∈ X, we have d(x , y) + d(y , z) ≥ d(x , z).

The fourth property is called the triangle inequality.
If we ask instead in (ii) for a function d : X ×X → [0,∞] � R≥0 ∪ {∞}, we call (X, d)

an extended metric space.

The triangle inequality says that when plotting a route from x to z, the distance is

always atmostwhat youget by choosing an intermediate point y andgoing x → y → z.

• •

•

x y

z

3

5

7.2

It can be invoked three different ways in the above picture: 3 + 5 ≥ 7.2, but also

5 + 7.2 ≥ 3 and 3 + 7.2 ≥ 5. Oh yeah, and 5 + 3 ≥ 7.2, 7.2 + 5 ≥ 3 and 7.2 + 3 ≥ 5.

The triangle inequality wonderfully captures something about distance, as does the

fact that d(x , x) � 0 for any x. However, the other two conditions are not quite as

general as we would like. Indeed, there are many examples of things that “should” be

metric spaces, but which do not satisfy conditions (b) or (c) of Definition 2.51.

For example, what if we take X to be places in your neighborhood, but instead of

measuring distance, you want d(x , y) to measure effort to get from x to y. Then if there

are any hills, the symmetry axiom, d(x , y) �? d(y , x), fails: it’s easier to get from x
downhill to y then to go from y uphill to x.

Another way to find a model that breaks the symmetry axiom is to imagine that

the elements of X are not points, but whole regions such as the US, Spain, and Boston.

Say that the distance from region A to region B is understood using the setup “I will

put you in an arbitrary part of A and you just have to get anywhere in B; what is the

distance in the worst-case scenario?” So d(US, Spain) is the distance from somewhere

in the western US to the western tip of Spain: you just have to get into Spain, but you

start in the worst possible part of the US for doing so.

Exercise 2.52. Which distance is bigger under the above description, d(Spain,US) or
d(US, Spain)? ♦

This notion of distance, which is strongly related to something called Hausdorff dis-
tance,3 will again satisfy the triangle inequality, but it violates the symmetry condition.

It also violates another condition, because d(Boston,US) � 0. No matter where you

3
The Hausdorff distance gives a metric on the set of all subsets U ⊆ X of a given metric space (X, d).
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are in Boston, the distance to the nearest point of the US is 0. On the other hand,

d(US, Boston) , 0.

Finally, one can imagine a use for distances that are not finite. In terms of my

effort, the distance from here to Pluto is∞, and it would not be any better if Pluto was

still a planet. Similarly, in terms of Hausdorff distance, discussed above, the distance

between two regions is often infinite, e.g. the distance between {r ∈ R | r < 0} and {0}
as subsets of (R, d) is infinite.

When we drop conditions (b) and (c) and allow for infinite distances, we get the fol-

lowing relaxed notion ofmetric space, first proposed by Lawvere. Recall the symmetric

monoidal preorder Cost � ([0,∞], ≥, 0,+) from Example 2.37.

Definition 2.53. A Lawvere metric space is a Cost-category.

This is a very compact definition, but it packs a punch. Let’swork outwhat itmeans,

by relating it to the usual definition of metric space. By Definition 2.46, a Cost-category
X consists of:

(i) a set Ob(X),
(ii) for every x , y ∈ Ob(X) an element X(x , y) ∈ [0,∞].

Here the set Ob(X) is playing the role of the set of points, andX(x , y) ∈ [0,∞] is playing
the role of distance, so let’s write a little translator:

X B Ob(X) d(x , y) B X(x , y).

The properties of a category enriched in Cost are:
(a) 0 ≥ d(x , x) for all x ∈ X, and

(b) d(x , y) + d(y , z) ≥ d(x , z) for all x , y , z ∈ X.

Since d(x , x) ∈ [0,∞], if 0 ≥ d(x , x) then d(x , x) � 0. So the first condition is equivalent

to the first condition from Definition 2.51, namely d(x , x) � 0. The second condition is

the triangle inequality.

Example 2.54. The set R of real numbers can be given a metric space structure, and

hence a Lawvere metric space structure. Namely d(x , y) B |y − x |, the absolute value
of the difference. So d(3, 7) � 4.

Exercise 2.55. Consider the symmetric monoidal preorder (R≥0 , ≥, 0,+), which is

almost the same as Cost, except it does not include ∞. How would you characterize

the difference between a Lawveremetric space and a (R≥0 , ≥, 0,+)-category in the sense

of Definition 2.46? ♦

One first defines

dL(U,V) B sup

u∈U
inf

v∈V
d(u , v),

and this is exactly the formula we intend above; the result will be a Lawvere metric space. However, if one

wants theHausdorff distance to define a (symmetric) metric, as in Definition 2.51, onemust take the above

formula and symmetrize it: d(U,V) B max(dL(U,V), dL(V,U)). We happen to see the unsymmetrized

notion as more interesting.
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Presenting metric spaces with weighted graphs Just as one can convert a Hasse

diagram into a preorder, one can convert any weighted graph—a graph whose edges

are labeled with numbers w ≥ 0—into a Lawvere metric space. In fact, we shall

consider these as graphs labelled with elements of [0,∞], and more precisely call them

Cost-weighted graphs.4

One might think of a Cost-weighted graph as describing a city with some one-way

roads (a two-way road is modeled as two one-way roads), each having some effort-to-

traverse, which for simplicity we just call length. For example, consider the following

weighted graphs:

A• B•

•
C

•
D

3

3

6

2

5X B

x•

•
y

z•3 4

3

4

�: Y (2.56)

Given a weighted graph, one forms a metric dX on its set X of vertices by setting d(p , q)
to be the length of the shortest path from p to q. For example, here is the the table of

distances for Y

d(↗) x y z
x 0 4 3

y 3 0 6

z 7 4 0

(2.57)

Exercise 2.58. Fill out the following table of distances in the weighted graph X from

Eq. (2.56)

d(↗) A B C D
A 0 ? ? ?

B 2 ? 5 ?

C ? ? ? ?

D ? ? ? ?

♦

Above we converted a weighted graph G, e.g. as shown in Eq. (2.56), into a table

of distances, but this takes a bit of thinking. There is a more direct construction for

taking G and getting a square matrix MG, whose rows and columns are indexed by the

vertices of G. To do so, set MG to be 0 along the diagonal, to be∞wherever an edge is

missing, and to be the edge weight if there is an edge.

4
This generalizes Hasse diagrams, which we could call Bool-weighted graphs—the edges of a Hasse

diagram are thought of as weighted with true; we simply ignore any edges that are weighted with false,
and neglect to even draw them!
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For example, the matrix associated to Y in Eq. (2.56) would be

MY B

↗ x y z
x 0 4 3

y 3 0 ∞
z ∞ 4 0

(2.59)

As soon as you see how we did this, you’ll understand that it takes no thinking to turn

a weighted graph G into a matrix MG in this way. We will see later in Section 2.5.3

that the more difficult “distance matrices” dY , such as Eq. (2.57), can be obtained from

the easy graph matrices MY , such as Eq. (2.59), by repeating a certain sort of “matrix

multiplication.”

Exercise 2.60. Fill out the matrix MX associated to the graph X in Eq. (2.56):

MX �

↗ A B C D
A 0 ? ? ?

B 2 0 ∞ ?

C ? ? ? ?

D ? ? ? ?

♦

2.3.4 V-variations on preorders and metric spaces

We have told the story of Bool and Cost. But in Section 2.2.4 we gave examples of

many other monoidal preorders, and each one serves as the base of enrichment for a

kind of enriched category. Which of them are useful? Something only becomes useful

when someone finds a use for it. We will find uses for some and not others, though we

encourage readers to think aboutwhat it wouldmean to enrich in the variousmonoidal

categories discussed above; maybe they can find a use we have not explored.

Exercise 2.61. Recall the monoidal preorder NMY B (P, ≤, yes,min) from Exer-

cise 2.34. Interpret what a NMY-category is. ♦

In the next two exercises, we use V-weighted graphs to construct V-categories. This

is possible because we will use preorders that, like Bool and Cost, have joins.

Exercise 2.62. Let M be a set and let M B (P(M), ⊆,M,∩) be the monoidal preorder

whose elements are subsets of M.

Someone gives the following interpretation, “for any set M, imagine it as the set of

modes of transportation (e.g. car, boat, foot). Then an M-category X tells you all the

modes that will get you from a all the way to b, for any two points a , b ∈ Ob(X).”
1. Draw a graphwith four vertices and four or five edges, each labeledwith a subset

of M � {car, boat, foot}.
2. From this graph is it possible to construct an M-category, where the hom-object

from x to y is computed as follows: for each path p from x to y, take the

intersection of the sets labelling the edges in p. Then, take the union of the these
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sets over all paths p from x to y. Write out the corresponding four-by-four matrix

of hom-objects, and convince yourself that this is indeed anM-category.

3. Does the person’s interpretation look right, or is it subtly mistaken somehow? ♦

Exercise 2.63. Consider the monoidal preorderW B (N ∪ {∞}, ≤,∞,min).
1. Draw a small graph labeled by elements of N ∪ {∞}.
2. Write out the matrix whose rows and columns are indexed by the nodes in the

graph, and whose (x , y)th entry is given by the maximum over all paths p from x
to y of the minimum edge label in p.

3. Prove that this matrix is the matrix of hom-objects for a W-category. This will

give you a feel for howWworks.

4. Make up an interpretation, like that in Exercise 2.62, for how to imagine enrich-

ment in W. ♦

2.4 Constructions on V-categories

Now that we have a good intuition for what V-categories are, we give three examples

of what can be done with V-categories. The first (Section 2.4.1) is known as change of

base. This allows us to use a monoidal monotone f : V→W to constructW-categories

from V-categories. The second construction (Section 2.4.2), that of V-functors, allows

us to complete the analogy: a preorder is to a Bool-category as a monotone map is to

what? The third construction (Section 2.4.2) is known as a V-product, and gives us a

way of combining two V-categories.

2.4.1 Changing the base of enrichment

Any monoidal monotone V → W between symmetric monoidal preorders lets us

convert V-categories intoW-categories.

Construction 2.64. Let f : V→W be amonoidal monotone. Given a V-category C, one

forms the associatedW-category, say C f as follows.

(i) We take the same objects: Ob(C f ) B Ob(C).
(ii) For any c , d ∈ Ob(C), put C f (c , d) B f (C(c , d)).

This construction C f does indeed obey the definition of aW-category, as can be seen

by applyingDefinition 2.41 (ofmonoidalmonotone) andDefinition 2.46 (ofV-category):

(a) for every c ∈ C, we have

IW ≤ f (IV ) ( f is monoidal monotone)

≤ f (C(c , c)) (C is V-category)

� C f (c , c) (definition of C f )
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(b) for every c , d , e ∈ Ob(C)we have

C f (c , d) ⊗W C f (d , e) � f (C(c , d)) ⊗W f (C(d , e)) (definition of C f )

≤ f
(
C(c , d) ⊗V C(d , e)

)
( f is monoidal monotone)

≤ f (C(c , e)) (C is V-category)

� C f (c , e) (definition of C f )

Example 2.65. As an example, consider the function f : [0,∞] → {true, false} given
by

f (x) B
{
true if x � 0

false if x > 0

(2.66)

It is easy to check that f is monotonic and that f preserves the monoidal product

and monoidal unit; that is, it’s easy to show that f is a monoidal monotone. (Recall

Exercise 2.44.)

Thus f lets us convert Lawvere metric spaces into preorders.

Exercise 2.67. Recall the “regions of theworld”Lawveremetric space fromExercise 2.52

and the text above it. We just learned that, using themonoidalmonotone f in Eq. (2.66),

we can convert it to a preorder. Draw theHasse diagram for the preorder corresponding

to the regions: US, Spain, and Boston. How could you interpret this preorder relation?

♦

Exercise 2.68.
1. Find anothermonoidal monotone 1 : Cost→ Bool different from the one defined

in Eq. (2.66).

2. Using Construction 2.64, both your monoidal monotone 1 and the monoidal

monotone f in Eq. (2.66) can be used to convert a Lawvere metric space into a

preorder. Find a Lawvere metric space X on which they give different answers,

X f , X1 . ♦

2.4.2 Enriched functors

The notion of functor provides the most important type of relationship between cate-

gories.

Definition 2.69. LetX andYbeV-categories. AV-functor fromX toY, denoted F : X→ Y,

consists of one constituent:

(i) a function F : Ob(X) → Ob(Y)
subject to one constraint

(a) for all x1 , x2 ∈ Ob(X), one has X(x1 , x2) ≤ Y(F(x1), F(x2)).
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Example 2.70. For example, we have said several times—e.g. in Theorem 2.49—that pre-

orders areBool-categories, whereX(x1 , x2) � true is denoted x1 ≤ x2. Onewouldhope

that monotone maps between preorders would correspond exactly to Bool-functors,
and that’s true. A monotone map (X, ≤X) → (Y, ≤Y) is a function F : X → Y such that

for every x1 , x2 ∈ X, if x1 ≤X x2 then F(x1) ≤Y F(x2). In other words, we have

X(x1 , x2) ≤ Y(F(x1), F(x2)),

where the above ≤ takes place in the enriching category V � Bool; this is exactly the

condition from Definition 2.69.

Remark 2.71. In fact, we have what is called an equivalence of categories between the

category of preorders and the category of Bool-categories. In the next chapter we will

develop the ideas necessary to state what this means precisely (Remark 3.59).

Example 2.72. Lawveremetric spaces areCost-categories. ThedefinitionofCost-functor
should hopefully return a nice notion—a “friend”—from the theory of metric spaces,

and it does: it recovers the notion of Lipschitz function. A Lipschitz (or more precisely,

1-Lipschitz) function is one under which the distance between any pair of points

does not increase. That is, given Lawvere metric spaces (X, dX) and (Y, dY), a Cost-
functor between them is a function F : X → Y such that for every x1 , x2 ∈ X we have

dX(x1 , x2) ≥ dY(F(x1), F(x2)).

Exercise 2.73. The concepts of opposite, dagger, and skeleton (see Examples 1.58

and 1.72 and Remark 1.35) extend from preorders to V-categories. The opposite of a
V-category X is denoted Xop

and is defined by

(i) Ob(Xop) B Ob(X), and
(ii) for all x , y ∈ X, we have Xop(x , y) B X(y , x).

AV-categoryX is a daggerV-category if the identity function is aV-functor † : X→ Xop
.

And a skeletal V-category is one in which if I ≤ X(x , y) and I ≤ X(y , x), then x � y.
Recall that an extendedmetric space (X, d) is a Lawvere metric space with two extra

properties; see properties (b) and (c) in Definition 2.51.

1. Show that a skeletal dagger Cost-category is an extended metric space.

2. Use Exercise 1.73 to make sense of the following analogy: “preorders are to sets

as Lawvere metric spaces are to extended metric spaces.” ♦

2.4.3 Product V-categories

If V � (V, ≤, I , ⊗) is a symmetric monoidal preorder and X and Y are V-categories, then

we can define their V-product, which is a new V-category.
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Definition 2.74. Let X and Y be V-categories. Define their V-product, or simply product,
to be the V-category X × Y with

(i) Ob(X × Y) B Ob(X) ×Ob(Y),
(ii) (X × Y)

(
(x , y), (x′, y′)

)
B X(x , x′) ⊗ Y(y , y′),

for two objects (x , y) and (x′, y′) in Ob(X × Y).

Product V-categories are indeed V-categories (Definition 2.46); see Exercise 2.75.

Exercise 2.75. Let X × Y be the V-product of V-categories as in Definition 2.74.

1. Check that for every object (x , y) ∈ Ob(X × Y)we have I ≤ (X × Y)
(
(x , y), (x , y)

)
.

2. Check that for every three objects (x1 , y1), (x2 , y2), and (x3 , y3), we have

(X × Y)
(
(x1 , y1), (x2 , y2)

)
⊗ (X × Y)

(
(x2 , y2), (x3 , y3)

)
≤ (X × Y)

(
(x1 , y1), (x3 , y3)

)
.

3. We said at the start of Section 2.3.1 that the symmetry of V (condition (d) of

Definition 2.2) would be required here. Point out exactly where that condition is

used. ♦

When taking the product of two preorders (P, ≤P) × (Q , ≤Q), as first described in

Example 1.56, we say that (p1 , q1) ≤ (p2 , q2) iff both p1 ≤ p2 AND q1 ≤ q2; the AND is

the monoidal product ⊗ from of Bool. Thus the product of preorders is an example of

a Bool-product.

Example 2.76. Let X and Y be the Lawvere metric spaces (i.e. Cost-categories) defined
by the following weighted graphs:

•
A

•
B

•
C2 3

X B

•
q

•
p

5 8 �: Y

(2.77)

Their product is defined by taking the product of their sets of objects, so there are six

objects in X×Y. And the distance dX×Y((x , y), (x′, y′)) between any two points is given

by the sum dX(x , x′) + dY(y , y′).
Examine the following graph, and make sure you understand how easy it is to
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derive from the weighted graphs for X and Y in Eq. (2.77):

•
(A, p)

•
(B, p)

•
(C, p)

•
(A, q)

•
(B, q)

•
(C, q)

2 3

2 3

5 8 5 8 5 8X × Y �

Exercise 2.78. Consider R as a Lawvere metric space, i.e. as a Cost-category (see

Example 2.54). Form the Cost-product R × R. What is the distance from (5, 6) to
(−1, 4)? Hint: apply Definition 2.74; the answer is not

√
40. ♦

In terms of matrices, V-products are also quite straightforward. They generalize

what is known as the Kronecker product of matrices. The matrices for X and Y in

Eq. (2.77) are shown below

X A B C
A 0 2 5

B ∞ 0 3

C ∞ ∞ 0

Y p q
p 0 5

q 8 0

and their product is as follows:

X × Y (A, p) (B, p) (C, p) (A, q) (B, q) (C, q)
(A, p) 0 2 5 5 7 10

(B, p) ∞ 0 3 ∞ 5 8

(C, p) ∞ ∞ 0 ∞ ∞ 5

(A, q) 8 10 13 0 2 5

(B, q) ∞ 8 11 ∞ 0 3

(C, q) ∞ ∞ 8 ∞ ∞ 0

Wehave drawn the product matrix as a blockmatrix, where there is one block—shaped

like X—for every entry of Y. Make sure you can see each block as the X-matrix shifted

by an entry in Y. This comes directly from the formula from Definition 2.74 and the

fact that the monoidal product in Cost is +.

2.5 Computing presented V-categories with matrix
multiplication

In Section 2.3.3 we promised a straightforward way to construct the matrix representa-

tion of a Cost-category from a Cost-weighted graph. To do this, we use a generalized

matrix multiplication. We shall show that this works, not just for Cost, but also for

Bool, and many other monoidal preorders. The property required of the preorder is
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that of being a unital, commutative quantale. These are preorders with all joins, plus

one additional ingredient, beingmonoidal closed, which we define next, in Section 2.5.1.

The definition of a quantale will be given in Section 2.5.2.

2.5.1 Monoidal closed preorders

The definition of V-category makes sense for any symmetric monoidal preorder V. But

that does not mean that any base of enrichment V is as useful as any other. In this

section we define closed monoidal categories, which in particular enrich themselves!

“Before you can really enrich others, you should really enrich yourself.”

Definition 2.79. A symmetric monoidal preorder V � (V, ≤, I , ⊗) is called symmetric
monoidal closed (or just closed) if, for every two elements v , w ∈ V , there is an element

v ( w in V, called the hom-element, with the property

(a ⊗ v) ≤ w iff a ≤ (v ( w). (2.80)

for all a , v ,w ∈ V .

Remark 2.81. The term ‘closed’ refers to the fact that a hom-element can be constructed

for any two elements, so the preorder can be seen as closed under the operation of

“taking homs.” In later chapters we’ll meet the closely-related concepts of compact

closed categories (Definition 4.58) and cartesian closed categories (Section 7.2.1) that

make this idea more precise. See especially Exercise 7.11.

One can consider the hom-element v ( w as a kind of “single-use v-to-w converter.”

So Eq. (2.80) says that a and v are enough to get w if and only if a is enough to get a

single-use v-to-w converter.

Exercise 2.82. Condition Eq. (2.80) says precisely that there is aGalois connection in the

sense of Definition 1.95. Let’s prove this fact. In particular, we’ll prove that a monoidal

preorder is monoidal closed iff, given any v ∈ V , the map (− ⊗ v) : V → V given by

multiplying with v has a right adjoint. We write this right adjoint (v ( −) : V → V .

1. Using Definition 2.2, show that (− ⊗ v) is monotone.

2. Supposing that V is closed, show that for all v ,w ∈ V we have

(
(v ( w)⊗ v

)
≤ w.

3. Using 2., show that (v ( −) is monotone.

4. Conclude that a symmetric monoidal preorder is closed if and only if the mono-

tone map (− ⊗ v) has a right adjoint. ♦

Example 2.83. The monoidal preorder Cost � ([0,∞], ≥, 0,+) is monoidal closed. In-

deed, for any x , y ∈ [0,∞], define x ( y B max(0, y−x). Then, for any a , x , y ∈ [0,∞],
we have

a + x ≥ y iff a ≥ y − x iff max(0, a) ≥ max(0, y − x) iff a ≥ (x ( y)
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so( satisfies the condition of Eq. (2.80).

Note that we have not considered subtraction in Cost before; we can in fact use

monoidal closure to define subtraction in terms of the order and monoidal structure!

Exercise 2.84. Show that Bool � (B, ≤, true,∧) is monoidal closed. ♦

Example 2.85. Anon-example is (B, ≤, false,∨). Indeed, supposewe had a( operator

as in Definition 2.79. Note that false ≤ p ( q, for any p , q no matter what ( is,

because false is less than everything. But using a � false, p � true, and q � false,

we then get a contradiction: (a ∨ p) � q and yet a ≤ (p ( q).

Example 2.86. We started this chapter talking about resource theories. What does the

closed structure look like from that perspective? For example, in chemistry it would

say that for every twomaterial collections c , d one can form amaterial collection c ( d
with the property that for any a, one has

a + c → d if and only if a → (c ( d).

Or more down to earth, since we have the reaction 2H2O + 2Na→ 2NaOH + H2, we

must also have

2H2O→ (2Na ( (2NaOH + H2))

So from just two molecules of water, you can form a certain substance, and not many

substances fit the bill—our preorder Mat of chemical materials is not closed.

But it is not so far-fetched: this hypothetical new substance (2Na ( (2NaOH + H2))
is not really a substance, but a potential reaction: namely that of converting a sodium

to sodium-hydroxide-plus-hydrogen. Two molecules of water unlock that potential.

Proposition 2.87. Suppose V � (V, ≤, I , ⊗,() is a symmetric monoidal preorder that

is closed. Then

(a) For every v ∈ V , the monotone map − ⊗ v : (V, ≤) → (V, ≤) is left adjoint to

v ( − : (V, ≤) → (V, ≤).
(b) For any element v ∈ V and set of elements A ⊆ V , if the join

∨
a∈A a exists then

so does

∨
a∈A v ⊗ a and we have(

v ⊗
∨
a∈A

a

)
�

∨
a∈A

(v ⊗ a). (2.88)

(c) For any v , w ∈ V , we have v ⊗ (v ( w) ≤ w.

(d) For any v ∈ V , we have v � (I ( v).
(e) For any u , v , w ∈ V , we have (u ( v) ⊗ (v ( w) ≤ (u ( w).



2.5. COMPUTING PRESENTED V-CATEGORIES WITH MATRIX MULT. 71

Proof. We go through the claims in order.

(a) The definition of (− ⊗ v) being left adjoint to (v ( −) is exactly the condition

Eq. (2.80); see Definition 1.95 and Exercise 2.82.

(b) This follows from (a), using the fact that left adjoints preserve joins (Proposi-

tion 1.111).

(c) This follows from (a), using the equivalent characterisation of Galois connection

in Proposition 1.107. More concretely, from reflexivity (v ( w) ≤ (v ( w), we

obtain (v ( w) ⊗ v ≤ w Eq. (2.80), and we are done by symmetry, which says

v ⊗ (v ( w) � (v ( w) ⊗ v.
(d) Since v ⊗ I � v ≤ v, Eq. (2.80) says v ≤ (I ( v). For the other direction, we have

(I ( v) � I ⊗ (I ( v) ≤ v by (c).

(e) To obtain this inequality, we just need u ⊗ (u ( v) ⊗ (v ( w) ≤ w. But this

follows by two applications of (c). �

One might read (c) as saying “if I have a v and a single-use v-to-w converter, I can

have a w.” One might read (d) as saying “having a v is the same as having a single-use

nothing-to-v converter.” And onemight read (e) as saying “if I have a single-use u-to-v
converter and a single-use v-to-w converter, I can get a single-use u-to-w converter.

Remark 2.89. We can consider V to be enriched in itself. That is, for every v , w ∈ Ob(V),
we can define V(v , w) B (v ( w) ∈ V. For this to really be an enrichment, we just need

to check the two conditions of Definition 2.46. The first condition I ≤ X(x , x) � (x ( x)
is satisfied because I ⊗ x ≤ x. The second condition is satisfied by Proposition 2.87(e).

2.5.2 Quantales

To perform matrix multiplication over a monoidal preorder, we need one more thing:

joins. These were first defined in Definition 1.81.

Definition 2.90. A unital commutative quantale is a symmetricmonoidal closed preorder

V � (V, ≤, I , ⊗,() that has all joins: ∨ A exists for every A ⊆ V . In particular, we often

denote the empty join by 0 B
∨�.

Whenever we speak of quantales in this book, we mean unital commutative quan-

tales. We will try to remind the reader of that. There are also very interesting applica-

tions of noncommutative quantales; see Section 2.6.

Example 2.91. In Example 2.83, we saw that Cost is monoidal closed. To check whether

Cost is a quantale, we take an arbitrary set of elements A ⊆ [0,∞] and ask if it has a

join

∨
A. To be a join, it needs to satisfy two properties:

a. a ≥ ∨
A for all a ∈ A, and

b. if b ∈ [0,∞] is any element such that a ≥ b for all a ∈ A, then

∨
A ≥ b.

In fact we can define such a join: it is typically called the infimum, or greatest lower
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bound, of A.
5
For example, if A � {2, 3} then ∨

A � 2. We have joins for infinite sets

too: if B � {2.5, 2.05, 2.005, . . .}, its infimum is 2. Finally, in order to say that ([0,∞], ≥)
has all joins, we need a join to exist for the empty set A � � too. The first condition

becomes vacuous—there are no a’s in A—but the second condition says that for any

b ∈ [0,∞]we have

∨� ≥ b; this means

∨� � ∞.

Thus indeed ([0,∞], ≥) has all joins, so Cost is a quantale.

Exercise 2.92.
1. What is

∨�, which we generally denote 0, in the case

a. V � Bool � (B, ≤, true,∧)?
b. V � Cost � ([0,∞], ≥, 0,+)?

2. What is the join x ∨ y in the case

a. V � Bool, and x , y ∈ B are booleans?

b. V � Cost, and x , y ∈ [0,∞] are distances? ♦

Exercise 2.93. Show that Bool � (B, ≤, true,∧) is a quantale. ♦

Exercise 2.94. Let S be a set and recall the power set monoidal preorder (P(S), ⊆, S,∩)
from Exercise 2.35. Is it a quantale? ♦

Remark 2.95. One can personify the notion of unital, commutative quantale as a kind

of navigator. A navigator is someone who understands “getting from one place to an-

other.” Different navigators may care about or understand different aspects—whether

one can get from A to B, how much time it will take, what modes of travel will work,

etc.—but they certainly have some commonalities. Most importantly, a navigator needs

to be able to read a map: given routes A to B and B to C, they understand how to get

a route A to C. And they know how to search over the space of way-points to get

from A to C. These will correspond to the monoidal product and the join operations,

respectively.

Proposition 2.96. Let P � (P, ≤) be a preorder. It has all joins iff it has all meets.

Proof. The joins (resp. meets) in P are the meets (resp. joins) in Pop
, so the two claims

are dual: it suffices to show that if P has all joins then it has all meets.

Suppose P has all joins and suppose that A ⊆ P is a subset for which we want

the meet. Consider the set MA B {p ∈ P | p ≤ a for all a ∈ A} of elements below

everything in A. Let mA B
∨

p∈MA
p be their join. We claim that mA is a meet for A.

We first need to know that for any a ∈ A we have mA ≤ a, but this is by definition of

join: since all p ∈ MA satisfy p ≤ a, so does their join mA ≤ a. We second need to know

that for any m′ ∈ P with m′ ≤ a for all a ∈ A, we have m′ ≤ m. But every such m′ is
actually an element of MA and m is their join, so m′ ≤ m. This completes the proof. �

5
Here, by the infimum of a subset A ⊆ [0,∞], we mean infimum in the usual order on [0,∞]: the

largest number that is ≤ everything in A. For example, the infimum of {3.1, 3.01, 3.001, . . .} is 3. But note

that this is the supremum in the reversed, ≥, order of Cost.
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In particular, a quantale has all meets and all joins, even though we only define it to

have all joins.

Remark 2.97. The notion of Hausdorff distance can be generalized, allowing the role of

Cost to be taken by any quantale V. If X is a V-category with objects X, and U ⊆ X
and V ⊆ X, we can generalize the usual Hausdorff distance, on the left below, to the

formula on the right:

d(U,V) B sup

u∈U
inf

v∈V
d(u , v) X(U,V) B

∧
u∈U

∨
v∈V

X(u , v).

For example, if V � Bool, the Hausdorff distance between sub-preorders U and V
answers the question “can I get into V from every u ∈ U,” i.e. ∀u∈U .∃v∈V . u ≤ v. Or

for another example, use V � P(M) with its interpretation as modes of transportation,

as in Exercise 2.62. Then the Hausdorff distance d(U,V) ∈ P(M) tells us those modes

of transportation that will get us into V from every point in U.

Proposition 2.98. Suppose V � (V, ≤, I , ⊗) is any symmetric monoidal preorder that

has all joins. Then V is closed—i.e. it has a ( operation and hence is a quantale—if

and only if ⊗ distributes over joins; i.e. if Eq. (2.88) holds for all v ∈ V and A ⊆ V .

Proof. We showed one direction in Proposition 2.87(b): if V is monoidal closed then

Eq. (2.88) holds. We need to show that Eq. (2.88) holds then − ⊗ v : V → V has a right

adjoint v ( −. This is just the adjoint functor theorem, Theorem 1.115. It says we can

define v ( w to be

v ( w B
∨

{a∈V |a⊗v≤w}
a. �

2.5.3 Matrix multiplication in a quantale

AquantaleV � (V, ≤, I , ⊗,(), as defined inDefinition 2.79, provideswhat is necessary

to perform matrix multiplication.6 The usual formula for matrix multiplication is:

(M ∗ N)(i , k) �
∑

j

M(i , j) ∗ N( j, k). (2.99)

We will get a formula where joins stand in for the sum operation

∑
, and ⊗ stands in

for the product operation ∗. Recall our convention of writing 0 B
∨�.

Definition 2.100. Let V � (V, ≤, ⊗, I) be a quantale. Given sets X and Y, a matrix with
entries in V, or simply a V-matrix, is a function M : X × Y → V . For any x ∈ X and

y ∈ Y, we call M(x , y) the (x , y)-entry.

6
This works for noncommutative quantales as well.
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Here is how you multiply V-matrices M : X × Y → V and N : Y × Z → V . Their

product is defined to be the matrix (M ∗ N) : X × Z → V , whose entries are given by

the formula

(M ∗ N)(x , z) B
∨
y∈Y

M(x , y) ⊗ N(y , z). (2.101)

Note how similar this is to Eq. (2.99).

Example 2.102. Let V � Bool. Here is an example of matrix multiplication M ∗N . Here

X � {1, 2, 3}, Y � {1, 2}, and Z � {1, 2, 3}, matrices M : X × Y → B and N : Y × Z→ B

are shown to the left below, and their product is shown to the right:

©«
false false

false true

true true

ª®®¬ ∗
(
true true false

true false true

)
�

©«
false false false

true false true

true true true

ª®®¬
The identity V-matrix on a set X is IX : X × X → V given by

IX(x , y) B
{

I if x � y

0 if x , y.

Exercise 2.103. Write down the 2×2-identitymatrix for each of the quantales (N, ≤, 1, ∗),
Bool � (B, ≤, true,∧), and Cost � ([0,∞], ≥, 0,+). ♦

Exercise 2.104. Let V � (V, ≤, I , ⊗,() be a quantale. Use Eq. (2.101) and Proposi-

tion 2.87 to prove the following.

1. Prove the identity law: for any sets X and Y and V-matrix M : X × Y → V , one

has IX ∗M � M.

2. Prove the associative law: for any matrices M : W × X → V , N : X × Y → V , and

P : Y × Z→ V , one has (M ∗ N) ∗ P � M ∗ (N ∗ P). ♦

Recall the weighted graph Y from Eq. (2.56). One can read off the associated matrix

MY , and one can calculate the associated metric dY :

x•

•
y

z•3 4

3

4

Y B

MY x y z
x 0 4 3

y 3 0 ∞
z ∞ 4 0

dY x y z
x 0 4 3

y 3 0 6

z 7 4 0

Here we fully explain how to compute dY using only MY .

Thematrix MY can be thought of as recording the length of paths that traverse either

0 or 1 edges: the diagonals being 0 mean we can get from x to x without traversing any
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edges. When we can get from x to y in one edge we record its length in MY , otherwise

we use∞.

When we multiply MY by itself using the formula Eq. (2.101), the result M2

Y tells us

the length of the shortest path traversing 2 edges or fewer. Similarly M3

Y tells us about

the shortest path traversing 3 edges or fewer:

M2

Y �

↗ x y z
x 0 4 3

y 3 0 6

z 7 4 0

M3

Y �

↗ x y z
x 0 4 3

y 3 0 6

z 7 4 0

One sees that the powers stabilize: M2

Y � M3

Y ; as soon as that happens one has the

matrix of distances, dY . Indeed Mn
Y records the lengths of the shortest path traverse n

edges or fewer, and the powers will always stabilize if the set of vertices is finite, since

the shortest path from one vertex to another will never visit a given vertex more than

once.7

Exercise 2.105. Recall from Exercise 2.60 the matrix MX , for X as in Eq. (2.56).

Calculate M2

X , M3

X , and M4

X . Check that M4

X is what you got for the distance matrix in

Exercise 2.58. ♦

This procedure gives an algorithm for computing the V-category presented by any

V-weighted graph using matrix multiplication.

2.6 Summary and further reading

In this chapterwe thought of elements of preorders as describing resources, with the or-

der detailing whether one resource could be obtained from another. This naturally led

to the question of how to describe what could be built from a pair of resources, which

led us to consider monoid structures on preorders. More abstractly, these monoidal

preorders were seen to be examples of enriched categories, or V-categories, over the

symmetric monoidal preorder Bool. Changing Bool to the symmetric monoidal pre-

order Cost, we arrived upon Lawvere metric spaces, a slight generalization of the

usual notion of metric space. In terms of resources, Cost-categories tell us the cost of

obtaining one resource from another.

At this point, we sought to get a better feel for V-categories in two ways. First, we

introduced various important constructions: base change, functors, products. Second,

we looked at how to present V-categories using labelled graphs; here, perhaps surpris-

ingly, we saw thatmatrixmultiplication gives an algorithm to compute the hom-objects

from a labelled graph.

Resource theories are discussed in much more detail in [CFS16; Fri17]. The authors

provide many more examples of resource theories in science, including in thermody-

7
The method works even in the infinite case: one takes the infimum of all powers Mn

Y . The result

always defines a Lawvere metric space.
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namics, Shannon’s theory of communication channels, and quantum entanglement.

They also discuss more of the numerical theory than we did, including calculating the

asymptotic rate of conversion from one resource into another.

Enrichment is a fundamental notion in category theory, and we will we return to it

in Chapter 4, generalizing the definition so that categories, rather thanmere preorders,

can serve as bases of enrichment. In this more general setting we can still perform

the constructions we introduced in Section 2.4—base change, functors, products—and

many others; the authoratitive, but by no means easy, reference on this is the book by

Kelly [Kel05].

While preorders were familiar before category theory came along, Lawvere metric

spaces are a beautiful generalization of the previous notion of (symmetric) metric

space, that is due to, well, Lawvere. A deeper exploration than the taste we gave

here can be found in his classic paper [Law73], where he also discusses ideas like

Cauchy completeness in category-theoretic terms, and which hence generalize to other

categorical settings.

We observed that while any symmetric monoidal preorder can serve as a base

for enrichment, certain preorders—quantales—are better than others. Quantales are

well known for links to other parts of mathematics too. The word quantale is in fact a

portmanteau of ‘quantum locale’, where quantumrefers to quantumphysics, and locale

is a fundamental structure in topology. For a book-length introduction of quantales and

their applications, one might check [Ros90]. The notion of cartesian closed categories,

later generalized to monoidal closed categories, is due to Ronnie Brown [Bro61].

Note that while we have only considered commutative quantales, the noncommu-

tative variety also arise naturally. For example, the power set of any monoid forms

a quantale that is commutative iff the monoid is. Another example is the set of all

binary relations on a set X, where multiplication is relational composition; this is

non-commutative. Such noncommutative quantales have application to concurrency

theory, and in particular process semantics and automata; see [AV93] for details.



Chapter 3

Databases:
Categories, functors, and universal

constructions

3.1 What is a database?

Integrating data from disparate sources is a major problem in industry today. A

study in 2008 [BH08] showed that data integration accounts for 40% of IT (information

technology) budgets, and that the market for data integration software was $2.5 billion

in 2007 and increasing at a rate of more than 8% per year. In other words, it is a major

problem; but what is it?

A database is a system of interlocking tables. Data becomes information when it is

stored in a given formation. That is, the numbers and letters don’t mean anything until

they are organized, often into a system of interlocking tables. An organized system of

interlocking tables is called a database. Here is a favorite example:

Employee FName WorksIn Mngr
1 Alan 101 2

2 Ruth 101 2

3 Kris 102 3

Department DName Secr
101 Sales 1

102 IT 3

(3.1)

These two tables interlock by use of a special left-hand column, demarcated by

a vertical line; it is called the ID column. The ID column of the first table is called

‘Employee,’ and the ID column of the second table is called ‘Department.’ The entries

in the ID column—e.g. 1, 2, 3 or 101, 102—are like row labels; they indicate a whole

row of the table they’re in. Thus each row label must be unique (no two rows in a table

can have the same label), so that it can unambiguously specify its row.

77
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Each table’s ID column, and the set of unique identifiers found therein, is what

allows for the interlocking mentioned above. Indeed, other entries in various tables

can reference rows in a given table by use of its ID column. For example, each entry

in the WorksIn column references a department for each employee; each entry in the

Mngr (manager) column references an employee for each employee, and each entry in

the Secr (secretary) column references an employee for each department. Managing all

this cross-referencing is the purpose of databases.

Looking back at Eq. (3.1), onemight notice that every non-ID column, found in either

table, is a reference to a label of some sort. Some of these, namely WorksIn, Mngr, and

Secr, are internal references, often called foreign keys; they refer to rows (keys) in the

ID column of some (foreign) table. Others, namely FName and DName, are external
references; they refer to strings or integers, which can also be thought of as labels, whose

meaning is known more broadly. Internal reference labels can be changed as long as

the change is consistent—1 could be replaced by 1001 everywhere without changing

the meaning—whereas external reference labels certainly cannot! Changing Ruth to

Bruce everywhere would change how people understood the data.

The reference structure for a given database—i.e. how tables interlock via foreign

keys—tells us something about what information was intended to be stored in it. One

may visualize the reference structure for Eq. (3.1) graphically as follows:

easySchema B

Employee

•
Department

•

string

◦

WorksIn

FName

Mngr

Secr

DName

(3.2)

This is a kind of “Hasse diagram for a database,” much like the Hasse diagrams for

preorders in Remark 1.39. How should you read it?

The two tables from Eq. (3.1) are represented in the graph (3.2) by the two black

nodes, which are given the same name as the ID columns: Employee and Department.

There is another node—drawn white rather than black—which represents the external

reference type of strings, like “Alan,” “Alpha,” and “Sales". The arrows in the diagram

representnon-IDcolumnsof the tables; theypoint in thedirectionof reference: WorksIn

refers an employee to a department.

Exercise 3.3. Count the number of non-ID columns in Eq. (3.1). Count the number of

arrows (foreign keys) in Eq. (3.2). They should be the same number in this case; is this

a coincidence? ♦

A Hasse-style diagram like the one in Eq. (3.2) can be called a database schema; it
represents how the information is being organized, the formation in which the data is

kept. One may add rules, sometimes called ‘business rules’ to the schema, in order to

ensure the integrity of the data. If these rules are violated, one knows that data being
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entered does not conform to the way the database designers intended. For example,

the designers may enforce rules saying

• every department’s secretary must work in that department;

• every employee’s manager must work in the same department as the employee.

Doing so changes the schema, say from ‘easySchema’ (3.2) to ‘mySchema’ below.

mySchema B

Employee

•
Department

•

string

◦

WorksIn

FName

Mngr

Secr

DName

Department.Secr.WorksIn = Department

Employee.Mngr.WorksIn = Employee.WorksIn

(3.4)

In other words, the difference is that easySchema plus constraints equals mySchema.

We will soon see that database schemas are categories C, that the data itself is given

by a ‘set-valued’ functor C→ Set, and that databases can be mapped to each other via

functors C → D. In other words, there is a relatively large overlap between database

theory and category theory. This has been worked out in a number of papers; see

Section 3.6. It has also been implemented in working software, called FQL, which

stands for functorial query language. Here is example FQL code for the schema shown

above:

schema mySchema = {

nodes

Employee, Department;

attributes

DName : Department -> string,

FName : Employee -> string;

arrows

Mngr : Employee -> Employee,

WorksIn : Employee -> Department,

Secr : Department -> Employee;

equations

Department.Secr.WorksIn = Department,

Employee.Mngr.WorksIn = Employee.WorksIn;

}

Communication between databases. We have said that databases are designed to

store information about something. But different people or organizations might view

the same sort of thing in different ways. For example, one bank stores its financial

records according to European standards and another does so according to Japanese

standards. If these two banks merge into one, they will need to be able to share their

data despite differences in the shape of their database schemas.
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Such problems are huge and intricate in general, because databases often comprise

hundreds or thousands of interlocking tables. Moreover, these problems occur more

frequently than just when companies want to merge. It is quite common that a given

company moves data between databases on a daily basis. The reason is that different

ways of organizing information are convenient for different purposes. Just likewe pack

our clothes in a suitcase when traveling but use a closet at home, there is generally not

one best way to organize anything.

Category theory provides a mathematical approach for translating between these

different organizational forms. That is, it formalizes a sort of automated reorganizing

process called data migration, which takes data that fits snugly in one schema andmoves

it into another.

Here is a simple case. Imagine an airline company has two different databases,

perhaps created at different times, that hold roughly the same data.

$◦

Economy

• First Class•

string

◦

Price

Position

Price

Position

A B

$◦

Airline Seat•

string

◦

Price

Position

�: B

(3.5)

Schema A has more detail than schema B—an airline seat may be in first class or

economy—but they are roughly the same. We will see that they can be connected by a

functor, and that data conforming to A can be migrated through this functor to schema

B and vice versa.

The statistics at the beginning of this section show that this sort of problem—

when occurring at enterprise scale—continues to prove difficult and expensive. If one

attempts to move data from a source schema to a target schema, the migrated data

could fail to fit into the target schema or fail to satisfy some of its constraints. This

happens surprisingly often in theworld of business: a nightmay be spentmoving data,

and the next morning it is found to have arrived broken and unsuitable for further use.

In fact, it is believed that over half of database migration projects fail.

In this chapter, we will discuss a category-theoretic method for migrating data.

Using categories and functors, one can prove up front that a given data migration will

not fail, i.e. that the result is guaranteed to fit into the target schema and satisfy all its

constraints.

The material in this chapter gets to the heart of category theory: in particular, we

discuss categories, functors, natural transformations, adjunctions, limits, and colimits.

In fact, many of these ideas have been present in the discussion above:

• The schema pictures, e.g. Eq. (3.4) depict categories C.
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• The instances, e.g. Eq. (3.1) are functors from C to a certain category called Set.
• The implicit mapping in Eq. (3.5), which takes economy and first class seats in A

to airline seats in B, constitutes a functor A→ B.
• The notion of data migration for moving data between schemas is formalized by

adjoint functors.

We begin in Section 3.2 with the definition of categories and a bunch of different

sorts of examples. In Section 3.3 we bring back databases, in particular their instances

and the maps between them, by discussing functors and natural transformations. In

Section 3.4 we discuss data migration by way of adjunctions, which generalize the

Galois connections we introduced in Section 1.4. Finally in Section 3.5 we give a bonus

section on limits and colimits.1

3.2 Categories

A category C consists of four pieces of data—objects, morphisms, identities, and a

composition rule—satisfying two properties.

Definition 3.6. To specify a category C:
(i) one specifies a collection

2
Ob(C), elements of which are called objects.

(ii) for every two objects c , d, one specifies a set C(c , d),3 elements of which are called

morphisms from c to d.
(iii) for every object c ∈ Ob(C), one specifies a morphism idc ∈ C(c , c), called the

identity morphism on c.
(iv) for every three objects c , d , e ∈ Ob(C) and morphisms f ∈ C(c , d) and 1 ∈ C(d , e),

one specifies a morphism f # 1 ∈ C(c , e), called the composite of f and 1.
Wewill sometimeswrite an object c ∈ C, instead of c ∈ Ob(C). It will also be convenient

to denote elements f ∈ C(c , d) as f : c → d. Here, c is called the domain of f , and d is

called the codomain of f .
These constituents are required to satisfy two conditions:

(a) unitality: for any morphism f : c → d, composing with the identities at c or d
does nothing: idc # f � f and f # idd � f .

(b) associativity: for any three morphisms f : c0 → c1, 1 : c1 → c2, and h : c2 → c3,

the following are equal: ( f # 1) # h � f # (1 # h). We write this composite simply

as f # 1 # h.

1
By “bonus,” we mean that although not strictly essential to the understanding of this particular

chapter, limits and colimits will show up throughout the book and throughout one’s interaction with

category theory, and we think the reader will especially benefit from this material in the long run.

2
Here, a collection can be thought of as a bunch of things, just like a set, but that may be too large to

formally be a set. An example is the collection of all sets, which would run afoul of Russell’s paradox if it

were itself a set.

3
This set C(c , d) is often denoted HomC(c , d), and called the “hom-set from c to d.” The word “hom”

stands for homomorphism, of which the word “morphism” is a shortened version.
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Our next goal is to give lots of examples of categories. Our first source of examples

is that of free and finitely-presented categories, which generalize the notion of Hasse

diagram from Remark 1.39.

3.2.1 Free categories

Recall from Definition 1.36 that a graph consists of two types of thing: vertices and

arrows. From there one can define paths, which are just head-to-tail sequences of

arrows. Every path p has a start vertex and an end vertex; if p goes from v to w, we

write p : v → w. To every vertex v, there is a trivial path, containing no arrows, starting

and ending at v; we often denote it by idv or simply by v. We may also concatenate

paths: given p : v → w and q : w → x, their concatenation is denoted p # q, and it goes

v → x.

In Chapter 1, we used graphs to depict preorders (V, ≤): the vertices form the

elements of the preorder, and we say that v ≤ w if there is a path from v to w in G. We

will now use graphs in a very similar way to depict certain categories, known as free
categories. Thenwewill explain a strong relationship between preorders and categories

in Section 3.2.3.

Definition 3.7. For any graph G � (V,A, s , t), we can define a category Free(G), called
the free category on G, whose objects are the vertices V and whose morphisms from c to
d are the paths from c to d. The identity morphism on an object c is simply the trivial

path at c. Composition is given by concatenation of paths.

For example, we define 2 to be the free category generated by the graph shown

below:

2 B Free
(

v1• v2•f1

)
(3.8)

It has two objects v1 and v2, and three morphisms: idv1
: v1 → v1, f1 : v1 → v2, and

idv2
: v2 → v2. Here idv1

is the path of length 0 starting and ending at v1, f1 is the path

of length 1 consisting of just the arrow f1, and idv2
is the length 0 path at v2. As our

notation suggests, idv1
is the identity morphism for the object v1, and similarly idv2

for v2. As composition is given by concatenation, we have, for example idv1

# f1 � f1,

idv2

# idv2
� idv2

, and so on.

From now on, we may elide the difference between a graph and the corresponding

free category Free(G), at least when the one we mean is clear enough from context.

Exercise 3.9. For Free(G) to really be a category, we must check that this data we

specified obeys the unitality and associativity properties. Check that these are obeyed

for any graph G. ♦
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Exercise 3.10. The free category on the graph shown here:4

3 B Free
(

v1• v2• v3•f1 f2

)
(3.11)

has three objects and six morphisms: the three vertices and six paths in the graph.

Create six names, one for each of the six morphisms in 3. Write down a six-by-six

table, label the rows and columns by the six names you chose.

1. Fill out the table by writing the name of the composite in each cell, when there is

a composite.

2. Where are the identities? ♦

Exercise 3.12. Let’s make some definitions, based on the pattern above:

1. What is the category 1? That is, what are its objects and morphisms?

2. What is the category 0?
3. What is the formula for the number of morphisms in n for arbitrary n ∈ N? ♦

Example 3.13 (Natural numbers as a free category). Consider the following graph:

•
z

s

(3.14)

It has only one vertex and one arrow, but it has infinitely many paths. Indeed, it

has a unique path of length n for every natural number n ∈ N. That is, Path �

{z , s , (s # s), (s # s # s), . . .}, where we write z for the length 0 path on z; it represents
the morphism idz . There is a one-to-one correspondence between Path and the natural

numbers, N � {0, 1, 2, 3, . . .}.
This is an example of a categorywith one object. A categorywith one object is called

a monoid, a notion we first discussed in Example 2.6. There we said that a monoid is

a tuple (M, ∗, e) where ∗ : M × M → M is a function and e ∈ M is an element, and

m ∗ 1 � m � 1 ∗ m and (m ∗ n) ∗ p � m ∗ (n ∗ p).
The two notions may superficially look different, but it is easy to describe the

connection. Given a category C with one object, say •, let M B C(•, •), let e � id•, and

let ∗ : C(•, •) × C(•, •) → C(•, •) be the composition operation ∗ � #. The associativity

and unitality requirements for the monoid will be satisfied because C is a category.

Exercise 3.15. In Example 3.13 we identified the paths of the loop graph (3.14) with

numbers n ∈ N. Paths can be concatenated. Given numbers m , n ∈ N, what number

corresponds to the concatenation of their associated paths? ♦

4
Asmentioned above, we elide the difference between the graph and the corresponding free category.
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3.2.2 Presenting categories via path equations

So for any graph G, there is a free category on G. But we don’t have to stop there: we

can add equations between paths in the graph, and still get a category. We are only

allowed to equate two paths p and q when they are parallel, meaning they have the

same source vertex and the same target vertex.

A finite graphwith path equations is called a finite presentation for a category, and the

category that results is known as a finitely-presented category. Here are two examples:

Free_square B

A• B•

•
C

•
D

f

1 h

i

no equations

Comm_square B

A• B•

•
C

•
D

f

1 h

i

f # h � 1 # i

Bothof these are presentations of categories: in the left-handone, there are no equations

so it presents a free category, as discussed in Section 3.2.1. The free square category

has ten morphisms, because every path is a unique morphism.

Exercise 3.16.
1. Write down the ten paths in the free square category above.

2. Name two different paths that are parallel.

3. Name two different paths that are not parallel. ♦

On the other hand, the category presented on the right has only nine morphisms,

because f #h and 1 # i aremade equal. This category is called the “commutative square.”

Its morphisms are

{A, B, C,D , f , 1 , h , i , f # h}

One might say “the missing one is 1 # i,” but that is not quite right: 1 # i is there too,

because it is equal to f # h. As usual, A denotes idA, etc.

Exercise 3.17. Write downall themorphisms in the categorypresentedby the following

diagram:

A• B•

•
C

•
D

f

1 j h

i

f # h � j � 1 # i

♦

Example 3.18. We should also be aware that enforcing an equation between two mor-

phisms often implies additional equations. Here are two more examples of presenta-
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tions, in which this phenomenon occurs:

C B •
z

s

s # s � z

D B •
z

s

s # s # s # s � s # s

In C we have the equation s # s � z. But this implies s # s # s � z # s � s! And similarly

we have s # s # s # s � z # z � z. The set of morphisms in C is in fact merely {z , s}, with

composition described by s # s � z # z � z, and z # s � s # z � s. In group theory, one

would speak of a group called Z/2Z.

Exercise 3.19. Write down all the morphisms in the category D from Example 3.18.

♦

Remark 3.20. We can now see that the schemas in Section 3.1, e.g. Eqs. (3.2) and (3.4)

are finite presentations of categories. We will come back to this idea in Section 3.3.

3.2.3 Preorders and free categories: two ends of a spectrum

Now that we have used graphs to depict preorders in Chapter 1 and categories above,

one may want to know the relationship between these two uses. The main idea we

want to explain now is that

“A preorder is a category where every two parallel arrows are the same.”

Thus any preorder can be regarded as a category, and any category can be somehow

“crushed down” into a preorder. Let’s discuss these ideas.

Preorders as categories. Suppose (P, ≤) is a preorder. It specifies a category P as

follows. The objects of P are precisely the elements of P; that is, Ob(P) � P. As for

morphisms, P has exactly one morphism p → q if p ≤ q and no morphisms p → q if

p � q. The fact that ≤ is reflexive ensures that every object has an identity, and the fact

that ≤ is transitive ensures that morphisms can be composed. We call P the category
corresponding to the preorder (P, ≤).

In fact, aHasse diagram for a preorder can be thought of a presentation of a category

where, for all vertices p and q, every two paths from p → q are declared equal. For

example, in Eq. (1.5) we saw a Hasse diagram that was like the graph on the left:

•

• • •

•

•

• • •

•

d
e

f

a b c

no equations?

•

• • •

•

d
e

f

a b c

a # d � b # e � c # f
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The Hasse diagram (left) might look the most like the free category presentation (mid-

dle) which has no equations, but that is not correct. The free category has three

morphisms (paths) from bottom object to top object, whereas preorders are categories

with at most one morphism between two given objects. Instead, the diagram on the

right, with these paths from bottom to top made equal, is the correct presentation for

the preorder on the left.

Exercise 3.21. What equations would you need to add to the graphs below in order to

present the associated preorders?

G1 � • •
f

1
G2 �

•

f

G3 �

• •

• •

f

1 h

i

G4 �

• •

• •

f

1 h ♦

Thepreorder reflectionof a category. Given any categoryC, one canobtain apreorder

(C, ≤) from it by destroying the distinction between any two parallel morphisms. That

is, let C B Ob(C), and put c1 ≤ c2 iff C(c1 , c2) , �. If there is one, or two, or fifty,

or infinitely many morphisms c1 → c2 in C, the preorder reflection does not see the

difference. But it does see the difference between somemorphisms and nomorphisms.

Exercise 3.22. What is the preorder reflection of the category N from Example 3.13?

♦

Wehaveonlydiscussed adjoint functors betweenpreorders, but soonwewill discuss

adjoints in general. Here is a statement you might not understand exactly, but it’s true;

you can ask a category theory expert about it and they should be able to explain it to

you:

Considering a preorder as a category is right adjoint to turning a category

into a preorder by preorder reflection.

Remark 3.23 (Ends of a spectrum). The main point of this subsection is that both

preorders and free categories are specified by a graphwithout path equations, but they

denote opposite ends of a spectrum. In both cases, the vertices of the graph become

the objects of a category and the paths become morphisms. But in the case of free

categories, there are no equations so each path becomes a different morphism. In

the case of preorders, all parallel paths become the same morphism. Every category

presentation, i.e. graph with some equations, lies somewhere in between the free

category (no equations) and its preorder reflection (all possible equations).

3.2.4 Important categories in mathematics

We have been talking about category presentations, but there are categories that are

best understood directly, not by way of presentations. Recall the definition of category
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from Definition 3.6. The most important category in mathematics is the category of

sets.

Definition 3.24. The category of sets, denoted Set, is defined as follows.

(i) Ob(Set) is the collection of all sets.

(ii) If S and T are sets, then Set(S, T) � { f : S→ T | f is a function}.
(iii) For each set S, the identity morphism is the function idS : S → S given by

idS(s) B s for each s ∈ S.
(iv) Given f : S → T and 1 : T → U, their composite is the function f # 1 : S → U

given by ( f # 1)(s) B 1( f (s)).
These definitions satisfy the unitality and associativity conditions, so Set is indeed a

category.

Closely related is the category FinSet. This is the category whose objects are finite

sets and whose morphisms are functions between them.

Exercise 3.25. Let 2 � {1, 2} and 3 � {1, 2, 3}. These are objects in the category Set
discussed in Definition 3.24. Write down all the elements of the set Set(2, 3); there
should be nine. ♦

Remark 3.26. You may have wondered what categories have to do with V-categories

(Definition 2.46); perhaps you think the definitions hardly look alike. Despite the term

‘enriched category’, V-categories are not categories with extra structure. While some

sorts of V-categories, such as Bool-categories, i.e. preorders, can naturally be seen as

categories, other sorts, such as Cost-categories, cannot.
The reason for the importance of Set is that, if we generalize the definition of

enriched category (Definition 2.46), we find that categories in the sense of Definition 3.6

are exactly Set-categories—so categories are V-categories for a very special choice of V.

We’ll come back to this in Section 4.4.4. For now, we simply remark that just like a deep

understanding of the categoryCost—for example, knowing that it is a quantale—yields

insight into Lawvere metric spaces, so the study of Set yields insights into categories.

There are many other categories that mathematicians care about:

• Top: the category of topological spaces (neighborhood)

• Grph: the category of graphs (connection)

• Meas: the category of measure spaces (amount)

• Mon: the category of monoids (action)

• Grp: the category of groups (reversible action, symmetry)

• Cat: the category of categories (action in context, structure)

But in fact, this does not at all do justice to the diversity of categories mathematicians

think about. Theyworkwithwhatever category they find fits their purpose at the time,

like ‘the category of connected Riemannian manifolds of dimension at most 4’.

Here is one more source of examples: take any category you already have and

reverse all its morphisms; the result is again a category.
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Example 3.27. Let C be a category. Its opposite, denoted Cop
, is the category with

the same objects, Ob(Cop) B Ob(C), and for any two objects c , d ∈ Ob(C), one has

Cop(c , d) B C(d , c). Identities and composition are as in C.

3.2.5 Isomorphisms in a category

The previous sections have all been about examples of categories: free categories,

presented categories, and important categories in math. In this section, we briefly

switch gears and talk about an important concept in category theory, namely the

concept of isomorphism.

In a category, there is often the idea that two objects are interchangeable. For

example, in the category Set, one can exchange the set {�,�} for the set {0, 1} and
everything will be the same, other than the names for the elements. Similarly, if one

has a preorder with elements a , b, such that a ≤ b and b ≤ a, i.e. a � b, then a and b are

essentially the same. How so? Well they act the same, in that for any other object c, we

know that c ≤ a iff c ≤ b, and c ≥ a iff c ≥ b. The notion of isomorphism formalizes

this notion of interchangeability.

Definition 3.28. An isomorphism is a morphism f : A → B such that there exists a

morphism 1 : B→ A satisfying f # 1 � idA and 1 # f � idB. In this case we call f and 1

inverses, and we often write 1 � f −1
, or equivalently f � 1−1

. We also say that A and B
are isomorphic objects.

Example 3.29. The set A B {a , b , c} and the set 3 � {1, 2, 3} are isomorphic; that is,

there exists an isomorphism f : A → 3 given by f (a) � 2, f (b) � 1, f (c) � 3. The

isomorphisms in the category Set are the bĳections.

Recall that the cardinality of a finite set is the number of elements in it. This can be

understood in terms of isomorphisms in FinSet. Namely, for any finite set A ∈ FinSet,
its cardinality is the number n ∈ N such that there exists an isomorphism A � n. Georg

Cantor defined the cardinality of any set X to be its isomorphism class, meaning the

equivalence class consisting of all sets that are isomorphic to X.

Exercise 3.30.
1. What is the inverse f −1

: 3→ A of the function f given in Example 3.29?

2. How many distinct isomorphisms are there A→ 3? ♦

Exercise 3.31. Show that in any given category C, for any given object c ∈ C, the

identity idc is an isomorphism. ♦

Exercise 3.32. Recall Examples 3.13 and 3.18. A monoid in which every morphism is

an isomorphism is known as a group.
1. Is the monoid in Example 3.13 a group?
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2. What about the monoid C in Example 3.18? ♦

Exercise 3.33. Let G be a graph, and let Free(G) be the corresponding free category.

Somebody tells you that the only isomorphisms in Free(G) are the identity morphisms.

Is that person correct? Why or why not? ♦

Example 3.34. In this example, wewill see that it is possible for 1 and f to be almost—but

not quite—inverses, in a certain sense.

Consider the functions f : 2→ 3 and 1 : 3→ 2 drawn below:

•1

•2

•1

•2

•3

•1

•2

•3

•1

•2

Then the reader should be able to instantly check that f # 1 � id2 but 1 # f , id3. Thus f
and 1 are not inverses and hence not isomorphisms. We won’t need this terminology,

but category theorists would say that f and 1 form a retraction.

3.3 Functors, natural transformations, and databases

In Section 3.1we showed some database schemas: graphswith path equations. Then in

Section 3.2.2 we said that graphs with path equations correspond to finitely-presented

categories. Now we want to explain what the data in a database is, as a way to

introduce functors. To do so, we begin by noticing that sets and functions—the objects

andmorphisms in the category Set—can be captured by particularly simple databases.

3.3.1 Sets and functions as databases

The first observation is that any set can be understood as a table with only one column:

the ID column.

Planet of Sol
Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Prime number
2

3

5

7

11

13

17

...

Flying pig
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Rather than put the elements of the set between braces, e.g. {2, 3, 5, 7, 11, . . .}, we write

them down as rows in a table.

Indatabases, single-column tables are often called controlledvocabularies, ormaster

data. Now to be honest, we can only write out every single entry in a table when its

set of rows is finite. A database practitioner might find the idea of our prime number

table a bit unrealistic. But we’re mathematicians, so since the idea makes perfect sense

abstractly, we will continue to think of sets as one-column tables.

The above databases have schemas consisting of just one vertex:

Planet of Sol• Prime number•
Flying pig

•

Obviously, there’s really not much difference between these schemas, other than the

label of the unique vertex. So we could say “sets are databases whose schema consists

of a single vertex.” Let’s move on to functions.

A function f : A→ B can almost be depicted as a two-column table

Beatle Played
George Lead guitar

John Rhythm guitar

Paul Bass guitar

Ringo Drums

except it is unclear whether the elements of the right-hand column exhaust all of B.
What if there are rock-and-roll instruments out there that none of the Beatles played?

So a function f : A→ B requires two tables, one for A and its f column, and one for B:

Beatle Played
George Lead guitar

John Rhythm guitar

Paul Bass guitar

Ringo Drums

Rock-and-roll instrument
Bass guitar

Drums

Keyboard

Lead guitar

Rhythm guitar

Thus the database schema for any function is just a labeled version of 2:

Beatle•
Rock-and-roll

instrument•Played

The lesson is that an instance of a database takes a presentation of a category, and turns

every vertex into a set, and every arrow into a function. As such, it describes a map

from the presented category to the category Set. In Section 2.4.2 we saw that maps of

V-categories are known as V-functors. Similarly, we call maps of plain old categories,

functors.
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3.3.2 Functors

A functor is a mapping between categories. It sends objects to objects and morphisms

to morphisms, all while preserving identities and composition. Here is the formal

definition.

Definition 3.35. Let C and D be categories. To specify a functor from C to D, denoted

F : C→ D,

(i) for every object c ∈ Ob(C), one specifies an object F(c) ∈ Ob(D);
(ii) for every morphism f : c1 → c2 in C, one specifies a morphism F( f ) : F(c1) →

F(c2) in D.

The above constituents must satisfy two properties:

(a) for every object c ∈ Ob(C), we have F(idc) � idF(c).

(b) for every three objects c1 , c2 , c3 ∈ Ob(C) and two morphisms f ∈ C(c1 , c2), 1 ∈
C(c2 , c3), the equation F( f # 1) � F( f ) # F(1) holds in D.

Example 3.36. For example, here we draw three functors F : 2→ 3:

m0•

•
m1

f1

n0•

n1•

n2•

11

12

m0•

•
m1

f1

n0•

n1•

n2•

11

12

m0•

•
m1

f1

n0•

n1•

n2•

11

12

In each case, the dotted arrows show what the functor F does to the vertices in 2; once
that information is specified, it turns out—in this special case—that what F does to

the three paths in 2 is completely determined. In the left-hand diagram, F sends every

path to the trivial path, i.e. the identity on n0. In the middle diagram F(m0) � n0,

F( f1) � 11, and F(m1) � n1. In the right-hand diagram, F(m0) � n0, F(m1) � n2, and

F( f1) � 11
# 12.

Exercise 3.37. Above we wrote down three functors 2→ 3. Find and write down all

the remaining functors 2→ 3. ♦

Example 3.38. Recall the categories presented by Free_square and Comm_square in

Section 3.2.2. Here they are again, with
′
added to the labels in Free_square to help
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distinguish them:

Free_square B

A′• B′•

•
C′

•
D′

f ′

1′ h′

i′

no equations

Comm_square B

A• B•

•
C

•
D

f

1 h

i

f # h � 1 # i

There are lots of functors from the free square category (let’s call itF) to the commutative

square category (let’s call it C).

However, there is exactly one functor F : F→ C that sends A′ to A, B′ to B, C′ to C,

and D′ to D. That is, once we have made this decision about how F acts on objects,

each of the ten paths in F is forced to go to a certain path in C: the one with the right

source and target.

Exercise 3.39. Say where each of the ten morphisms in F is sent under the functor F
from Example 3.38. ♦

All of our example functors so far have been completely determined by what they

do on objects, but this is usually not the case.

Exercise 3.40. Consider the free categories C � • → • and D � •⇒ • . Give two

functors F,G : C→ D that act the same on objects but differently on morphisms. ♦

Example 3.41. There are also lots of functors from the commutative square category C

to the free square category F, but none that sends A to A′, B to B′, C to C′, and D to D′.
The reason is that if F were such a functor, then since f # h � 1 # i in C, we would have

F( f # h) � F(1 # i), but then the rules of functors would let us reason as follows:

f ′ # h′ � F( f ) # F(h) � F( f # h) � F(1 # i) � F(1) # F(i) � 1′ # i′

The resulting equation, f ′ # h′ � 1′ # i′ does not hold in F because it is a free category

(there are “no equations”): every two paths are considered different morphisms. Thus

our proposed F is not a functor.

Example 3.42 (Functors between preorders are monotone maps). Recall from Sec-

tion 3.2.3 that preorders are categories with at most one morphism between any two

objects. A functor between preorders is exactly a monotone map.

For example, consider the preorder (N, ≤) considered as a category N with objects

Ob(N) � N and a unique morphism m → n iff m ≤ n. A functor F : N → N sends

each object n ∈ N to an object F(n) ∈ N. It must send morphisms in N to morphisms

in N. This means if there is a morphism m → n then there had better be a morphism

F(m) → F(n). In other words, if m ≤ n, then we had better have F(m) ≤ F(n). But as
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long as m ≤ n implies F(m) ≤ F(n), we have a functor.

Thus a functor F : N→ N and a monotone map N→ N are the same thing.

Exercise 3.43 (The category of categories). Back in the primordial ooze, there is a

category Cat in which the objects are themselves categories. Your task here is to construct

this category.

1. Given any category C, show that there exists a functor idC : C→ C, known as the

identity functor on C, that maps each object to itself and each morphism to itself.

Note that a functor C → D consists of a function from Ob(C) to Ob(D) and for each

pair of objects c1 , c2 ∈ C a function from C(c1 , c2) to D(F(c1), F(c2)).
2. Show that given F : C → D and G : D → E, we can define a new functor (F #

G) : C→ E just by composing functions.

3. Show that there is a category, call it Cat, where the objects are categories, mor-

phisms are functors, and identities and composition are given as above. ♦

3.3.3 Database instances as Set-valued functors

Let C be a category, and recall the category Set from Definition 3.24. A functor F : C→
Set is known as a set-valued functor on C. Much of database theory (not how to make

them fast, but what they are and what you do with them) can be cast in this light.

Indeed, we already saw in Remark 3.20 that any database schema can be regarded as

(presenting) a category C. The next thing to notice is that the data itself—any instance

of the database—is given by a set-valued functor I : C → Set. The only additional

detail is that for any white node, such as c �
string

◦ , we want to force I to map to the set

of strings. We suppress this detail in the following definition.

Definition 3.44. Let C be a schema, i.e. a finitely-presented category. A C-instance is a
functor I : C→ Set.5

Exercise 3.45. Let 1 denote the category with one object, called 1, one identity mor-

phism id1, and no other morphisms. For any functor F : 1→ Set one can extract a set

F(1). Show that for any set S, there is a functor FS : 1→ Set such that FS(1) � S. ♦

The above exercise reaffirms that the set of planets, the set of prime numbers, and

the set of flying pigs are all set-valued functors—instances—on the schema 1. Similarly,

set-valued functors on the category 2 are functions. All our examples so far are for the

situation where the schema is a free category (no equations). Let’s try an example of a

category that is not free.

5
Warning: a C-instance is a state of the database “at an instant in time.” The term “instance” should

not be confused with its usage in object oriented programming, which would correspond more to what

we call a row r ∈ I(c).
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Example 3.46. Consider the following category:

C B •
z

s

s # s � s

(3.47)

What is a set-valued functor F : C→ Set? It will consist of a set Z B F(z) and a function

S B F(s) : Z→ Z, subject to the requirement that S # S � S. Here are some examples

• Z is the set of US citizens, and S sends each citizen to her or his president. The

president’s president is her- or him-self.

• Z � N is the set of natural numbers and S sends each number to 0. In particular,

0 goes to itself.

• Z is the set of all well-formed arithmetic expressions, such as 13+(2∗4) or−5, that

one canwrite using integers and the symbols+,−, ∗, (, ). The function S evaluates

the expression to return an integer, which is itself a well-formed expression. The

evaluation of an integer is itself.

• Z � N≥2, and S sends n to its smallest prime factor. The smallest prime factor of

a prime is itself.

N≥2 smallest prime factor
2 2

3 3

4 2

...
...

49 7

50 2

51 3

...
...

Exercise 3.48. Above, we thought of the sort of data that would make sense for the

schema (3.47). Give an example of the sort of data that would make sense for the

following schemas: 1.
•
z

s

s # s � z

2.

a• b• c•f 1

h

f # 1 � f # h

♦

The main idea is this: a database schema is a category, and an instance on that

schema—the data itself—is a set-valued functor. All the constraints, or business rules,

are ensured by the rules of functors, namely that functors preserve composition.6

6
One can put more complex constraints, called embedded dependencies, on a database; these correspond

category theoretically to what are called “lifting problems” in category theory. See [Spi14b] for more on

this.
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3.3.4 Natural transformations

If C is a schema—i.e. a finitely-presented category—then there are many database

instances on it, which we can organize into a category. But this is part of a larger story,

namely that of natural transformations. An abstract picture to have in mind is this:

C D.

F

G

α

Definition 3.49. Let C andD be categories, and let F,G : C→ D be functors. To specify

a natural transformation α : F⇒ G,

(i) for each object c ∈ C, one specifies a morphism αc : F(c) → G(c) in D, called the

c-component of α.
These components must satisfy the following, called the naturality condition:
(a) for every morphism f : c → d in C, the following equation must hold:

F( f ) # αd � αc # G( f ).

Anatural transformation α : F→ G is called a natural isomorphism if each component

αc is an isomorphism in D.

The naturality condition can also be written as a so-called commutative diagram. A

diagram in a category is drawn as a graph whose vertices and arrows are labeled by

objects and morphisms in the category. For example, here is a diagram that’s relevant

to the naturality condition in Definition 3.49:

F(c) G(c)

F(d) G(d)

αc

F( f ) G( f )

αd

(3.50)

Definition 3.51. A diagram D in C is a functor D : J → C from any category J, called

the indexing category of the diagram D. We say that D commutes if D( f ) � D( f ′) holds
for every parallel pair of morphisms f , f ′ : a → b in J.7

In terms of Eq. (3.50), the only case of two parallel morphisms is that of F(c)⇒ G(d),
so to say that the diagram commutes is to say that F( f ) # αd � αc # G( f ). This is exactly
the naturality condition from Definition 3.49.

7
We could package this formally by saying that D commutes iff it factors through the preorder

reflection of J.



96 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Example 3.52. A representative picture is as follows:

1• 2•
f

C B u•

v• w•

x• y
•

z•

a

b

d

c

e

1

h

k

�: D

F

G

We have depicted, in blue and red respectively, two functors F,G : C → D. A natural

transformation α : F⇒ G is given by choosing components α1 : v → x and α2 : w → y.
We have highlighted the only choice for each in green; namely, α1 � c and α2 � 1.

The key point is that the functors F and G are ways of viewing the category C as

lying inside the category D. The natural transformation α, then, is a way of relating

these two views using the morphisms in D. Does this help you to see and appreciate

the notation C D?

F

G

α⇓

Example 3.53. We said in Exercise 3.45 that a functor 1 → Set can be identified with

a set. So suppose A and B are sets considered as functors A, B : 1 → Set. A natural

transformation between these functors is just a function between the sets.

Definition 3.54. LetC andDbe categories. Wedenote byDC
the categorywhose objects

are functors F : C→ D andwhose morphismsDC(F,G) are the natural transformations

α : F→ G. This categoryDC
is called the functor category, or the category of functors from

C to D.

Exercise 3.55. Let’s look more deeply at how DC
is a category.

1. Figure out how to compose natural transformations. (Hint: an expert tells you

“for each object c ∈ C, compose the c-components.”)

2. Propose an identity natural transformation on any object F ∈ DC
, and check that

it is unital (i.e. that it obeys condition (a) of Definition 3.6). ♦

Example 3.56. In our new language, Example 3.53 says that Set1
is equivalent to Set.

Example 3.57. Let N denote the category associated to the preorder (N, ≤), and recall

from Example 3.42 that we can identify a functor F : N → N with a non-decreasing

sequence (F0 , F1 , F2 , . . .) of natural numbers, i.e. F0 ≤ F1 ≤ F2 ≤ · · · . If G is another

functor, considered as anon-decreasing sequence, thenwhat is a natural transformation
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α : F→ G?

Since there is at most one morphism between two objects in a preorder, each com-

ponent αn : Fn → Gn has no data, it just tells us a fact: that Fn ≤ Gn . And the naturality

condition is vacuous: every square in a preorder commutes. So a natural transforma-

tion between F and G exists iff Fn ≤ Gn for each n, and any two natural transformations

F ⇒ G are the same. In other words, the category NN
is itself a preorder; namely the

preorder of monotone maps N→ N.

Exercise 3.58. Let C be an arbitrary category and let P be a preorder, thought of as a

category. Consider the following statements:

1. For any two functors F,G : C → P, there is at most one natural transformation

F→ G.

2. For any two functors F,G : P → C, there is at most one natural transformation

F→ G.

For each, if it is true, say why; if it is false, give a counterexample. ♦

Remark 3.59. Recall that inRemark 2.71we said the categoryof preorders is equivalent to

the category of Bool-categories. We can now state the precisemeaning of this sentence.

First, there exists a category PrO in which the objects are preorders and themorphisms

are monotone maps. Second, there exists a category Bool-Cat in which the objects are

Bool-categories and the morphisms are Bool-functors. We call these two categories

equivalent because there exist functors F : PrO → Bool-Cat and G : Bool-Cat → PrO
such that there exist natural isomorphisms F # G � idPrO and G # F � idBool-Cat in the

sense of Definition 3.49.

3.3.5 The category of instances on a schema

Definition 3.60. Suppose that C is a database schema and I , J : C → Set are database

instances. An instance homomorphism between them is a natural transformation α : I →
J. Write C-Inst B SetC to denote the functor category as defined in Definition 3.54.

We saw in Example 3.53 that 1-Inst is equivalent to the category Set. In this

subsection, we will show that there is a schema whose instances are graphs and whose

instance homomorphisms are graph homomorphisms.

Extended example: the category of graphs as a functor category. You may find

yourself back in the primordial ooze (first discussed in Section 2.3.2), because while

previously we have been using graphs to present categories, now we obtain graphs

themselves as database instances on a specific schema (which is itself a graph):

Gr B
Arrow• Vertex•

source

target

no equations
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Here’s an example Gr-instance, i.e. set-valued functor I : Gr→ Set, in table form:

Arrow source target
a 1 2

b 1 3

c 1 3

d 2 2

e 2 3

Vertex
1

2

3

4

(3.61)

Here I(Arrow) � {a , b , c , d , e}, and I(Vertex) � {1, 2, 3, 4}. One can draw the instance

I as a graph:

I �

1• 2•

3• 4•

a

b

c
e

d

Every row in the Vertex table is drawn as a vertex, and every row in the Arrow table

is drawn as an arrow, connecting its specified source and target. Every possible graph

can be written as a database instance on the schema Gr, and every possible Gr-instance
can be represented as a graph.

Exercise 3.62. In Eq. (3.2), a graph is shown (forget the distinction between white and

black nodes). Write down the corresponding Gr-instance, as in Eq. (3.61). (Do not be

concerned that you are in the primordial ooze.) ♦

Thus the objects in the category Gr-Inst are graphs. The morphisms in Gr-Inst
are called graph homomorphisms. Let’s unwind this. Suppose that G,H : Gr → Set
are functors (i.e. Gr-instances); that is, they are objects G,H ∈ Gr-Inst. A morphism

G→ H is a natural transformation α : G→ H between them; what does that entail?

By Definition 3.49, since Gr has two objects, α consists of two components,

αVertex : G(Vertex) → H(Vertex) and αArrow : G(Arrow) → H(Arrow),

both of which are morphisms in Set. In other words, α consists of a function from

vertices of G to vertices of H and a function from arrows of G to arrows of H. For these

functions to constitute a graph homomorphism, they must “respect source and target”

in the precise sense that the naturality condition, Eq. (3.50) holds. That is, for every

morphism in Gr, namely source and target, the following diagrams must commute:

G(Arrow) H(Arrow)

G(Vertex) H(Vertex)

αArrow

G(source) H(source)

αVertex

G(Arrow) H(Arrow)

G(Vertex) H(Vertex)

αArrow

G(target) H(target)

αVertex

Thesemay look complicated, but they say exactlywhatwewant. Wewant the functions

αVertex and αArrow to respect source and targets in G and H. The left diagram says “start
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with an arrow in G. You can either apply α to the arrow and then take its source in H,

or you can take its source in G and then apply α to that vertex; either way you get the

same answer.” The right-hand diagram says the same thing about targets.

Example 3.63. Consider the graphs G and H shown below

G B 1• 2• 3•a b H B
4• 5•

c

d
e

Here they are, written as database instances—i.e. set-valued functors—on Gr:

G B

Arrow source target
a 1 2

b 2 3

Vertex
1

2

3

H B

Arrow source target
c 4 5

d 4 5

e 5 5

Vertex
4

5

The top row is G and the bottom row is H. They are offset so you can more easily

complete the following exercise.

Exercise 3.64. We claim that—with G,H as in Example 3.63—there is exactly one

graph homomorphism α : G→ H such that αArrow(a) � d.

1. What is the other value of αArrow, and what are the three values of αVertex?

2. In your own copy of the tables of Example 3.63, draw αArrow as two lines connect-

ing the cells in the ID column of G(Arrow) to those in the ID column of H(Arrow).
Similarly, draw αVertex as connecting lines.

3. Check the source column and target column and make sure that the matches are

natural, i.e. that “alpha-then-source equals source-then-alpha” and similarly for

“target.” ♦

3.4 Adjunctions and data migration

Wehave talked about how set-valued functors on a schema can be understood as filling

that schema with data. But there are also functors between schemas. When the two

sorts of functors are composed, data is migrated. This is the simplest form of data

migration; more complex ways to migrate data come from using adjoints. All of the

above is the subject of this section.
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3.4.1 Pulling back data along a functor

To begin, we will migrate data between the graph-indexing schema Gr and the loop

schema, which we call DDS, shown below

Gr B
Arrow• Vertex•

source

target

no equations

DDS B

State•

next

no equations

We begin by writing down a sample instance I : DDS→ Set on this schema:

State next
1 4

2 4

3 5

4 5

5 5

6 7

7 6

(3.65)

We call the schema DDS to stand for discrete dynamical system. Indeed, wemay think

of the data in the DDS-instance of Eq. (3.65) as listing the states and movements of a

deterministic machine: at every point in time the machine is in one of the listed states,

and given the machine in one of the states, in the next instant it moves to a uniquely

determined next state.

Our goal is to migrate the data in Eq. (3.65) to data on Gr; this will give us the data

of a graph and so allow us to visualise our machine.

We will use a functor connecting these schemas in order to move data between

them. The reader can create any functor she likes, but we will use a specific functor

F : Gr→ DDS to migrate data in a way that makes sense to us, the authors. Here we

draw F, using colors to hopefully aid understanding:

Arrow•

Vertex•

source target

Gr

State•

next

DDS

F

The functor F sends both objects of Gr to the ‘State’ object of DDS (as it must). On

morphisms, it sends the ‘source’ morphism to the identity morphism on ‘State’, and

the ‘target’ morphism to the morphism ‘next’.



3.4. ADJUNCTIONS AND DATA MIGRATION 101

A sample database instance on DDS was given in Eq. (3.65); recall this is a functor

I : DDS→ Set. So now we have two functors as follows:

Gr DDS Set.F I
(3.66)

Objects in Gr are sent by F to objects in DDS, which are sent by I to objects in Set,
which are sets. Morphisms in Gr are sent by F to morphisms in DDS, which are

sent by I to morphisms in Set, which are functions. This defines a composite functor

F # I : Gr→ Set. Both F and I respect identities and composition, so F # I does too. Thus
we have obtained an instance on Gr, i.e. we have converted our discrete dynamical

system from Eq. (3.65) into a graph! What graph is it?

For an instance on Gr, we need to fill an Arrow table and a Vertex table. Both

of these are sent by F to State, so let’s fill both with the rows of State in Eq. (3.65).

Similarly, since F sends ‘source’ to the identity and sends ‘target’ to ‘next’, we obtain

the following tables:

Arrow source target
1 1 4

2 2 4

3 3 5

4 4 5

5 5 5

6 6 7

7 7 6

Vertex
1

2

3

4

5

6

7

Now that we have a graph, we can draw it.

1• 2•
3• 4• 6• 7•

•
5

1 2

3 4

6

7

5

Each arrow is labeled by its source vertex, as if to say, “What I do next is determined

by what I am now.”

Exercise 3.67. Consider the functor G : Gr → DDS given by sending ‘source’ to

‘next’ and sending ‘target’ to the identity on ‘State’. Migrate the same data, called I
in Eq. (3.65), using the functor G. Write down the tables and draw the corresponding

graph. ♦

Werefer to the above procedure—basically just composing functors as in Eq. (3.66)—

as “pulling back data along a functor.” We just now pulled back data I along functor

F.
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Definition 3.68. Let C and D be categories and let F : C → D be a functor. For any

set-valued functor I : D→ Set, we refer to the composite functor F # I : C→ Set as the
pullback of I along F.

Givenanatural transformation α : I ⇒ J, there is anatural transformation αF : F#I ⇒
F # J, whose component (F # I)(c) → (F # J)(c) for any c ∈ Ob(C) is given by (αF)c B αFc .

C D SetF
I

J

α { C Set
F#I

F#J

αF

This uses the data of F to define a functor ∆F : D-Inst→ C-Inst.

Note that the term pullback is also used for a certain sort of limit, for more details

see Remark 3.100.

3.4.2 Adjunctions

In Section 1.4 we discussed Galois connections, which are adjunctions between pre-

orders. Now that we’ve defined categories and functors, we can discuss adjunctions

in general. The relevance to databases is that the data migration functor ∆ from Defi-

nition 3.68 always has two adjoints of its own: a left adjoint which we denote Σ and a

right adjoint which we denote Π.

Recall that an adjunction between preorders P and Q is a pair of monotone maps

f : P → Q and 1 : Q → P that are almost inverses: we have

f (p) ≤ q if and only if p ≤ 1(q). (3.69)

Recall from Section 3.2.3 that in a preorder P, a hom-set P(a , b) has one element when

a ≤ b, and no elements otherwise. We can thus rephrase Eq. (3.69) as an isomorphism

of sets Q( f (p), q) � P(p , 1(q)): either both are one-element sets or both are 0-element

sets. This suggests how to define adjunctions in the general case.

Definition 3.70. Let C and D be categories, and L : C→ D and R : D→ C be functors.

We say that L is left adjoint to R (and that R is right adjoint to L) if, for any c ∈ C and

d ∈ D, there is an isomorphism of hom-sets

αc ,d : C(c , R(d)) �−→ D(L(c), d)

that is natural in c and d.8

Given a morphism f : c → R(d) in C, its image 1 B αc ,d( f ) is called its mate.
Similarly, the mate of 1 : L(c) → d is f .
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To denote an adjunction we write L a R, or in diagrams,

C D
L

R

with the⇒ in the direction of the left adjoint.

Example 3.71. Recall that every preorder P can be regarded as a category. Galois

connections between preorders and adjunctions between the corresponding categories

are exactly the same thing.

Example 3.72. Let B ∈ Ob(Set) be any set. There is an adjunction called ‘currying B,’
after the logician Haskell Curry:

Set Set
−×B

(−)B
Set(A × B, C) � Set(A, CB)

Abstractly we write it as on the left, but what this means is that for any sets A, C, there

is a natural isomorphism as on the right.

To explain this, we need to talk about exponential objects in Set. Suppose that B
and C are sets. Then the set of functions B → C is also a set; let’s denote it CB

. It’s

written this way because if C has 10 elements and B has 3 elements then CB
has 10

3

elements, and more generally for any two finite sets |CB | � |C | |B |.
The idea of currying is that given sets A, B, and C, there is a one-to-one correspon-

dence between functions (A × B) → C and functions A → CB
. Intuitively, if I have a

function f of two variables a , b, I can “put off” entering the second variable: if you give

me just a, I’ll return a function B→ C that’s waiting for the B input. This is the curried

version of f . As one might guess, there is a formal connection between exponential

objects and what we called hom-elements b ( c in Definition 2.79.

Exercise 3.73. In Example 3.72, we discussed an adjunction between functors − × B
and (−)B. But we only said how these functors worked on objects: for an arbitrary set

X, they return sets X × B and XB
respectively.

8
This naturality is between functors Cop × D → Set. It says that for any morphisms f : c′ → c in C

and 1 : d → d′ in D, the following diagram commutes:

C(c , Rd) D(Lc , d)

C(c′, Rd′) D(Lc′, d′)

C( f ,R1)

αc ,d

D(L f ,1)

αc′ ,d′
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1. Given a morphism f : X → Y, what morphism should − × B : X × B → Y × B
return?

2. Given a morphism f : X → Y, what morphism should (−)B : XB → YB
return?

3. Consider the function + : N × N → N, which sends (a , b) 7→ a + b. Currying +,

we get a certain function p : N→ NN. What is p(3)? ♦

Example 3.74. If you know some abstract algebra or topology, here are some other

examples of adjunctions.

1. Free constructions: given any set you get a free group, free monoid, free ring, free

vector space, etc.; each of these is a left adjoint. The corresponding right adjoint

takes a group, a monoid, a ring, a vector space etc. and forgets the algebraic

structure to return the underlying set.

2. Similarly, given a graph you get a free preorder or a free category, as we discussed

in Section 3.2.3; each is a left adjoint. The corresponding right adjoint is the

underlying graph of a preorder or of a category.

3. Discrete things: given any set you get a discrete preorder, discrete graph, discrete

metric space, discrete category, discrete topological space; each of these is a left

adjoint. The corresponding right adjoint is again underlying set.

4. Codiscrete things: given any set you get a codiscrete preorder, complete graph,

codiscrete category, codiscrete topological space; each of these is a right adjoint.

The corresponding left adjoint is the underlying set.

5. Given a group, you can quotient by its commutator subgroup to get an abelian

group; this is a left adjoint. The right adjoint is the inclusion of abelian groups

into groups.

3.4.3 Left and right pushforward functors, Σ and Π

Given F : C → D, the data migration functor ∆F turns D-instances into C-instances.

This functor has both a left and a right adjoint:

C-Inst D-Inst

ΣF

ΠF

∆F
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Using the names Σ and Π in this context is fairly standard in category theory. In the

case of databases, they have the following helpful mnemonic:

Migration Functor Pronounced Reminiscent of Database idea
∆ Delta Duplicate

or destroy

Duplicate or destroy

tables or columns

Σ Sigma Sum Union (sum up) data

Π Pi Product Pair9 and query data

Just likeweused∆F to pull back anydiscrete dynamical systemalong F : Gr→ DDS
and get a graph, the migration functors ΣF and ΠF can be used to turn any graph into

a discrete dynamical system. That is, given an instance J : Gr → Set, we can get

instances ΣF(J) and ΠF(J) on DDS. This, however, is quite technical, and we leave it

to the adventurous reader to compute an example, with help perhaps from [Spi14a],

which explores the definitions of Σ and Π in detail. A less technical shortcut is simply

to code up the computation in the open-source FQL software.

To get the basic idea across without getting mired in technical details, here we shall

instead discuss a very simple example. Recall the schemas from Eq. (3.5). We can set

up a functor between them, the one sending black dots to black dots and white dots to

white dots:

$◦

Economy

• First Class•

string

◦

Price

Position

Price

Position

A B

$◦

Airline Seat•

string

◦

Price

Position

�: B
F

With this functor F in hand, we can transform any B-instance into an A-instance using

∆F. Whereas ∆ was interesting in the case of turning discrete dynamical systems into

graphs in Section 3.4.1, it is not very interesting in this case. Indeed, it will just copy—∆

for duplicate—the rows in Airline seat into both Economy and First Class.

∆F has two adjoints, ΣF and ΠF, both of which transform any A-instance I into a

B-instance. The functor ΣF does what one would most expect from reading the names

on each object: it will put into Airline Seat the union of Economy and First Class:

ΣF(I)(Airline Seat) � I(Economy) t I(First Class).

The functor ΠF puts into Airline Seat the set of those pairs (e , f ) where e is an

Economy seat, f is a First Class seat, and e and f have the same price and position.

9
This is more commonly called “join” by database programmers.
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In this particular example, one imagines that there should be no such seats in a valid

instance I, in which caseΠF(I)(Airline Seat)would be empty. But in other uses of these

same schemas, ΠF can be a useful operation. For example, in the schema A replace

the label ‘Economy’ by ‘Rewards Program’, and in B replace ‘Airline Seat’ by ‘First

Class Seats’. Then the operation ΠF finds those first class seats that are also rewards

program seats. This operation is a kind of database query; querying is the operation

that databases are built for.

The moral is that complex data migrations can be specified by constructing functors

F between schemas and using the “induced” functors ∆F, ΣF, and ΠF. Indeed, in

practice essentially all usefulmigrations can be built up from these. Hence the language

of categories provides a framework for specifying and reasoning about datamigrations.

3.4.4 Single set summaries of databases

To give a stronger idea of the flavor of Σ and Π, we consider another special case,

namely where the target category D is equal to 1; see Exercise 3.12. In this case, there

is exactly one functor C→ 1 for any C; let’s denote it

! : C→ 1. (3.75)

Exercise 3.76. Describe the functor ! : C→ 1 from Eq. (3.75). Where does it send each

object? What about each morphism? ♦

Wewant to consider thedatamigration functorsΣ! : C-Inst→ 1-Inst andΠ! : C-Inst→
1-Inst. In Example 3.53, we saw that an instance on 1 is the same thing as a set. So let’s

identify 1-Inst with Set, and hence discuss

Σ! : C-Inst→ Set and Π! : C-Inst→ Set.

Given any schema C and instance I : C→ Set, we will get setsΣ!(I) andΠ!(I). Thinking
of these sets as database instances, each corresponds to a single one-column table—a

controlled vocabulary—summarizing an entire database instance on the schema C.

Consider the following schema

G B

Email• Address•
sent_by

received_by

no equations

(3.77)

Here’s a sample instance I : G→ Set:

Email sent_by received_by
Em_1 Bob Grace

Em_2 Grace Pat

Em_3 Bob Emmy

Em_4 Sue Doug

Em_5 Doug Sue

Em_6 Bob Bob

Address
Bob

Doug

Emmy

Grace

Pat

Sue
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Exercise 3.78. Note that G from Eq. (3.77) is isomorphic to the schema Gr. In Sec-

tion 3.3.5 we saw that instances on Gr are graphs. Draw the above instance I as a graph.
♦

Nowwehave a unique functor ! : G→ 1, andwewant to saywhatΣ!(I) andΠ!(I) give
us as single-set summaries. First,Σ!(I) tells us all the emailing groups—the “connected

components”—in I:

1
Bob-Grace-Pat-Emmy

Sue-Doug

This form of summary, involving identifying entries into common groups, or quotients,

is typical of Σ-operations.

The functor Π!(I) lists the emails from I which were sent from a person to her- or

him-self.

1
Em_6

This is again a sort of query, selecting the entries that fit the criterion of self-to-self

emails. Again, this is typical of Π-operations.

Where do these facts—thatΠ! and Σ! act the way we said—come from? Everything

follows from the definition of adjoint functors (3.70): indeed we hope this, together

with the examples given in Example 3.74, give the reader some idea of how general

and useful adjunctions are, both in mathematics and in database theory.

Onemore point: whilewewill not spell out the details, we note that these operations

are also examples of constructions known as colimits and limits in Set. We end this

chapter with bonusmaterial, exploring these key category theoretic constructions. The

reader should keep in mind that, in general and not just for functors to 1, Σ-operations
are built from colimits in Set, and Π-operations are built from limits in Set.

3.5 Bonus: An introduction to limits and colimits

What do products of sets, the results ofΠ!-operations on database instances, andmeets

in a preorder all have in common? The answer, as we shall see, is that they are all

examples of limits. Similarly, disjoint unions of sets, the results of Σ!-operations on

database instances, and joins in a preorder are all colimits. Let’s begin with limits.

Recall that Π! takes a database instance I : C → Set and turns it into a set Π!(I).
More generally, a limit turns a functor F : C→ D into an object of D.

3.5.1 Terminal objects and products

Terminal objects and products are each a sort of limit. Let’s discuss them in turn.
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Terminal objects. The most basic limit is a terminal object.

Definition 3.79. Let C be a category. Then an object Z in C is a terminal object if, for
each object C of C, there exists a unique morphism ! : C→ Z.

Since this unique morphism exists for all objects in C, we say that terminal objects

have a universal property.

Example 3.80. In Set, any set with exactly one element is a terminal object. Why?

Consider some such set {•}. Then for any other set C we need to check that there is

exactly one function ! : C → {•}. This unique function is the one that does the only

thing that can be done: it maps each element c ∈ C to the element • ∈ {•}.

Exercise 3.81. Let (P, ≤) be a preorder, let z ∈ P be an element, and let P be the

corresponding category (see Section 3.2.3). Show that z is a terminal object in P if and

only if it is a top element in P: that is, if and only if for all c ∈ P we have c ≤ z. ♦

Exercise 3.82. Name a terminal object in the category Cat. (Hint: recall Exercise 3.76.)

♦

Exercise 3.83. Not every category has a terminal object. Find one that doesn’t. ♦

Proposition 3.84. All terminal objects in a category C are isomorphic.

Proof. This is a simple, but powerful standard argument. Suppose Z and Z′ are both

terminal objects in some category C. Then there exist (unique) maps a : Z → Z′ and
b : Z′→ Z. Composing these, we get a map a # b : Z→ Z. Now since Z is terminal, this

map Z → Z must be unique. But idZ is also such a map. So we must have a # b � idZ.

Similarly, we find that b # a � idZ′. Thus a is an isomorphism, with inverse b. �

Remark 3.85 (“The limit” vs. “a limit”). Not only are all terminal objects isomorphic,

there is a unique isomorphism between any two. We hence say “terminal objects are

unique up to unique isomorphism.” To a category theorist, this is very nearly the same

thing as saying “all terminal objects are equal.” Thus we often abuse terminology and

talk of ‘the’ terminal object, rather than “a” terminal object. Wewill do the same for any

sort of limit or colimit, e.g. speak of “the product” of two sets, rather than “a product.”

We saw a similar phenomenon in Definition 1.81.

Products. Products are slightly more complicated to formalize than terminal objects,

but they are familiar in practice.

Definition 3.86. Let C be a category, and let X,Y be objects in C. A product of X and Y is

an object, denoted X×Y, together withmorphisms pX : X×Y → X and pY : X×Y → Y
such that for all objects C together with morphisms f : C → X and 1 : C → Y, there
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exists a unique morphism C→ X×Y, denoted 〈 f , 1〉, for which the following diagram

commutes:

C

X Y

X × Y

f 1

〈 f ,1〉

pX pY

We will try to bring this down to earth in Example 3.87. Before we do, note that

X × Y is an object equipped with morphisms to X and Y. Roughly speaking, it is like

“the best object-equipped-with-morphisms-to-X-and-Y” in all of C, in the sense that

any other object-equipped-with-morphisms-to-X-and-Y maps to it uniquely. This is

called a universal property. It’s customary to use a dotted line to indicate the unique

morphism that exists because of some universal property.

Example 3.87. In Set, a product of two sets X and Y is their usual cartesian product

X × Y B {(x , y) | x ∈ X, y ∈ Y},

which comes with two projections pX : X × Y → X and pY : X × Y → Y, given by

pX(x , y) B x and pY(x , y) B y.
Given any set C with functions f : C → X and 1 : C → Y, the unique map from C

to X × Y such that the required diagram commutes is given by 〈 f , 1〉(c) B ( f (c), 1(c)).
Here is a picture of the product 6 × 4 of sets 6 and 4.

(1,1)•1•

(1,2)•2•

(1,3)•3•

(1,4)•4•

1•

(2,1)•

(2,2)•

(2,3)•

(2,4)•

2•

(3,1)•

(3,2)•

(3,3)•

(3,4)•

3•

(4,1)•

(4,2)•

(4,3)•

(4,4)•

4•

(5,1)•

(5,2)•

(5,3)•

(5,4)•

5•

(6,1)•

(6,2)•

(6,3)•

(6,4)•

6•

C

∀ f

∀1

∃!

Exercise 3.88. Let (P, ≤) be a preorder, let x , y ∈ P be elements, and let P be the

corresponding category. Show that the product x × y in P agrees with their meet x ∧ y
in P. ♦
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Example 3.89. Given two categories C and D, their product C × D may be given as

follows. The objects of this category are pairs (c , d), where c is an object of C and d is an

object of D. Similarly, morphisms (c , d) → (c′, d′) are pairs ( f , 1) where f : c → c′ is a
morphism inC and 1 : d → d′ is amorphism inD. Composition ofmorphisms is simply

given by composing each entry in the pair separately, so ( f , 1) # ( f ′, 1′) � ( f # f ′, 1 # 1′).

Exercise 3.90.
1. What are the identity morphisms in a product category C ×D?

2. Why is composition in a product category associative?

3. What is the product category 1 × 2?
4. What is the product category P×Qwhen P and Q are preorders and P and Q are

the corresponding categories? ♦

These two constructions, terminal objects and products, are subsumed by the notion

of limit.

3.5.2 Limits

We’ll get a little abstract. Consider the definition of product. This says that given any

pair of maps X
f
←− C

1

−→ Y, there exists a unique map C → X × Y such that certain

diagrams commute. This has the flavor of being terminal—there is a unique map to

X × Y—but it seems a bit more complicated. How are the two ideas related?

It turns out that products are terminal objects, but of a different category, which

we’ll call Cone(X,Y), the category of cones over X and Y in C. We will see in Exercise 3.91

that X
pX←−− X × Y

pY−−→ Y is a terminal object in Cone(X,Y).
An object of Cone(X,Y) is simply a pair of maps X

f
←− C

1

−→ Y. A morphism from

X
f
←− C

1

−→ Y to X
f ′
←− C′

1′

−→ Y in Cone(X,Y) is a morphism a : C → C′ in C such that

the following diagram commutes:

C

X Y

C′

f 1

a

f ′ 1′

Exercise 3.91. Check that a product X
pX←−− X×Y

pY−−→ Y is exactly the same as a terminal

object in Cone(X,Y). ♦

We’re now ready for the abstract definition. Don’t worry if the details are unclear;

the main point is that it is possible to unify terminal objects, maximal elements, and

meets, products of sets, preorders, and categories, and many other familiar friends

under the scope of a single definition. In fact, they’re all just terminal objects in

different categories.
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Recall from Definition 3.51 that formally speaking, a diagram in C is just a functor

D : J→ C. Here J is called the indexing category of the diagram D.

Definition 3.92. Let D : J→ C be a diagram. A cone (C, c∗) over D consists of

(i) an object C ∈ C;
(ii) for each object j ∈ J, a morphism c j : C→ D( j).

To be a cone, these must satisfy the following property:

(a) for each f : j → k in J, we have ck � c j # D( f ).
A morphism of cones (C, c∗) → (C′, c′∗) is a morphism a : C→ C′ in C such that for all

j ∈ Jwe have c j � a # c′j . Cones over D, and their morphisms, form a category Cone(D).
The limit of D, denoted lim(D), is the terminal object in the category Cone(D). Say

it is the cone lim(D) � (C, c∗); we refer to C as the limit object and the map c j for any

j ∈ J as the jth projection map.

For visualization purposes, if J is the free category on the graph

1 3

2 4 5

with five objects and five non-identity morphisms, then we may draw a diagram

D : J→ C inside C as on the left below, and a cone on it as on the right:

C

D1 D3

D2 D4 D5

C

D1 D3

D2 D4 D5

c1

c2

c3 c4

c5

Here, any two parallel paths that start at C are considered the same. Note that both

these diagrams depict a collection of objects and morphisms inside the category C.

Example 3.93. Terminal objects are limits where the indexing category is empty, J � �.

Example 3.94. Products are limits where the indexing category consists of two objects

v ,w and no arrows, J �
v• w• .

3.5.3 Finite limits in Set

Recall that this discussion was inspired by wanting to understand Π-operations, and

in particular Π!. We can now see that a database instance I : C → Set is a diagram in
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Set. The functorΠ! takes the limit of this diagram. In this subsectionwe give a formula

describing the result. This captures all finite limits in Set.
In database theory, we work with categories C that are presented by a finite graph

plus equations. We won’t explain the details, but it’s in fact enough just to work with

the graph part: as far as limits are concerned, the equations in C don’t matter. For

consistency with the rest of this section, let’s denote the database schema by J instead

of C.

Theorem3.95. Let Jbe a categorypresentedby thefinite graph (V,A, s , t) togetherwith

some equations, and let D : J → Set be a set-valued functor. Write V � {v1 , . . . , vn}.
The set

lim

J
D B

{
(d1 , . . . , dn) | di ∈ D(vi) for all 1 ≤ i ≤ n and

for all a : vi → v j ∈ A, we have D(a)(di) � d j
}
.

together with the projection maps pi : (limJ D) → D(vi) given by pi(d1 , . . . , dn) B di ,

is a limit of D.

Example 3.96. If J is the empty graph • , then n � 0: there are no vertices. There is ex-

actly one empty tuple ( ), which vacuously satisfies the properties, sowe’ve constructed

the limit as the singleton set {( )} consisting of just the empty tuple. Thus the limit of

the empty diagram, i.e. the terminal object in Set is the singleton set. See Remark 3.85.

Exercise 3.97. Show that the limit formula in Theorem 3.95 works for products. See

Example 3.94. ♦

Exercise 3.98. If D : 1 → Set is a functor, what is the limit of D? Compute it using

Theorem 3.95, and check your answer against Definition 3.92. ♦

Pullbacks. In particular, the condition that the limit of D : J → Set selects tuples

(d1 , . . . , dn) such that D(a)(di) � d j for each morphism a : i → j in J allows us to use

limits to select data that satisfies certain equations or constraints. This is what allows

us to express queries in terms of limits. Here is an example.

Example 3.99. If J is presented by the cospan graph

x•
f
−−→ a•

1

←−−
y
• , then its limit is

known as a pullback. Given the diagram X
f
−→ A

1

←− Y, the pullback is the cone shown
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on the left below:

C Y

X A

cx

cy

ca 1

f

X ×A Y Y

X A

cx

cy

1

f

y

The fact that the diagram commutes means that the diagonal arrow ca is in some

sense superfluous, so one generally denotes pullbacks by dropping the diagonal arrow,

naming the cone point X ×A Y, and adding the y symbol, as shown to the right above.

Here is a picture to help us unpack the definition in Set. We take X � 6, Y � 4, and

A to be the set of colors {red, blue, black}.

(1,1)•1•

(1,2)•2•

(1,3)•3•

(1,4)•4•

1•

(2,1)•

(2,2)•

(2,3)•

(2,4)•

2•

(3,1)•

(3,2)•

(3,3)•

(3,4)•

3•

(4,1)•

(4,2)•

(4,3)•

(4,4)•

4•

(5,1)•

(5,2)•

(5,3)•

(5,4)•

5•

(6,1)•

(6,2)•

(6,3)•

(6,4)•

6•

The functions f : 6 → A and 1 : 4 → A are expressed in the coloring of the dots: for

example, 1(2) � 1(4) � red, while f (5) � black. The pullback selects pairs (i , j) ∈ 6 × 4

such that f (i) and 1( j) have the same color.

Remark 3.100. As mentioned following Definition 3.68, this definition of pullback is

not to be confused with the pullback of a set-valued functor along a functor; they are

for now best thought of as different concepts which accidentally have the same name.

Due to the power of the primordial ooze, however, the pullback along a functor is a

special case of pullback as the limit of a cospan: it can be understood as the pullback

of a certain cospan in Cat. To unpack this, however, requires the notions of category of

elements and discrete opfibration; ask your friendly neighborhood category theorist.

3.5.4 A brief note on colimits

Just like upper bounds have a dual concept—namely that of lower bounds—so limits

have a dual concept: colimits. To expose the reader to this concept, we provide a

succinct definition of these using opposite categories and opposite functors. The point,

however, is just exposure; we will return to explore colimits in detail in Chapter 6.

Exercise 3.101. Recall from Example 3.27 that every category C has an opposite Cop
.

Let F : C→ D be a functor. How should we define its opposite, Fop
: Cop → Dop

? That
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is, how should Fop
act on objects, and how should it act on morphisms? ♦

Definition 3.102. Given a category C we say that a cocone in C is a cone in Cop
.

Given a diagram D : J → C, we may take the limit of the functor Dop
: Jop → Cop

.

This is a cone in Cop
, and so by definition a cocone in C. The colimit of D is this cocone.

Definition 3.102 is like a compressed file: useful for transmitting quickly, but com-

pletely useless for workingwith, unless you can successfully unpack it. Wewill unpack

it later in Chapter 6 when we discuss electric circuits.

3.6 Summary and further reading

Congratulations on making it through one of the longest chapters in the book! We

apologize for the length, but this chapter had a lot of work to do. Namely it introduced

the “big three” of category theory—categories, functors, and natural transformations—

as well as discussed adjunctions, limits, and very briefly colimits.

That’s really quite a bit of material. For more on all these subjects, one can consult

any standard book on category theory, of which there are many. The bible (old,

important, seminal, and requires a priest to explain it) is [Mac98]; another thorough

introduction is [Bor94]; a logical perspective is given in [Awo10]; a computer science

perspective is given in [BW90] and [Pie91] and [Wal92]; math students should probably

read [Lei14] or [Rie17] or [Gra18]; a general audience might start with [Spi14a].

We presented categories from a database perspective, because data is pretty ubiq-

uitous in our world. A database schema—i.e. a system of interlocking tables—can be

capturedby a categoryC, andfilling itwithdata corresponds to a functorC→ Set. Here

Set is the category of sets, perhaps the most important category to mathematicians.

The perspective of using category theory to model databases has been rediscovered

several times. It seems to have first been discussed by various authors around the

mid-90’s [IP94; CD95; PS95; TG96]. Bob Rosebrugh and collaborators took it much

further in a series of papers including [FGR03; JR02; RW92]. Most of these authors

tend to focus on sketches, which are more expressive categories. Spivak rediscovered

the idea again quite a bit later, but focused on categories rather than sketches, so as to

have all three data migration functors ∆,Σ,Π; see [Spi12; SW15b]. The version of this

story presented in the chapter, including the white and black nodes in schemas, is part

of a larger theory of algebraic databases, where a programming language such as Java

or Haskell is attached to a database. The technical details are worked out in [Sch+17],

and its use in database integration projects can be found in [SW15a; Wis+15].

Beforewe leave this chapter, wewant to emphasize two things: coherence conditions

and universal constructions.

Coherence conditions. In the definitions of category, functor, andnatural transforma-

tions, we have data (indexed by (i)) that is required to satisfy certain properties (indexed
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by (a)). Indeed, for categories it was about associativity and unitality of composition,

for functors it was about respecting composition and identities, and for natural trans-

formations it was the naturality condition. These conditions are often called coherence
conditions: we want the various structures to cohere, to work well together, rather than

to flop around unattached.

Understanding why these particular structures and coherence conditions are “the

right ones” is more science than mathematics: we empirically observe that certain

combinations result in ideas that are both widely applicable and also strongly compo-

sitional. That is, we become satisfied with coherence conditions when they result in

beautiful mathematics down the road.

Universal constructions. Universal constructions are one of the most important

themes of category theory. Roughly speaking, one gives some specified shape in a

category and says “find me the best solution!” And category theory comes back and

says “do you want me to approximate from the left or the right (colimit or limit)?” You

respond, and either there is a best solution or there is not. If there is, it’s called the

(co)limit; if there’s not we say “the (co)limit does not exist.”

Even data migration fits this form. We say “find me the closest thing in D that

matches my C-instance using my functor F : C → D.” In fact this approach—known

as Kan extensions—subsumes the others. One of the two founders of category theory,

Saunders Mac Lane, has a section in his book [Mac98] called “All concepts are Kan

extensions,” a big statement, no?





Chapter 4

Collaborative design:
Profunctors, categorification, and

monoidal categories

4.1 Can we build it?

When designing a large-scale system, many different fields of expertise are joined

to work on a single project. Thus the whole project team is divided into multiple

sub-teams, each of which is working on a sub-project. And we recurse downward:

the sub-project is again factored into sub-sub-projects, each with their own team. One

could refer to this sort of hierarchical design process as collaborative design, or co-design.
In this chapter, we discuss a mathematical theory of co-design, due to Andrea Censi

[Cen15].

Consider just one level of this hierarchy: a project and a set of teams working on

it. Each team is supposed to provide resources—sometimes called “functionalities”—to

the project, but the team also requires resources in order to do so. Different design

teams must be allowed to plan and work independently from one another in order for

progress to be made. Yet the design decisions made by one group affect the design

decisions others can make: if A wants more space in order to provide a better radio

speaker, then B must use less space. So these teams—though ostensibly working

independently—are dependent on each other after all.

The combination of dependence and independence is crucial for progress to be

made, and yet it can cause major problems. When a team requires more resources than

it originally expected to require, or if it cannot provide the resources that it originally

claimed it could provide, the usual response is for the team to issue a design-change

notice. But these affect neighboring teams: if team A now requiresmore than originally

claimed, team B may have to change their design, which can in turn affect team C. Thus

these design-change notices can ripple through the system through feedback loops and

117
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can cause whole projects to fail [SLG+15].

As an example, consider the design problem of creating a robot to carry some load

at some velocity. The top-level planner breaks the problem into three design teams:

chassis team, motor team, and battery team. Each of these teams could break up into

multiple parts and the process repeated, but let’s remain at the top level and consider

the resources produced and the resources required by each of our three teams.

The chassis in some sense provides all the functionality—it carries the load at the

velocity—but it requires some things in order to do so. It requires money to build,

of course, but more to the point it requires a source of torque and speed. These are

supplied by the motor, which in turn needs voltage and current from the battery. Both

the motor and the battery cost money, but more importantly they need to be carried

by the chassis: they become part of the load. A feedback loop is created: the chassis

must carry all the weight, even that of the parts that power the chassis. A heavier

battery might provide more energy to power the chassis, but is the extra power worth

the heavier load?

In the following picture, each part—chassis, motor, battery, and robot—is shown as

a box with ports on the left and right. The functionalities, or resources produced by

the part are shown as ports on the left of the box, and the resources required by the

part are shown as ports on its right.

Σ

Chassis

Motor Battery

Σ

Robot

≤

≤

≤ ≤

≤

≤

≤
Voltage

≤
Current

≤

$ ≤

≤

≥
≥

Weight

(as payload)

Velocity

$

Torque

Speed

$

Weight

Weight

$

(4.1)

The boxesmarkedΣ correspond to summing inputs. These boxes are not to bedesigned,

but we will see later that they fit easily into the same conceptual framework. Note

also the ≤’s on each wire; they indicate that if box A requires a resource that box B
produces, then A’s requirement must be less-than-or-equal-to B’s production. The

chassis requires torque, and the motor must produce at least that much torque.

To formalize this a bit more, let’s call diagrams like the one above co-design diagrams.
Each of the wires in a co-design diagram represents a preorder of resources. For

example, in Eq. (4.1) every wire corresponds to a resource type—weights, velocities,

torques, speeds, costs, voltages, and currents—where resources of each type can be

ordered from less useful to more useful. In general, these preorders do not have to be

linear orders, though in the above cases each will likely correspond to a linear order:

$10 ≤ $20, 5W ≤ 6W, and so on.

Each of the boxes in a co-design diagram corresponds to what we call a feasibility



4.2. ENRICHED PROFUNCTORS 119

relation. A feasibility relation matches resource production with requirements. For

every pair (p , r) ∈ P × R, where P is the preorder of resources to be produced and R
is the preorder of resources to be required, the box says “true” or “false”—feasible or

infeasible—for that pair. In other words, “yes I can provide p given r” or “no, I cannot
provide p given r.”

Feasibility relations hence define a function Φ : P × R → Bool. For a function

Φ : P × R → Bool to make sense as a feasibility relation, however, there are two

conditions:

(a) If Φ(p , r) � true and p′ ≤ p, then Φ(p′, r) � true.
(b) If Φ(p , r) � true and r ≤ r′ then Φ(p , r′) � true.

These conditions, which we will see again in Definition 4.2, say that if you can produce

p given resources r, you can (a) also produce less p′ ≤ p with the same resources r, and
(b) also produce p given more resources r′ ≥ r. We will see that these two conditions

are formalized by requiring Φ to be a monotone map Pop × R→ Bool.
A co-design problem, represented by a co-design diagram, asks us to find the com-

posite of some feasibility relations. It asks, for example, given these capabilities of the

chassis, motor, and battery teams, can we build a robot together? Indeed, a co-design

diagram factors a problem—for example, that of designing a robot—into intercon-

nected subproblems, as in Eq. (4.1). Once the feasibility relation is worked out for each

of the subproblems, i.e. the inner boxes in the diagram, the mathematics provides an

algorithm producing the feasibility relation of the whole outer box. This process can

be recursed downward, from the largest problem to tiny subproblems.

In this chapter, we will understand co-design problems in terms of enriched pro-

functors, in particular Bool-profunctors. A Bool-profunctor is like a bridge connecting
one preorder to another. We will show how the co-design framework gives rise to a

structure known as a compact closed category, and that any compact closed category

can interpret the sorts of wiring diagrams we see in Eq. (4.1).

4.2 Enriched profunctors

In this section we will understand how co-design problems form a category. Along the

way we will develop some abstract machinery that will allow us to replace preorder

design spaces with other enriched categories.

4.2.1 Feasibility relationships as Bool-profunctors

The theory of co-design is based on preorders: each resource—e.g. velocity, torque, or

$—is structured as a preorder. The order x ≤ y represents the availability of x given
y, i.e. that whenever you have y, you also have x. For example, in our preorder of

wattage, if 5W ≤ 10W, it means that whenever we are provided 10W, we implicitly also

have 5W. Above we referred to this as an order from less useful to more useful: if x is

always available given y, then x is less useful than y.
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Weknow fromSection 2.3.2 that a preorderX can be conceived of as aBool-category.
Given x , y ∈ X, we haveX(x , y) ∈ B; this value responds to the assertion “x is available

given y,” marking it either true or false.

Our goal is to see feasibility relations as Bool-profunctors, which are a special case

of something called enriched profunctors. Indeed, we hope that this chapter will give

you some intuition for profunctors, arising from the table

Bool-category preorder

Bool-functor monotone map

Bool-profunctor feasibility relation

Because enriched profunctors are a bit abstract, we first concretely discuss Bool-
profunctors as feasibility relations. Recall that if X � (X, ≤) is a preorder, then its

opposite Xop � (X, ≥) has x ≥ y iff y ≤ x.

Definition 4.2. Let X � (X, ≤X) and Y � (Y, ≤Y) be preorders. A feasibility relation for X

given Y is a monotone map

Φ : Xop × Y→ Bool. (4.3)

We denote this by Φ : X Y.

Given x ∈ X and y ∈ Y, if Φ(x , y) � truewe say x can be obtained given y.

As mentioned in the introduction, the requirement that Φ is monotone says that

if x′ ≤X x and y ≤Y y′ then Φ(x , y) ≤Bool Φ(x′, y′). In other words, if x can be

obtained given y, and if x′ is available given x, then x′ can be obtained given y. And if

furthermore y is available given y′, then x′ can also be obtained given y′.

Exercise 4.4. Suppose we have the preorders

category

preordermonoid

X B

nothing

this book

Y B

1. Draw the Hasse diagram for the preorder Xop × Y.
2. Write down a profunctorΛ : X Y and, readingΛ(x , y) � true as “my aunt can

explain an x given y,” give an interpretation of the fact that the preimage of true

forms an upper set in Xop × Y. ♦

To generalize the notion of feasibility relation, we must notice that the symmetric

monoidal preorder Bool has more structure than just that of a symmetric monoidal

preorder: as mentioned in Exercise 2.93, Bool is a quantale. That means it has all

joins ∨, and a closure operation, which we’ll write⇒ : B × B→ B. By definition, this

operation satisfies the property that for all b , c , d ∈ B one has

b ∧ c ≤ d iff b ≤ (c ⇒ d). (4.5)
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The operation⇒ is given by the following table:

c d c ⇒ d
true true true

true false false

false true true

false false true

(4.6)

Exercise 4.7. Show that⇒ as defined in Eq. (4.6) indeed satisfies Eq. (4.5). ♦

On an abstract level, it is the fact that Bool is a quantale which makes everything

in this chapter work; any other (unital commutative) quantale also defines a way to

interpret co-design diagrams. For example, we could use the quantale Cost, which

would describe not whether x is available given y but the cost of obtaining x given y;
see Example 2.37 and Definition 2.46.

4.2.2 V-profunctors

We are now ready to recast Eq. (4.3) in abstract terms. Recall the notions of enriched

product (Definition 2.74), enriched functor (Definition 2.69), and quantale (Defini-

tion 2.79).

Definition 4.8. Let V � (V, ≤, I , ⊗) be a (unital commutative) quantale,
1
and let X and

Y be V-categories. A V-profunctor from X to Y, denoted Φ : X Y, is a V-functor

Φ : Xop × Y→ V.

Note that a V-functor must have V-categories for domain and codomain, so here we

are considering V as enriched in itself; see Remark 2.89.

Exercise 4.9. Show that a V-profunctor (Definition 4.8) is the same as a function

Φ : Ob(X) × Ob(Y) → V such that for any x , x′ ∈ X and y , y′ ∈ Y the following

inequality holds in V:

X(x′, x) ⊗ Φ(x , y) ⊗ Y(y , y′) ≤ Φ(x′, y′). ♦

Exercise 4.10. Is it true that a Bool-profunctor, as in Definition 4.8, is exactly the same

as a feasibility relation, as in Definition 4.2, once you peel back all the jargon? Or is

there some subtle difference? ♦

We know that Definition 4.8 is quite abstract. But have no fear, we will take you

through it in pictures.

1
From here on, as in Chapter 2, whenever we speak of quantales we mean unital commutative

quantales.
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Example 4.11 (Bool-profunctors and their interpretation as bridges). Let’s discuss Defi-

nition 4.8 in the case V � Bool. One way to imagine a Bool-profunctor Φ : X Y is in

terms of building bridges between two cities. Recall that a preorder (a Bool-category)
can be drawn using a Hasse diagram. We’ll think of the preorder as a city, and each

vertex in it as some point of interest. An arrow A → B in the Hasse diagram means

that there exists a way to get from point A to point B in the city. So what’s a profunctor?

A profunctor is just a bunch of bridges connecting points in one city to points in

another. Let’s see a specific example. Here is a picture of a Bool-profunctorΦ : X Y:

N•

W• E•

•
S

X B

•
a

b• c•

d•

e•

�: Y

Both X and Y are preorders, e.g. with W ≤ N and b ≤ a. With bridges coming from

the profunctor in blue, one can now use both paths within the cities and the bridges to

get from points in city X to points in city Y. For example, since there is a path from N
to e and E to a, we have Φ(N, e) � true and Φ(E, a) � true. On the other hand, since

there is no path from W to d, we have Φ(W, d) � false.
In fact, one could put a box around this entire picture and see a new preorder with

W ≤ N ≤ c ≤ a, etc. This is called the collage of Φ; we’ll explore this in more detail

later; see Definition 4.42.

Exercise 4.12. We can express Φ as a matrix where the (m , n)th entry is the value of

Φ(m , n) ∈ B. Fill out the Bool-matrix:

Φ a b c d e
N ? ? ? ? true

E true ? ? ? ?

W ? ? ? false ?

S ? ? ? ? ?

♦

We’ll call this the feasibility matrix of Φ.

Example 4.13 (Cost-profunctors and their interpretation as bridges). Let’s now consider

Cost-profunctors. Again we can view these as bridges, but this time our bridges are
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labelled by their length. Recall from Definition 2.53 and Eq. (2.56) that Cost-categories
are Lawvere metric spaces, and can be depicted using weighted graphs. We’ll think of

such a weighted graph as a chart of distances between points in a city, and generate a

Cost-profunctor by building a few bridges between the cities.

Here is a depiction of a Cost-profunctor Φ : X Y:

•
A

•
B

•
C

•
D

3

3

4

2

5X B

x•

•
y

z•3 4

3

4

�: Y

11

9

(4.14)

The distance from a point x in city X to a point y in city Y is given by the shortest path

that runs from x through X, then across one of the bridges, and then through Y to the

destination y. So for example

Φ(B, x) � 11, Φ(A, z) � 20, Φ(C, y) � 17.

Exercise 4.15. Fill out the Cost-matrix:

Φ x y z
A ? ? 20

B 11 ? ?

C ? 17 ?

D ? ? ?

♦

Remark 4.16 (Computing profunctors via matrix multiplication). We can give an algo-

rithm for computing the above distance matrix using matrix multiplication. First, just

like in Eq. (2.59), we can begin with the labelled graphs in Eq. (4.14) and read off the

matrices of arrow labels for X, Y, and Φ:

MX A B C D
A 0 ∞ 3 ∞
B 2 0 ∞ 5

C ∞ 3 0 ∞
D ∞ ∞ 4 0

MΦ x y z
A ∞ ∞ ∞
B 11 ∞ ∞
C ∞ ∞ ∞
D ∞ 9 ∞

MY x y z
x 0 4 3

y 3 0 ∞
z ∞ 4 0

Recall from Section 2.5.3 that the matrix of distances dY for Cost-category X can be

obtained by taking the matrix power of MX with smallest entries, and similarly for Y.

The matrix of distances for the profunctor Φwill be equal to dX ∗MΦ ∗ dY . In fact, since

X has four elements and Y has three, we also know that Φ � M3

X ∗MΦ ∗M2

Y .

Exercise 4.17. Calculate M3

X ∗ MΦ ∗ M2

Y , remembering to do matrix multiplication

according to the (min,+)-formula for matrix multiplication in the quantale Cost; see
Eq. (2.101).
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Your answer should agree with what you got in Exercise 4.15; does it? ♦

4.2.3 Back to co-design diagrams

Each box in a co-design diagram has a left-hand and a right-hand side, which in turn

consist of a collection of ports, which in turn are labeled by preorders. For example,

consider the chassis box below:

Chassis

load

velocity

torque

speed

$

Its left side consists of two ports—one for load and one for velocity—and these are

the functionality that the chassis produces. Its right side consists of three ports—

one for torque, one for speed, and one for $—and these are the resources that the

chassis requires. Each of these resources is to be taken as a preorder. For example,

load might be the preorder ([0,∞], ≤), where an element x ∈ [0,∞] represents the

idea “I can handle any load up to x.,” while $ might be the two-element preorder

{up_to_$100, more_than_$100}, where the first element of this set is less than the

second.

We then multiply—i.e. we take the product preorder—of all preorders on the left,

and similarly for those on the right. The box then represents a feasibility relation

between the results. For example, the chassis box above represents a feasibility relation

Chassis :

(
load × velocity

) (
torque × speed × $

)
Let’s walk through this a bit more concretely. Consider the design problem of

filming a movie, where you must pit the tone and entertainment value against the cost.

A feasibility relation describing this situation details what tone and entertainment

value can be obtained at each cost; as such, it is described by a feasibility relation

Φ : (T × E) $. We represent this by the box

Φ
T
E

$

where T, E, and $ are the preorders drawn below:

mean-spirited

•

good-natured

•

T B

boring

•

funny

•

E B $500K•

$1M•

$100K•

$ B



4.3. CATEGORIES OF PROFUNCTORS 125

A possible feasibility relation is then described by the profunctor

(mean, funny)

•
(g/n, boring)

•

(mean, boring)

•

(g/n, funny)

•

T × E �

$100K•

$500K•

$1M•

� $

This says, for example, that a good-natured but boring movie costs $500K to produce

(of course, the producers would also be happy to get $1M).

To elaborate, each arrow in the above diagram is to be interpreted as saying, “I can

provide the source given the target”. For example, there are arrows witnessing each

of “I can provide $500K given $1M”, “I can provide a good-natured but boring movie

given $500K”, and “I can provide a mean and boring movie given a good-natured

but boring movie”. Moreover, this relationship is transitive, so the path from (mean,

boring) to $1M indicates also that “I can provide amean and boringmovie given $1M”.

Note the similarity and difference with the bridge interpretation of profunctors in

Example 4.11: the arrows still indicate the possibility of moving between source and

target, but in this co-design driven interpretation we understand them as indicating

that it is possible to get to the source from the target.

Exercise 4.18. In the above diagram, the node (g/n, funny) has no dashed blue arrow

emerging from it. Is this valid? If so, what does it mean? ♦

4.3 Categories of profunctors

There is a category Feas whose objects are preorders and whose morphisms are feasi-

bility relations. In order to describe it, we must give the composition formula and the

identities, and prove that they satisfy the properties of being a category: unitality and

associativity.

4.3.1 Composing profunctors

If feasibility relations are to be morphisms, we need to give a formula for composing

two of them in series. Imagine you have cities P, Q, and R and you have bridges—and
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hence feasibility matrices—connecting these cities, say Φ : P Q andΨ : Q R.

N•

W• E•

•
S

P

•
a

b• c•

d•

e•

Q

x•

•
y

R

(4.19)

The feasibility matrices for Φ (in blue) andΨ (in red) are:

Φ a b c d e
N true false true false false

E true false true false true

W true true true true false

S true true true true true

Ψ x y
a false true

b true true

c false true

d true true

e false false

As in Remark 2.95, we personify a quantale as a navigator. So imagine a navigator is

trying to give a feasibility matrix Φ #Ψ for getting from P to R. How should this be

done? Basically, for every pair p ∈ P and r ∈ R, the navigator searches through Q for a

way-point q, somewhere both to which we can get from p AND fromwhich we can get

to r. It is true that we can navigate from p to r iff there is a way-point q through which

to travel; this is a big OR over all possible q. The composition formula is thus:

(Φ #Ψ)(p , r) B
∨
q∈Q

Φ(p , q) ∧Ψ(q , r). (4.20)

But as we said in Eq. (2.101), this can be thought of as matrix multiplication. In our

example, the result is

Φ #Ψ x y
N false true

E false true

W true true

S true true

and one can check that this answers the question, “can you get from here to there” in

Eq. (4.19): you can’t get from N to x but you can get from N to y.
The formula (4.20) is written in terms of the quantale Bool, but it works for arbitrary

(unital commutative) quantales. We give the following definition.
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Definition 4.21. Let V be a quantale, let X, Y, and Z be V-categories, and let Φ : X Y

andΨ : Y Z be V-profunctors. We define their composite, denoted Φ #Ψ : X Z by

the formula

(Φ #Ψ)(p , r) �
∨
q∈Q

(
Φ(p , q) ⊗Ψ(q , r)

)
.

Exercise 4.22. Consider the Cost-profunctorsΦ : X Y andΨ : Y Z shown below:

•
A

•
B

•
C

•
D

3

3

4

2

5

X B

•
x

•
y

•z3 4

3

4

Y B

•
p

•
q

•
r

•
s

2

2

1

1

Z B
11

9

4

4

0

Fill in the matrix for the composite profunctor:

Φ #Ψ p q r s
A ? 24 ? ?

B ? ? ? ?

C ? ? ? ?

D ? ? 9 ?

♦

4.3.2 The categories V-Prof and Feas

A composition rule suggests a category, and there is indeed a category where the

objects are Bool-categories and the morphisms are Bool-profunctors. To make this

work more generally, however, we need to add one technical condition.

Recall fromRemark 1.35 that a preorder is a skeletal preorder if whenever x ≤ y and

y ≤ x, we have x � y. Skeletal preorders are also known as posets. We say a quantale

is skeletal if its underlying preorder is skeletal; Bool and Cost are skeletal quantales.

Theorem 4.23. For any skeletal quantale V, there is a category ProfV whose objects are

V-categories X, whose morphisms are V-profunctors X Y, and with composition

defined as in Definition 4.21.

Definition 4.24. We define Feas B ProfBool.

At this point perhaps you have two questions in mind. What are the identity

morphisms? And why did we need to specialize to skeletal quantales? It turns out

these two questions are closely related.
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Define the unit profunctor UX : X X on a V-category X by the formula

UX(x , y) B X(x , y). (4.25)

How do we interpret this? Recall that, by Definition 2.46, X already assigns to each

pair of elements x , y ∈ X an hom-object X(x , y) ∈ V. The unit profunctor UX just

assigns each pair (x , y) that same object.

In the Bool case the unit profunctor on some preorder X can be drawn like this:

a•

b•
c• d•

e•

X B

a•

b•
c• d•

e•

�: X

Obviously, composing a feasibility relation with with the unit leaves it unchanged; this

is the content of Lemma 4.27.

Exercise 4.26. Choose a not-too-simple Cost-category X. Give a bridge-style diagram

for the unit profunctor UX : X X. ♦

Lemma 4.27. Composing any profunctor Φ : P→ Qwith either unit profunctor, UP or

UQ, returns Φ:

UP #Φ � Φ � Φ # UQ

Proof. We show that UP # Φ � Φ holds; proving Φ � Φ # UQ is similar. Fix p ∈ P and

q ∈ Q. Since V is skeletal, to prove the equality it’s enough to show Φ ≤ UP # Φ and

UP #Φ ≤ Φ. We have one direction:

Φ(p , q) � I ⊗ Φ(p , q) ≤ P(p , p) ⊗ Φ(p , q) ≤
∨
p1∈P

(
P(p , p1) ⊗ Φ(p1 , q)

)
� (UP #Φ)(p , q).

(4.28)

For the other direction, we must show

∨
p1∈P

(
P(p , p1) ⊗ Φ(p1 , q)

)
≤ Φ(p , q). But by

definition of join, this holds iff P(p , p1) ⊗Φ(p1 , q) ≤ Φ(p , q) is true for each p1 ∈ P. This
follows from Definitions 2.46 and 4.8:

P(p , p1) ⊗ Φ(p1 , q) � P(p , p1) ⊗ Φ(p1 , q) ⊗ I ≤ P(p , p1) ⊗ Φ(p1 , q) ⊗ Q(q , q) ≤ Φ(p , q).
(4.29)

�

Exercise 4.30.
1. Justify each of the four steps (�, ≤, ≤,�) in Eq. (4.28).

2. In the case V � Bool, we can directly show each of the four steps in Eq. (4.28) is

actually an equality. How?
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3. Justify each of the three steps (�, ≤, ≤) in Eq. (4.29). ♦

Composition of profunctors is also associative; we leave the proof to you.

Lemma 4.31. Serial composition of profunctors is associative. That is, given profunc-

tors Φ : P→ Q,Ψ : Q→ R, and Υ : R→ S, we have

(Φ #Ψ) # Υ � Φ # (Ψ # Υ).

Exercise 4.32. Prove Lemma 4.31. (Hint: remember to use the fact that V is skeletal.)

♦

So, feasibility relations form a category. Since this is the case, we can describe

feasibility relations using wiring diagrams for categories (see also Section 4.4.2), which

are very simple. Indeed, each box can only have one input and one output, and they’re

connected in a line:

fa 1 h d
b c

On the other hand, we have seen that feasibility relations are the building blocks of

co-design problems, and we know that co-design problems can be depicted with a

much richer wiring diagram, for example:

Σ

Chassis

Motor Battery

Σ

Robot

≤

≤

≤ ≤

≤

≤

≤
Voltage

≤
Current

≤

$ ≤

≤

≥
≥

Weight

(as payload)

Velocity

$

Torque

Speed

$

Weight

Weight

$

This hints that the category Feas has more structure. We’ve seen wiring diagrams

where boxes can have multiple inputs and outputs before, in Chapter 2; there they

depicted morphisms in a monoidal preorder. On other hand the boxes in the wiring

diagrams of Chapter 2 could not have distinct labels, like the boxes in a co-design

problem: all boxes in a wiring diagram for monoidal preorders indicate the order ≤,
while abovewe see boxes labelled by “Chassis”, “Motor”, and so on. Similarly, we know

that Feas is a proper category, not just a preorder. To understand these diagrams then,

we must introduce a new structure, called a monoidal category. A monoidal category is

a categorifiedmonoidal preorder.

Remark 4.33. While we have chosen to define ProfV only for skeletal quantales in

Theorem 4.23, it is not too hard to work with non-skeletal ones. There are two straight-

forward ways to do this. First, we might let the morphisms of ProfV be isomorphism
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classes of V-profunctors. This is analogous to the trick we will use when defining

the category CospanC in Definition 6.45. Second, we might relax what we mean by

category, only requiring composition to be unital and associative ‘up to isomorphism’.

This is also a type of categorification, known as bicategory theory.

In the next section we’ll discuss categorification and introducemonoidal categories.

First though, we finish this section by discussing why profunctors are called profunc-

tors, and by formally introducing something called the collage of a profunctor.

4.3.3 Fun profunctor facts: companions, conjoints, collages

Companions and conjoints. Recall that a preorder is aBool-category and amonotone

map is a Bool-functor. We said above that a profunctor is a generalization of a functor;

how so?

In fact, every V-functor gives rise to two V-profunctors, called the companion and

the conjoint.

Definition 4.34. Let F : P→ Q be a V-functor. The companion of F, denoted F̂ : P Q

and the conjoint of F, denoted qF : Q P are defined to be the following V-profunctors:

F̂(p , q) B Q(F(p), q) and
qF(q , p) B Q(q , F(p))

Let’s consider the Bool case again. One can think of a monotone map F : P→ Q as

a bunch of arrows, one coming out of each vertex p ∈ P and landing at some vertex

F(p) ∈ Q.

•

•

• •

•

P B

•

•

•

�: Q

This looks like the pictures of bridges connecting cities, and if one regards the above

picture in that light, they are seeing the companion F̂. But now mentally reverse every

dotted arrow, and the result would be bridges Q to P. This is a profunctor Q P! We

call it
qF.

Example 4.35. For any preorder P, there is an identity functor id : P→ P. Its compan-

ion and conjoint agree îd � q

id : P P. The resulting profunctor is in fact the unit

profunctor, UP, as defined in Eq. (4.25).
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Exercise 4.36. Check that the companion îd of id : P→ P really has the unit profunctor

formula given in Eq. (4.25). ♦

Example 4.37. Consider the function + : R×R×R→ R, sending a triple (a , b , c) of real
numbers to a + b + c ∈ R. This function is monotonic, because if (a , b , c) ≤ (a′, b′, c′)—
i.e. if a ≤ a′ and b ≤ b′, and c ≤ c′—then obviously a + b + c ≤ a′ + b′ + c′. Thus it has
a companion and a conjoint.

Its companion +̂ : (R × R × R) R is the function that sends (a , b , c , d) to true if
a + b + c ≤ d and to false otherwise.

Exercise 4.38. Let + : R×R×R→ R be as in Example 4.37. What is its conjoint q+? ♦

Remark 4.39 (V-Adjoints). Recall from Definition 1.95 the definition of Galois connec-

tion between preorders P and Q. The definition of adjoint can be extended from the

Bool-enriched setting (of preorders and monotone maps) to the V-enriched setting for

arbitrary monoidal preorders V. In that case, the definition of a V-adjunction is a pair

of V-functors F : P→ Q and G : Q→ P such that the following holds for all p ∈ P and

q ∈ Q.

P(p ,G(q)) � Q(F(p), q) (4.40)

Exercise 4.41. LetV be a skeletal quantale, letP andQ beV-categories, and let F : P→ Q

and G : Q→ P be V-functors.

1. Show that F and G are V-adjoints (as in Eq. (4.40)) if and only if the companion

of the former equals the conjoint of the latter: F̂ � qG.

2. Use this to prove that îd � q

id, as was stated in Example 4.35. ♦

Collage of a profunctor. We have been drawing profunctors as bridges connect-

ing cities. One may get an inkling that given a V-profunctor Φ : X Y between

V-categories X and Y, we have turned Φ into a some sort of new V-category that has X

on the left and Y on the right. This works for any V and profunctor Φ, and is called the

collage construction.

Definition 4.42. Let V be a quantale, let X and Y be V-categories, and let Φ : X Y be

a V-profunctor. The collage of Φ, denoted Col(Φ) is the V-category defined as follows:

(i) Ob(Col(Φ)) B Ob(X) tOb(Y);
(ii) For any a , b ∈ Ob(Col(Φ)), define Col(Φ)(a , b) ∈ V to be

Col(Φ)(a , b) B


X(a , b) if a , b ∈ X
Φ(a , b) if a ∈ X, b ∈ Y
� if a ∈ Y, b ∈ X
Y(a , b) if a , b ∈ Y

There are obvious functors iX : X → Col(Φ) and iY : Y → Col(Φ), sending each object
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and morphism to “itself,” called collage inclusions.

Some pictures will help clarify this.

Example 4.43. Consider the following picture of a Cost-profunctor Φ : X Y:

A•

•
B

2X B

x•

•
y

3 4 �: Y

5

It corresponds to the following matrices

X A B
A 0 2

B ∞ 0

Φ x y
A 5 8

B ∞ ∞

Y x y
x 0 3

y 4 0

A generalized Hasse diagram of the collage can be obtained by simply taking the

union of the Hasse diagrams for X and Y, and adding in the bridges as arrows. Given

the above profunctor Φ, we draw the Hasse diagram for Col(Φ) below left, and the

Cost-matrix representation of the resulting Cost-category on the right:

A•

•
B

x•

•
y

2

5

3 4Col(Φ) �

Col(Φ) A B x y
A 0 2 5 8

B ∞ 0 ∞ ∞
x 0 0 0 3

y 0 0 4 0

Exercise 4.44. Draw a Hasse diagram for the collage of the profunctor shown here:

•
A

•
B

•
C

•
D

3

3

4

2

5X B

x•

•
y

z•3 4

3

4

�: Y

11

9

♦

4.4 Categorification

Here we switch gears, to discuss a general concept called categorification. We will

begin again with the basics, categorifying several of the notions we’ve encountered
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already. The goal is to define compact closed categories and their feedback-style wiring

diagrams. At that point we will return to the story of co-design, and V-profunctors

in general, and show that they do in fact form a compact closed category, and thus

interpret the diagrams we’ve been drawing since Eq. (4.1).

4.4.1 The basic idea of categorification

The general idea of categorification is that we take a thing we know and add structure

to it, so that what were formerly properties become structures. We do this in such a way

that we can recover the thing we categorified by forgetting this new structure. This is

rather vague; let’s give an example.

Basic arithmetic concerns properties of the natural numbers N, such as the fact

that 5 + 3 � 8. One way to categorify N is to use the category FinSet of finite sets

and functions. To obtain a categorification, we replace the brute 5, 3, and 8 with

sets of that many elements, say 5 � {apple, banana, cherry, dragonfruit, elephant},
3 � {apple, tomato, cantaloupe}, and 8 � {Ali, Bob,Carl,Deb, Eli, Fritz,Gem,Helen}
respectively. We also replace +with disjoint union of sets t, and the brute property of

equalitywith the structure of an isomorphism. Whatmakes this a good categorification

is that, havingmade these replacements, the analogue of 5+3 � 8 is still true: 5t3 � 8.

apple

•
banana•
cherry

•
dragonfruit

•
elephant

•

apple

•
tomato•

cantaloupe

•

t

Ali•
Bob•
Carl•
Deb•

Eli•
Fritz•
Gem•
Helen•

�

In this categorified world, we have more structure available to talk about the relation-

ships between objects, so we can be more precise about how they relate to each other.

Thus it’s not the case that 5 t 3 is equal to our chosen eight-element set 8, but more

precisely that there exists an invertible function comparing the two, showing that they

are isomorphic in the category FinSet.
Note that in the above construction we made a number of choices; here we must

beware. Choosing a good categorification—like designing a good algebraic structure

such as that of preorders or quantales—is part of the art of mathematics. There is
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no prescribed way to categorify, and the success of a chosen categorification is often

empirical: its richer structure should allow us more insights into the subject we want

to model.

As another example, an empirically pleasing way to categorify preorders is to cat-

egorify them as, well, categories. In this case, rather than the brute property “there

exists amorphism a → b,” denoted a ≤ b orP(a , b) � true, we instead say “here is a set

of morphisms a → b.” We get a hom-set rather than a hom-Boolean. In fact—to state

this in a way straight out of the primordial ooze—just as preorders are Bool-categories,
ordinary categories are actually Set-categories.

4.4.2 A reflection on wiring diagrams

Suppose we have a preorder. We introduced a very simple sort of wiring diagram in

Section 2.2.2. These allowed us to draw a box

≤x0 x1

whenever x0 ≤ x1. Chaining these together, we could prove facts in our preorder. For

example

≤ ≤ ≤x0 x1 x2 x3

provides a proof that x0 ≤ x3 (the exterior box) using three facts (the interior boxes),

x0 ≤ x1, x1 ≤ x2, and x2 ≤ x3.

As categorified preorders, categories have basically the same sort of wiring diagram

as preorders—namely sequences of boxes inside a box. But since we have replaced the

fact that x0 ≤ x1 with the structure of a set of morphisms, we need to be able to label

our boxes with morphism names:

fA B

Suppose given additional morphisms 1 : B → C, and h : C → D. Representing these

each as boxes like we did for f , we might be tempted to stick them together to form a

new box:

f 1 hA B C D

Ideally this would also be a morphism in our category: after all, we have said that we

can represent morphisms with boxes with one input and one output. But wait, you

say! We don’t know which morphism it is. Is it f # (1 # h)? Or ( f # 1) # h? It’s good that

you are so careful. Luckily, we are saved by the properties that a category must have.

Associativity says f # (1 # h) � ( f # 1) # h, so it doesn’t matter which way we chose to try

to decode the box.
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Similarly, the identity morphism on an object x is drawn as on the left below, but

we will see that it is not harmful to draw idx in any of the following three ways:

≤x x ≤x x ≤x x

ByDefinition 3.6 themorphisms in a category satisfy twoproperties, called the unitality

property and the associativity property. The unitality says that idx # f � f � f # idy for

any f : x → y. In terms of diagrams this would say

f fx x y f fx y yfx y
= =

This means you can insert or discard any identity morphism you see in a wiring dia-

gram. From this perspective, the coherence laws of a category—that is, the associativity

law and the unitality law—are precisely what are needed to ensure we can lengthen

and shorten wires without ambiguity.

In Section 2.2.2, we also saw wiring diagrams for monoidal preorders. Here we

were allowed to draw boxes which can have multiple typed inputs and outputs, but

with no choice of label (always ≤):

≤
A1

A2

A3

B1

B2

If we combine these ideas, we will obtain a categorification of symmetric monoidal

preorders: symmetric monoidal categories. A symmetric monoidal category is an

algebraic structure in which we have labelled boxes with multiple typed inputs and

outputs:

f

A1

A2

A3

B1

B2

Furthermore, a symmetric monoidal category has a composition rule and a monoidal

product, which permit us to combine these boxes to interpret diagrams like this:

f

1

h
A

B

C

D E

F

G



136 CHAPTER 4. CO-DESIGN: PROFUNCTORS AND MONOIDAL CATEGORIES

Finally, this structure must obey coherence laws, analogous to associativity and uni-

tality in categories, that allow such diagrams to be unambiguously interpreted. In the

next section we will be a bit more formal, but it is useful to keep in mind that, when

we say our data must be “well behaved,” this is all we mean.

4.4.3 Monoidal categories

We defined V-categories, for a symmetric monoidal preorder V in Definition 2.46. Just

like preorders turned out to be special kinds of categories (see Section 3.2.3), monoidal

preorders are special kinds of monoidal categories. And just like we can consider

V-categories for a monoidal preorder, we can also consider V-categories when V is a

monoidal category. This is another sort of categorification.

We will soon meet the monoidal category (Set, {1},×). The monoidal product will

take two sets, S and T, and return the set S × T � {(s , t) | s ∈ S, t ∈ T}. But whereas

for monoidal preorders we had the brute associative property (p ⊗ q) ⊗ r � p ⊗ (q ⊗ r),
the corresponding idea in Set is not quite true:

S × (T ×U) :�
{(

s , (t , u)
) �� s ∈ S, t ∈ T, u ∈ U

}
�

? (S × T) ×U :�
{(
(s , t), u

) �� s ∈ S, t ∈ T, u ∈ U
}
.

They are slightly different sets: the first contains pairs consisting of an elements in S
and an element in T × U, while the second contains pairs consisting of an element in

S × T and an element in U. The sets are not equal, but they are clearly isomorphic,

i.e. the difference between them is “just a matter of bookkeeping.” We thus need a

structure—a bookkeeping isomorphism—to keep track of the associativity:

αs ,t ,u : {(s , (t , u)) | s ∈ S, t ∈ T, u ∈ U} �−→ {((s , t), u) | s ∈ S, t ∈ T, u ∈ U}.

There are a couple things to mention before we dive into these ideas. First, just

because you replace brute things and properties with structures, it does not mean that

you no longer have brute things and properties: new ones emerge! Not only that, but

second, the new brute stuff tends to be more complex than what you started with. For

example, above we replaced the associativity equation with an isomorphism αs ,t ,u , but

now we need a more complex property to ensure that all these α’s behave reasonably!

The only way out of this morass is to add infinitely much structure, which leads one to

“∞-categories,” but we will not discuss that here.

Instead, we will continue with our categorification of monoidal preorders, starting

with a rough definition of symmetric monoidal categories. It’s rough in the sense that

we suppress the technical bookkeeping, hiding it under the name “well behaved.”

RoughDefinition 4.45. LetC be a category. A symmetricmonoidal structure onC consists

of the following constituents:

(i) an object I ∈ Ob(C) called the monoidal unit, and
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(ii) a functor ⊗ : C × C→ C, called the monoidal product
subject to well-behaved, natural isomorphisms

(a) λc : I ⊗ c � c for every c ∈ Ob(C),
(b) ρc : c ⊗ I � c for every c ∈ Ob(C),
(c) αc ,d ,e : (c ⊗ d) ⊗ e � c ⊗ (d ⊗ e) for every c , d , e ∈ Ob(C), and
(d) σc ,d : c ⊗ d � d ⊗ c for every c , d ∈ Ob(C), called the swap map, such that σ ◦σ � id.

A category equipped with a symmetric monoidal structure is called a symmetric
monoidal category.

Remark 4.46. If the isomorphisms in (a), (b), and (c)—but not (d)—are replaced by

equalities, then we say that the monoidal structure is strict, and this is a complete

(non-rough) definition of symmetric strict monoidal category. In fact, symmetric strict

monoidal categories are almost the same thing as symmetric monoidal categories, via

a result known asMac Lane’s coherence theorem. An upshot of this theorem is that we

can, when useful to us, pretend that our monoidal categories are strict: for example,

we implicitly do this whenwe drawwiring diagrams. Ask your friendly neighborhood

category theorist to explain how!

Remark 4.47. For those yet to find a friendly expert category theorist, we make the

following remark. A complete (non-rough) definition of symmetric monoidal category

is that a symmetric monoidal category is a category equipped with an equivalence

to (the underlying category of) a symmetric strict monoidal category. This can be

unpacked, using Remark 4.46 and our comment about equivalence of categories in

Remark 3.59, but we don’t expect you to do so. Instead, we hope this gives you more

incentive to ask a friendly expert category theorist!

Exercise 4.48. Check that monoidal categories indeed generalize monoidal preorders:

a monoidal preorder is a monoidal category (P, I , ⊗) where, for every p , q ∈ P, the set
P(p , q) has at most one element. ♦

Example 4.49. As we said above, there is a monoidal structure on Set where the

monoidal unit is some choice of singleton set, say I B {1}, and the monoidal product

is ⊗ B ×. What it means that × is a functor is that:

• For any pair of objects, i.e. sets, (S, T) ∈ Ob(Set × Set), one obtains a set (S × T) ∈
Ob(Set). We know what it is: the set of pairs {(s , t) | s ∈ S, t ∈ T}.

• For any pair of morphisms, i.e. functions, f : S→ S′ and 1 : T → T′, one obtains a
function ( f ×1) : (S×T) → (S′×T′). Itworks pointwise: ( f ×1)(s , t) B ( f (s), 1(t)).

• These should preserve identities: idS × idT � idS×T for any sets S, T.

• These should preserve composition: for any functions S
f
−→ S′

f ′
−→ S′′ and T

1

−→
T′

1′

−→ T′′, one has

( f × 1) # ( f ′ × 1′) � ( f # 1) × ( f ′ # 1′).
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The four conditions, (a), (b), (c), and (d) give isomorphisms {1} × S � S, etc. These
maps are obvious in the case of Set, e.g. the function {(1, s) | s ∈ S} → S sending (1, s)
to s. We have been calling such things bookkeeping.

Exercise 4.50. Consider the monoidal category (Set, 1,×), together with the diagram

f

1

h
A

B

C

D E

F

G

Suppose that A � B � C � D � F � G � Z and E � B � {true, false}, and
suppose that fC(a) � |a |, fD(a) � a ∗ 5, 1E(d , b) � “d ≤ b,” 1F(d , b) � d − b, and
h(c , e) � if e then c else 1 − c.

1. What are 1E(5, 3) and 1F(5, 3)?
2. What are 1E(3, 5) and 1F(3, 5)?
3. What is h(5, true)?
4. What is h(−5, true)?
5. What is h(−5, false)?

The whole diagram now defines a function A × B→ G × F; call it q.
6. What are qG(−2, 3) and qF(−2, 3)?
7. What are qG(2, 3) and qF(2, 3)? ♦

We will see more monoidal categories throughout the remainder of this book.

4.4.4 Categories enriched in a symmetric monoidal category

Wewill not need this again, but we once promised to explain why V-categories, where

V is a symmetric monoidal preorder, deserve to be seen as types of categories. The

reason, as we have hinted, is that categories should really be called Set-categories. But
wait, Set is not a preorder! We’ll have to generalize—categorify—V-categories.

We now give a rough definition of categories enriched in a symmetric monoidal

category V. As in Definition 4.45, we suppress some technical parts in this sketch,

hiding them under the name “usual associative and unital laws.”

Rough Definition 4.51. Let V be a symmetric monoidal category, as in Definition 4.45.

To specify a category enriched in V, or a V-category, denoted X,

(i) one specifies a collection Ob(X), elements of which are called objects;
(ii) for every pair x , y ∈ Ob(X), one specifies an object X(x , y) ∈ V, called the hom-

object for x , y;
(iii) for every x ∈ Ob(X), one specifies a morphism idx : I → X(x , x) in V, called the
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identity element;
(iv) for each x , y , z ∈ Ob(X), one specifies a morphism # : X(x , y) ⊗ X(y , z) → X(x , z),

called the composition morphism.

These constituents are required to satisfy the usual associative and unital laws.

The precise, non-rough, definition can be found in other sources, e.g. [nLa18],

[Wik18], [Kel05].

Exercise 4.52. Recall from Example 4.49 that V � (Set, {1},×) is a symmetric monoidal

category. This means we can apply Definition 4.51. Does the (rough) definition

roughly agree with the definition of category given in Definition 3.6? Or is there a

subtle difference? ♦

Remark 4.53. We first defined V-categories in Definition 2.46, where V was required to

be a monoidal preorder. To check we’re not abusing our terms, it’s a good idea to make

sure that V-categories as per Definition 2.46 are still V-categories as per Definition 4.51.

The first thing to observe is that every symmetric monoidal preorder is a symmetric

monoidal category (Exercise 4.48). So given a symmetric monoidal preorder V, we can

apply Definition 4.51. The required data (i) and (ii) then get us off to a good start: both

definitions of V-category require objects and hom-objects, and they are specified in the

same way. On the other hand, Definition 4.51 requires two additional pieces of data:

(iii) identity elements and (iv) composition morphisms. Where do these come from?

In the case of preorders, there is at most one morphism between any two objects, so

we do not need to choose an identity element and a composition morphism. Instead,

we just need to make sure that an identity element and a composition morphism exist.

This is exactly what properties (a) and (b) of Definition 2.46 say.

For example, the requirement (iii) that a V-categoryX has a chosen identity element

idx : I → X(x , x) for the object x simply becomes the requirement (a) that I ≤ X(x , x) is
true in V. This is typical of the story of categorification: what were mere properties in

Definition 2.46 have become structures in Definition 4.51.

Exercise 4.54. What are identity elements in Lawvere metric spaces (that is, Cost-
categories)? How do we interpret this in terms of distances? ♦

4.5 Profunctors form a compact closed category

In this section we will define compact closed categories and show that Feas, and more

generally V-profunctors, form such a thing. Compact-closed categories are monoidal
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categories whose wiring diagrams allow feedback. The wiring diagrams look like this:

f1

f2

f3

f4

f5

(4.55)

It’s been a while since we thought about co-design, but these were the kinds of wiring

diagrams we drew, e.g. connecting the chassis, the motor, and the battery in Eq. (4.1).

Compact closed categories are symmetric monoidal categories, with a bit more struc-

ture that allow us to formally interpret the sorts of feedback that occur in co-design

problems. This same structure shows up in many other fields, including quantum

mechanics and dynamical systems.

In Eq. (2.13) and Section 2.2.3 we discussed various flavors of wiring diagrams,

including those with icons for splitting and terminating wires. For compact-closed

categories, our additional icons allow us to bend outputs into inputs, and vice versa.

To keep track of this, however, we draw arrows on our wire, which can either point

forwards or backwards. For example, we can draw this

Person 1 Person 2
pain

sound

fury

complaint

(4.56)

We then add icons—called a cap and a cup—allowing any wire to reverse direction

from forwards to backwards and from backwards to forwards.

sound

sound

sound

sound

(4.57)

Thus we can draw the following

Person 1 Person 2

pain
fury

sound

complaint

and its meaning is equivalent to that of Eq. (4.56).

We will begin by giving the axioms for a compact closed category. Then we

will look again at feasibility relations in co-design—and more generally at enriched

profunctors—and show that they indeed form a compact closed category.
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4.5.1 Compact closed categories

As we said, compact closed categories are symmetric monoidal categories (see Defini-

tion 4.45) with extra structure.

Definition 4.58. Let (C, I , ⊗) be a symmetric monoidal category, and c ∈ Ob(C) an
object. A dual for c consists of three constituents

(i) an object c∗ ∈ Ob(C), called the dual of c,
(ii) a morphism ηc : I → c∗ ⊗ c, called the unit for c,
(iii) a morphism εc : c ⊗ c∗ → I, called the counit for c.
These are required to satisfy two equations for every c ∈ Ob(C), which we draw as

commutative diagrams:

c c

c ⊗ I I ⊗ c

c ⊗ (c∗ ⊗ c) (c ⊗ c∗) ⊗ c

�

c⊗ηc

�

�

εc⊗c

c∗ c∗

I ⊗ c∗ c∗ ⊗ I

(c∗ ⊗ c) ⊗ c∗ c∗ ⊗ (c ⊗ c∗)

�

ηc⊗c∗

�

�

c∗⊗εc

(4.59)

These equations are sometimes called the snake equations.
If for every object c ∈ Ob(C) there exists a dual c∗ for c, then we say that (C, I , ⊗) is

compact closed.

In a compact closed category, each wire is equipped with a direction. For any object

c, a forward-pointing wire labeled c is considered equivalent to a backward-pointing

wire labeled c∗, i.e.
c−→ is the same as

c∗←−. The cup and cap discussed above are in fact

the unit and counit morphisms; they are drawn as follows.

c

ηc

c

c

εc

c

In wiring diagrams, the snake equations (4.59) are then drawn as follows:

c

c

c ⊗ ηc εc ⊗ c

c

c

ηc ⊗ c∗ c∗ ⊗ εc
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Note that the pictures in Eq. (4.57) correspond to εsound and η
sound

∗ .

Recall the notion of monoidal closed preorder; a monoidal category can also be

monoidal closed. This means that for every pair of objects c , d ∈ Ob(C) there is an

object c ( d and an isomorphism C(b ⊗ c , d) � C(b , c ( d), natural in b. While we will

not provide a full proof here, compact closed categories are so-named because they are

a special type of monoidal closed category.

Proposition 4.60. If C is a compact closed category, then

1. C is monoidal closed;

and for any object c ∈ Ob(C),
2. if c∗ and c′ are both duals to c then there is an isomorphism c∗ � c′; and
3. there is an isomorphism between c and its double-dual, c � c∗∗.

To prove 1., the key idea is that for any c and d, the object c ( d is given by c∗ ⊗ d,
and the natural isomorphism C(b ⊗ c , d) � C(b , c ( d) is given by precomposing with

idb ⊗ ηc .

Before returning to co-design,wegive another example of a compact closed category,

called Corel, which we’ll see again in the chapters to come.

Example 4.61. Recall, from Definition 1.18, that an equivalence relation on a set A is a

reflexive, symmetric, and transitive binary relation on A. Given two finite sets, A and

B, a corelation A→ B is an equivalence relation on At B.
So, for example, here is a corelation from a set A having five elements to a set B

having six elements; two elements are equivalent if they are encircled by the same

dashed line.

A B

There exists a category, denoted Corel, where the objects are finite sets, and where

a morphism from A → B is a corelation A → B. The composition rule is simpler to

look at than to write down formally.
2
If in addition to the corelation α : A → B above

we have another corelation β : B→ C

B C
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Then the composite β ◦ α of our two corelations is given by

BA C

�

A C

That is, two elements are equivalent in the composite corelation if we may travel from

one to the other staying within equivalence classes of either α or β.

The category Corel may be equipped with the symmetric monoidal structure

(�,t). This monoidal category is compact closed, with every finite set its own

dual. Indeed, note that for any finite set A there is an equivalence relation on

AtA B {(a , 1), (a , 2) | a ∈ A}where each part simply consists of the two elements (a , 1)
and (a , 2) for each a ∈ A. The unit on a finite set A is the corelation ηA : � → AtA
specified by this equivalence relation; similarly the counit on A is the corelation

εA : AtA→ � specifed by this same equivalence relation.

Exercise 4.62. Consider the set 3 � {1, 2, 3}.
1. Draw a picture of the unit corelation � → 3 t 3.

2. Draw a picture of the counit corelation 3 t 3→ �.
3. Check that the snake equations (4.59) hold. (Since every object is its own dual,

you only need to check one of them.) ♦

4.5.2 Feas as a compact closed category

We close the chapter by returning to co-design and showing that Feas has a compact

closed structure. This is what allows us to draw the kinds of wiring diagrams we saw

in Eqs. (4.1), (4.55), and (4.56): it is what puts actualmathematics behind these pictures.

Instead of just detailing this compact closed structure for Feas � ProfBool, it’s no

extra work to prove that for any skeletal (unital, commutative) quantale (V, I , ⊗) the
profunctor category ProfV of Theorem 4.23 is compact closed, so we’ll discuss this

general fact.

2
To compose corelations α : A → B and β : B → C, we need to construct an equivalence relation

α # β on AtC. To do so requires three steps: (i) consider α and β as relations on At B tC, (ii) take the

transitive closure of their union, and then (iii) restrict to an equivalence relation on AtC. Here is the

formal description. Note that as binary relations, we have α ⊆ (At B)×(At B), and β ⊆ (B tC)×(B tC).
We also have three inclusions: ιAt B : At B→ At B tC, ιB tC : B tC→ At B tC, and ιAtC : AtC→
At B tC. Recalling our notation from Section 1.4, we define

α # β B ι∗AtC((ιAt B)!(α) ∨ (ιB tC)!(β)).
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Theorem 4.63. Let V be a skeletal quantale. The category ProfV can be given the

structure of a compact closed category, with monoidal product given by the product

of V-categories.

Indeed, all we need to do is construct the monoidal structure and duals for objects.

Let’s sketch how this goes.

Monoidal products inProfV are just product categories. In termsofwiringdiagrams,

the monoidal structure looks like stacking wires or boxes on top of one another, with

no new interaction.

Φ

Ψ

Φ ⊗Ψ

We take ourmonoidal product on ProfV to be that given by the product ofV-categories;

the definition was given in Definition 2.74, and we worked out several examples there.

To recall, the formula for the hom-sets in X × Y is given by

(X × Y)((x , y), (x′, y′)) B X(x , x′) ⊗ Y(y , y′).

But monoidal products need to be given on morphisms also, and the morphisms in

ProfV are V-profunctors. So given V-profunctors Φ : X1 X2 and Ψ : Y1 Y2, one

defines a V-profunctor (Φ ×Ψ) : X1 × Y1 X2 × Y2 by

(Φ ×Ψ)((x1 , y1), (x2 , y2)) B Φ(x1 , x2) ⊗Ψ(y1 , y2).

Exercise 4.64. Interpret the monoidal products in ProfBool in terms of feasibility.

That is, preorders represent resources ordered by availability (x ≤ x′ means that x is

available given x′) and a profunctor is a feasibility relation. Explain why X × Y makes

sense as the monoidal product of resource preorders X and Y and why Φ ×Ψ makes

sense as the monoidal product of feasibility relations Φ andΨ. ♦

The monoidal unit in ProfV is 1. To define a monoidal structure on ProfV, we need

not only a monoidal product—as defined above—but also a monoidal unit. Recall the

V-category 1; it has one object, say 1, and (1, 1) � I is the monoidal unit of V. We take

1 to be the monoidal unit of ProfV.

Exercise 4.65. In order for 1 to be a monoidal unit, there are supposed to be isomor-

phisms X × 1 X and 1 × X X in ProfV, for any V-category X. What are they?

♦
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Duals in ProfV are just opposite categories. In order to regard ProfV as a compact

closed category (Definition 4.58), it remains to specify duals and the corresponding

cup and cap.

Duals are easy: for every V-category X, its dual is its opposite category Xop
(see

Exercise 2.73). The unit and counit then look like identities. To elaborate, the unit is a

V-profunctor ηX : 1 Xop × X. By definition, this is a V-functor

ηX : 1 × Xop × X→ V;

we define it by ηX(1, x , x′) B X(x , x′). Similarly, the counit is the profunctor εX : (X ×
Xop) 1, defined by εX(x , x′, 1) B X(x , x′).
Exercise 4.66. Check these proposed units and counits do indeed obey the snake

equations Eq. (4.59). ♦

4.6 Summary and further reading

This chapter introduced three important ideas in category theory: profunctors, cate-

gorification, and monoidal categories. Let’s talk about them in turn.

Profunctors generalize binary relations. In particular, we saw that the idea of pro-

functor over a monoidal preorder gave us the additional power necessary to formalize

the idea of a feasibility relation between resource preorders. The idea of a feasibility re-

lation is due to Andrea Censi; he called themmonotone codesign problems. The basic idea
is explained in [Cen15], where he also gives a programming language to specify and

solve codesign problems. In [Cen17], Censi further discusses how to use estimation to

make solving codesign problems computationally efficient.

We also sawprofunctors over the preorderCost, and how to think of these as bridges

between Lawvere metric space. We referred earlier to Lawvere’s paper [Law73]; plenty

more on Cost-profunctors can be found there.

Profunctors, however are vastly more general than the two examples we have dis-

cussed; V-profunctors can be defined not only when V is a preorder, but for any

symmetric monoidal category. A delightful, detailed exposition of profunctors and

related concepts such as equipments, companions and conjoints, symmetric monoidal

bicategories can be found in [Shu08; Shu10].

We have not defined symmetric monoidal bicategories, but you would be correct if

you guessed this is a sort of categorification of symmetric monoidal categories. Baez

and Dolan tell the subtle story of categorifying categories to get ever higher categories
in [BD98]. Crane and Yetter give a number of examples of categorification in [CY96].

Finally,we talkedaboutmonoidal categories andcompact closed categories. Monoidal

categories are a classic, central topic in category theory, and a quick introduction can

be found in [Mac98]. Wiring diagrams play a huge role in this book and in applied

category theory in general; while informally used for years, these were first formalized

in the case of monoidal categories. You can find the details here [JS93; JSV96].
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Compact closed categories are a special type of structuredmonoidal category; there

aremany others. For a broad introduction to the different flavors of monoidal category,

detailed through their various styles of wiring diagram, see [Sel10].



Chapter 5

Signal flow graphs:
Props, presentations, and proofs

5.1 Comparing systems as interacting signal processors

Cyber-physical systems are systems that involve tightly interacting physical and com-

putational parts. An example is an autonomous car: sensors inform a decision system

that controls a steering unit that drives a car, whose movement changes the sensory in-

put. While such systems involve complex interactions of many different subsystems—

both physical ones, such as the driving of a wheel by amotor, or a voltage placed across

a wire, and computational ones, such as a program that takes a measured velocity and

returns a desired acceleration—it is often useful to model the system behavior as sim-

ply the passing around and processing of signals. For this illustrative sketch, we will

just think of signals as things which we can add and multiply, such as real numbers.

Interaction in cyber-physical systems can often be understood as variable sharing;

i.e. when two systems are linked, certain variables become shared. For example, when

we connect two train carriages by a physical coupling, the train carriages must have

the same velocity, and their positions differ by a constant. Similarly, when we connect

two electrical ports, the electric potentials at these two ports now must be the same,

and the current flowing into one must equal the current flowing out of the other.

Of course, the way the shared variable is actually used may be very different for the

different subsystems using it, but sharing the variable serves to couple those systems

nonetheless.

Note that both the above examples involve the physical joining of two systems; more

figuratively, we might express the interconnection by drawing a line connecting the

boxes that represent the systems. In its simplest form, this is captured by the formalism

of signal flow graphs, due to Claude Shannon in the 1940s. Here is an example of a

147
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signal flow graph:

7

5 3

2

(5.1)

We consider the dangling wires on the left as inputs, and those on the right as outputs.

In Eq. (5.1) we see three types of signal processing units, which we interpret as follows:

• Each unit labelled by a number a takes an input and multiplies it by a.
• Each black dot takes an input and produces two copies of it.

• Each white dot takes two inputs and produces their sum.

Thus the above signal flow graph takes in two input signals, say x (on the upper left

wire) and y (on the lower left wire), and—going from left to right as described above—

produces two output signals: u � 15x (upper right) and v � 3x + 21y (lower right).

Let’s show some steps from this computation (leaving others off to avoid clutter):

y 7y

x
x 15x

x + 7y

2x + 14y

3x + 21y

7

5 3

2

In words, the signal flow graph first multiplies y by 7, then splits x into two copies,

adds the second copy of x to the lower signal to get x + 7y, and so on.

A signal flow graph might describe an existing system, or it might specify a system

to be built. In either case, it is important to be able to analyze these diagrams to

understand how the composite system converts inputs to outputs. This is reminiscent

of a co-design problem from Chapter 4, which asks how to evaluate the composite

feasibility relation from a diagram of simpler feasibility relations. We can use this

process of evaluation to determine whether two different signal flow graphs in fact

specify the same composite system, and hence to validate that a system meets a given

specification.

In this chapter, however,we introduce categorical tools—props and their presentations—

for reasoning more directly with the diagrams. Recall from Chapter 2 that symmetric

monoidal preorders are a type of symmetric monoidal category where the morphisms
are constrained to be very simple: there can be at most one morphism between any

two objects. Here shall see that signal flow graphs represent morphisms in a different,

complementary simplification of the symmetric monoidal category concept, known as

a prop.1 A prop is a symmetric monoidal category where the objects are constrained to

be very simple: they are generated, using the monoidal product, by just a single object.

1
Historically, theword ‘prop’waswritten in all caps, ‘PROP,’ standing for ‘products and permutations

category.’ However, we find ‘PROP’ a bit loud, so like many modern authors we opt for writing it as

‘prop.’
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Just as the wiring diagrams for symmetric monoidal preorders did not require labels

on the boxes, this means that wiring diagrams for props do not require labels on the

wires. This makes props particularly suited for describing diagrammatic formalisms

such as signal flow graphs, which only have wires of a single type.

Finally, many systems behave in what is called a linear way, and linear systems

form a foundational part of control theory, a branch of engineering that works on

cyber-physical systems. Similarly, linear algebra is a foundational part of modern

mathematics, both pure and applied, which includes not only control theory, but also

the practice of computing, physics, statistics, and many others. As we analyze signal

flow graphs, we shall see that they are in fact a way of recasting linear algebra—more

specifically, matrix operations—in graphical terms. More formally, we shall say that

signal flow graphs have functorial semantics as matrices.

5.2 Props and presentations

Signal flow graphs as in Eq. (5.1) are easily seen to be wiring diagrams of some sort.

However they have the property that, unlike for monoidal preorders and monoidal

categories, there is no need to label the wires. This corresponds to a form of symmetric

monoidal category, known as a prop, which has a very particular set of objects.

5.2.1 Props: definition and first examples

Recall the definition of symmetric strictmonoidal category fromDefinition 4.45 andRe-

mark 4.46.

Definition 5.2. A prop is a symmetric strict monoidal category (C, 0,+) for which

Ob(C) � N, the monoidal unit is 0 ∈ N, and the monoidal product on objects is

given by addition.

Note that each object n is the n-fold monoidal product of the object 1; we call 1 the

generating object. Since the objects of a prop are always the natural numbers, to specify

a prop P it is enough to specify five things:

(i) a set C(m , n) of morphisms m → n, for m , n ∈ N.
(ii) for all n ∈ N, an identity map idn : n → n.
(iii) for all m , n ∈ N, a symmetry map σm ,n : m + n → n + m.

(iv) a composition rule: given f : m → n and 1 : n → p, a map ( f # 1) : m → p.
(v) a monoidal product on morphisms: given f : m → m′ and 1 : n → n′, a map

( f + 1) : m + n → m′ + n′.
Once one specifies the above data, he should check that his specifications satisfy the

rules of symmetric monoidal categories (see Definition 4.45).2

2
We use ‘his’ terminology because this definition is for boys only. The rest of the book is for girls only.
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Example 5.3. There is a prop FinSet where the morphisms f : m → n are functions

from m � {1, . . .m} to n � {1, . . . , n}. (The identities, symmetries, and composition

rule are obvious.) The monoidal product on functions is given by the disjoint union of

functions: that is, given f : m → m′ and 1 : n → n′, we define f + 1 : m + n −→ m′+ n′

by

i 7−→
{

f (i) if 1 ≤ i ≤ m;

m′ + 1(i) if m + 1 ≤ i ≤ m + n.
(5.4)

Exercise 5.5. In Example 5.3 we said that the identities, symmetries, and composition

rule in FinSet “are obvious.” In math lingo, this just means “we trust that the reader

can figure them out, if she spends the time tracking down the definitions and fitting

them together.”

1. Draw a morphism f : 3→ 2 and a morphism 1 : 2→ 4 in FinSet.
2. Draw f + 1.
3. What is the composition rule for morphisms f : m → n and 1 : n → p in FinSet?
4. What are the identities in FinSet? Draw some.

5. Choose m , n ∈ N, and draw the symmetry map σm ,n in FinSet? ♦

Example 5.6. Recall from Definition 1.22 that a bĳection is a function that is both

surjective and injective. There is a prop Bij where the morphisms f : m → n are

bĳections m → n. Note that in this case morphisms m → n only exist when m � n;
when m , n the homset Bij(m , n) is empty. Since Bij is a subcategory of FinSet, we

can define the monoidal product to be as in Eq. (5.4).

Example 5.7. The compact closed category Corel, in which the morphisms f : m → n
are partitions on m t n (see Example 4.61), is a prop.

Example 5.8. There is a prop Rel for which morphisms m → n are relations, R ⊆ m× n.
The composition of R with S ⊆ n × p is

R # S B {(i , k) ∈ m × p | ∃( j ∈ n). (i , j) ∈ R and ( j, k) ∈ S}.

The monoidal product is relatively easy to formalize using universal properties,
3
but

one might get better intuition from pictures:

• •

• •

• • •

•

• • • • •

• • •
+ =
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Exercise 5.9. A posetal prop is a prop that is also a poset. That is, a posetal prop is a

symmetricmonoidal preorder of the form (N, �), for some poset relation � onN, where

the monoidal product on objects is addition. We’ve spent a lot of time discussing order

structures on the natural numbers. Give three examples of a posetal prop. ♦

Exercise 5.10. Choose one of Examples 5.6 to 5.8 and explicitly provide the five aspects

of props discussed below Definition 5.2. ♦

Definition 5.11. Let C and D be props. A functor F : C→ D is called a prop functor if
(a) F is identity-on-objects, i.e. F(n) � n for all n ∈ Ob(C) � Ob(D) � N, and
(b) for all f : m1 → m2 and 1 : n1 → n2 in C, we have F( f ) + F(1) � F( f + 1) in D.

Example 5.12. The inclusion i : Bij→ FinSet is a prop functor. Perhaps more interest-

ingly, there is a prop functor F : FinSet→ RelFin. It sends a function f : m → n to the

relation F( f ) B {(i , j) | f (i) � j} ⊆ m × n.

5.2.2 The prop of port graphs

An important example of a prop is the one in which morphisms are open, directed,

acyclic port graphs, as we next define. We will just call them port graphs.

Definition 5.13. For m , n ∈ N, an (m , n)-port graph (V, in, out, ι) is specified by

(i) a set V , elements of which are called vertices,
(ii) functions in, out : V → N, where in(v) and out(v) are called the in degree and out

degree of each v ∈ V , and

(iii) a bĳection ι : m t O
�→ I t n, where I � {(v , i) | v ∈ V, 1 ≤ i ≤ in(v)} is the set of

vertex inputs, and O � {(v , i) | v ∈ V, 1 ≤ i ≤ out(v)} is the set of vertex outputs.
This data must obey the following acyclicity condition. First, use the bĳection ι to

construct the graph with vertices V and with an arrow eu ,i
v , j : u → v for every i , j ∈ N

such that ι(u , i) � (v , j); call it the internal flow graph. If the internal flow graph is

acyclic—that is, if the only path from any vertex v to itself is the trivial path—then we

say that (V, in, out, ι) is a port graph.

This seems quite a technical construction, but it’s quite intuitive once you unpack it

a bit. Let’s do this.

3
The monoidal product R

1
+ R

2
of relations R

1
⊆ m

1
× n

1
and R

2
⊆ m

2
× n

2
is given by R

1
t R

2
⊆

(m
1
× n

1
) t (m

2
× n

2
) ⊆ (m

1
t m

2
) × (n

1
t n

2
).
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Example 5.14. Here is an example of a (2, 3)-port graph, i.e. with m � 2 and n � 3:

a

b

c
1

2

1

1

2

3

1

2

1

2

3

1

2

3

1

1

2

3

(5.15)

Since the port graph has type (2, 3), we draw two ports on the left hand side of the

outer box, and three on the right. The vertex set is V � {a , b , c} and, for example

in(a) � 1 and out(a) � 3, so we draw one port on the left-hand side and three ports on

the right-hand side of the box labelled a. The bĳection ι is what tells us how the ports

are connected by wires:

•
1

•
2

•
(a , 1)

•
(a , 2)

•
(a , 3)

•
(b , 1)

•
(b , 2)

•
(b , 3)

•
(c , 1)

•
(a , 1)

•
(b , 1)

•
(b , 2)

•
(b , 3)

•
(c , 1)

•
(c , 2)

•
1

•
2

•
3

m O

I n

The internal flow graph—which one can see is acyclic—is shown below:

a• c•

b•

ea ,1
c ,1

ea ,2
b ,2

ea ,3
b ,1

eb ,1
c ,2

As you might guess from (5.15), port graphs are closely related to wiring diagrams

for monoidal categories, and even more closely related to wiring diagrams for props.

A category PG whose morphisms are port graphs. Given an (m , n)-port graph

(V, in, out, ι) and an (n , p)-port graph (V′, in′, out′, ι′), wemay compose them toproduce

an (m , p)-port graph (V tV′, [in, in′], [out, out′], ι′′). Here [in, in′] denotes the function
V t V′→ N which maps elements of V according to in, and elements of V′ according
to in′, and similarly for [out, out′]. The bĳection ι′′ : m t O t O′→ I t I′ t p is defined
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as follows:

ι′′(x) �


ι(x) if ι(x) ∈ I

ι′(ι(x)) if ι(x) ∈ n

ι′(x) if x ∈ O.′

Exercise 5.16. Describe how port graph composition looks, with respect to the visual

representation of Example 5.14, and give a nontrivial example. ♦

We thus have a category PG, whose objects are natural numbers Ob(PG) � N,

whose morphisms are port graphs PG(m , n) � {(V, in, out, ι) | as in Definition 5.13}.
Composition of port graphs is as above, and the identity port graph on n is the (n , n)-
port graph (�, !, !, idn), where ! : � → N is the unique function. The identity on an

object, say 3, is depicted as follows:

1

2

3

1

2

3

The monoidal structure structure on PG. This category PG is in fact a prop. The

monoidal product of two port graphs G B (V, in, out, ι) and G′ B (V′, in′, out′, ι′) is
given by taking the disjoint union of ι and ι′:

G + G′ B
(
(V t V′), [in, in′], [out, out′], (ι t ι′)

)
. (5.17)

The monoidal unit is (�, !, !, !).
Exercise 5.18. Draw the monoidal product of the morphism shown in Eq. (5.15) with

itself. It will be a (4, 6)-port graph, i.e. a morphism 4→ 6 in PG. ♦

5.2.3 Free constructions and universal properties

Given some sort of categorical structure, such as a preorder, a category, or a prop, it

is useful to be able to construct one according to your own specification. (This should

not be surprising.) The minimally-constrained structure that contains all the data you

specify is called the free structure on your specification: it’s free from unneccessary

constraints! We have already seen some examples of free structures; let’s recall and

explore them.

Example 5.19 (The free preorder on a relation). For preorders, we saw the construction

of taking the reflexive, transitive closure of a relation. That is, given a relation R ⊆ P×P,
the reflexive, transitive closure of R is the called the free preorder on R. Rather than

specify all the inequalities in the preorder (P, ≤), we can specify just a few inequalities

p ≤ q, and let our “closuremachine” add in theminimum number of other inequalities

necessary to make P a preorder. To obtain a preorder out of a graph, or Hasse diagram,

we consider a graph (V,A, s , t) as defining a relation {(s(a), t(a)) | a ∈ A} ⊆ V ×V , and
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apply this closure machine.

But in what sense is the reflexive, transitive closure of a relation R ⊆ P × P really

theminimally-constrained preorder containing R? Oneway of understanding this is that

the extra equalities impose no further constraints when defining a monotone map out
of P. We are claiming that freeness has something to do with maps out! As strange as

an asymmetry might seem here (one might ask, “why not maps in?”), the reader will

have an opportunity to explore it for herself in Exercises 5.20 and 5.21.

A higher-level justification understands freeness as a left adjoint (see Example 3.74),

but we will not discuss that here.

Exercise 5.20. Let P be a set, let R ⊆ P × P a relation, let (P, ≤P) be the preorder

obtained by taking the reflexive, transitive closure of R, and let (Q , ≤Q) be an arbitrary

preorder. Finally, let f : P → Q be a function, not assumed monotone.

1. Suppose that for every x , y ∈ P, if R(x , y) then f (x) ≤ f (y). Show that f defines

a monotone map f : (P, ≤P) → (Q , ≤Q).
2. Suppose that f defines a monotone map f : (P, ≤P) → (Q , ≤Q). Show that for

every x , y ∈ P, if R(x , y) then f (x) ≤Q f (y).
We call this the universal property of the free preorder (P, ≤P). ♦

Exercise 5.21. Let P, Q, R, etc. be as in Exercise 5.20. We want to see that the universal

property is really about maps out of—and not maps in to—the reflexive, transitive

closure (P, ≤). So let 1 : Q → P be a function.

1. Suppose that for every a , b ∈ Q, if a ≤ b then (1(a), 1(b)) ∈ R. Is it automatically

true that 1 defines a monotone map 1 : (Q , ≤Q) → (P, ≤P)?
2. Suppose that 1 defines amonotonemap 1 : (Q , ≤Q) → (P, ≤P). Is it automatically

true that for every a , b ∈ Q, if a ≤ b then (1(a), 1(b)) ∈ R?

The lesson is that maps between structured objects are defined to preserve con-

straints. This means the domain of a map must be somehow more constrained than

the codomain. Thus having the fewest additional constraints coincides with having the

most maps out—every function that respects our generating constraints should define

a map. ♦

Example 5.22 (The free category on a graph). There is a similar story for categories.

Indeed, we saw in Definition 3.7 the construction of the free category Free(G) on a

graph G. The objects of Free(G) and the vertices of G are the same—nothing new

here—but the morphisms of Free(G) are not just the arrows of G because morphisms

in a category have stricter requirements: they must compose and there must be an

identity. Thus morphisms in Free(G) are the closure of the set of arrows in G under

these operations. Luckily (although this happens often in category theory), the result

turns out to already be a relevant graph concept: the morphisms in Free(G) are exactly
the paths in G. So Free(G) is a category that in a sense contains G and obeys no

equations other than those that categories are forced to obey.
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Exercise 5.23. Let G � (V,A, s , t) be a graph, and let G be the free category on G. Let

C be another category whose set of morphisms is denoted Mor(C).
1. Someone tells you that there are “domainandcodomain” functionsdom, cod: Mor(C) →

Ob(C); interpret this statement.

2. Show that the set of functors G → C are in one-to-one correspondence with the

set of pairs of functions ( f , 1), where f : V → Ob(C) and 1 : A → Mor(C) for
which dom(1(a)) � f (s(a)) and cod(1(a)) � f (t(a)) for all a.

3. Is (Mor(C),Ob(C), dom, cod) a graph? If so, see if you can use the word “adjunc-

tion” in a sentence that describes the statement in part 2. If not, explain why

not. ♦

Exercise 5.24 (The free monoid on a set). Recall from Example 3.13 that monoids are

one-object categories. For any set A, there is a graph Loop(A)with one vertex andwith

one arrow from the vertex to itself for each a ∈ A. So if A � {a , b} then Loop(A) looks
like this:

•a b

The free category on this graph is a one-object category, and hence a monoid; it’s called

the free monoid on A.

1. What are the elements of the free monoid on the set A � {a}?
2. Can you find awell-knownmonoid that is isomorphic to the free monoid on {a}?
3. What are the elements of the free monoid on the set A � {a , b}? ♦

5.2.4 The free prop on a signature

We have been discussing free constructions, in particular for preorders and categories.

A similar construction exists for props. Since we already know what the objects of

the prop will be—the natural numbers—all we need to specify is a set G of generating
morphisms, together with the arities,4 that we want to be in our prop. This information

will be called a signature. Just as we can generate the free category from a graph, so too

can we generate the free prop from a signature.

We now give an explicit construction of the free prop in terms of port graphs (see

Definition 5.13).

Definition 5.25. A prop signature is a tuple (G, s , t), where G is a set and s , t : G → N

are functions; each element 1 ∈ G is called a generator and s(1), t(1) ∈ N are called its

in-arity and out-arity. We often denote (G, s , t) simply by G, taking s , t to be implicit.

A G-labeling of a port graph Γ � (V, in, out, ι) is a function ` : V → G such that the

arities agree: s(`(v)) � in(v) and t(`(v)) � out(v) for each v ∈ V .

Define the free prop on G, denoted Free(G), to have as morphisms m → n all G-

labeled (m , n)-port graphs. The composition and monoidal structure are just those for

4
The arity of a prop morphism is a pair (m , n) ∈ N ×N, where m is the number of inputs and n is the

number of outputs.
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port graphs PG (see Eq. (5.17)); the labelings (the `’s) are just carried along.

The morphisms in Free(G) are port graphs (V, in, out, ι) as in Definition 5.13, that

are equippedwith a G-labeling. To draw a port graph, just as in Example 5.14, we draw

each vertex v ∈ V as a box with in(v)-many ports on the left and out(v)-many ports on

the right. In wiring diagrams, we depict the labeling function ` : V → G by using ` to

add labels (in the usual sense) to our boxes. Note that multiple boxes can be labelled

with the same generator. For example, if G � { f : 1→ 1, 1 : 2→ 2, h : 2→ 1}, then the

following is a morphism 3→ 2 in Free(G):

1

1

h
(5.26)

Note that the generator 1 is used twice, while the generator f is not used at all in

Eq. (5.26). This is perfectly fine.

Example 5.27. The free prop on the empty set � is Bij. This is because each morphism

must have a labelling function of the form V → �, and hence we must have V � �;
see Exercise 1.25. Thus the only morphisms (n ,m) are those given by port graphs

(�, !, !, σ), where σ : n → m is a bĳection.

Exercise 5.28. Consider the following prop signature:

G B {ρm ,n | m , n ∈ N}, s(ρm ,n) B m , t(ρm ,n) B n ,

i.e. having one generating morphism for each (m , n) ∈ N2
. Show that Free(G) is the

prop PG of port graphs from Section 5.2.2. ♦

Just like free preorders and free categories, the free prop is characterized by a

universal property in terms of maps out. The following can be proved in a manner

similar to Exercise 5.23.

Proposition 5.29. The free prop Free(G) on a signature (G, s , t) has the property that,

for any prop C, the prop functors Free(G) → C are in one-to-one correspondence with

functions G→ C that send each 1 ∈ G to a morphism s(1) → t(1) in C.

An alternate way to describe morphisms in Free(G). Port graphs provide a conve-

nient formalism of thinking about morphisms in the free prop on a signature G, but

there is another approach which is also useful. It is syntactic, in the sense that we start

with a small stockof basicmorphisms, including elements ofG, and thenwe inductively
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build new morphisms from them using the basic operations of props: namely compo-

sition and monoidal product. Sometimes the conditions of monoidal categories—e.g.

associativity, unitality, functoriality, see Definition 4.45—force two such morphisms to

be equal, and so we dutifully equate them. When we are done, the result is again the

free prop Free(G). Let’s make this more formal.

First, we need the notion of a prop expression. Just as prop signatures are the

analogue of the graphs used to present categories, prop expressions are the analogue

of paths in these graphs.

Definition 5.30. Suppose we have a set G and functions s , t : G → N. We define a

G-generated prop expression, or simply expression e : m → n, where m , n ∈ N, inductively
as follows:

• The empty morphism id0 : 0 → 0, the identity morphism id1 : 1 → 1, and the

symmetry σ : 2→ 2 are expressions.
5

• the generators 1 ∈ G are expressions 1 : s(1) → t(1).
• if α : m → n and β : p → q are expressions, then α + β : m + p → n + q is an

expression.

• if α : m → n and β : n → p are expressions, then α # β : m → p is an expression.

We write Expr(G) for the set of expressions in G. If e : m → n is an expression, we refer

to (m , n) as its arity.

Example 5.31. Let G � { f : 1→ 1, 1 : 2→ 2, h : 2→ 1}. Then
• id1 : 1→ 1,

• f : 1→ 1,

• f # id1 : 1→ 1,

• h + id1 : 3→ 2, and

• (h + id1) # σ # 1 # σ : 3→ 2

are all G-generated prop expressions.

Both G-labeled port graphs and G-generated prop expressions are ways to describe

morphisms in the free prop Free(G). Note, however, that unlike for G-labeled port

graphs, there may be two G-generated prop expressions that represent the same mor-

phism. For example, we want to consider f # id1 and f to be the same morphism,

since the unitality axiom for categories says f # id1 � f . Nonetheless, we only consider

two G-generated prop expressions equal when some axiom from the definition of prop

requires that they be so; again, the free prop is the minimally-constrained way to take G
and obtain a prop.

Since both port graphs and prop expressions describe morphisms in Free(G), you
might be wondering how to translate between them. Here’s how to turn a port graph

into a prop expression: imagine a vertical line moving through the port graph from

5
One can think of σ as the “swap” icon : 2→ 2
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left to right. Whenever you see “action”—either a box or wires crossing—write down

the sum (using +) of all the boxes 1, all the symmetries σ, and all the wires id1 in that

column. Finally, compose all of those action columns. For example, in the picture

below we see four action columns:

1

1

h

Here the result is (1 + id1) # (id1 + σ) # (id1 + 1) # (h + id1).

Exercise 5.32. Consider again the free prop on generators G � { f : 1 → 1, 1 : 2 →
2, h : 2→ 1}. Draw a picture of ( f + id1 + id1) # (σ+ id1) # (id1 + h) # σ # 1, where σ : 2→ 2

is the symmetry map. ♦

Another way of describing when we should consider two prop expressions equal is

to say that they are equal if and only if they represent the same port graph. In either

case, these notions induce an equivalence relation on the set of prop expressions. To say

that we consider these certain prop expressions equal is to say that the morphisms of

the free prop on G are the G-generated prop expressions quotiented by this equivalence

relation (see Definition 1.21).

5.2.5 Props via presentations

In Section 3.2.2 we saw that a presentation for a category, or database schema, consists

of a graph together with imposed equations between paths. Similarly here, sometimes

wewant to construct a propwhosemorphisms obey specific equations. But rather than

mere paths, the things we want to equate are prop expressions as in Definition 5.30.

Rough Definition 5.33. A presentation (G, s , t , E) for a prop is a set G, functions

s , t : G→ N, and a set E ⊆ Expr(G)×Expr(G) of pairs of G-generated prop expressions,

such that e1 and e2 have the same arity for each (e1 , e2) ∈ E. We refer to G as the set of

generators and to E as the set of equations in the presentation.
6

The prop G presented by the presentation (G, s , t , E) is the prop whose morphisms

are elements in Expr(G), quotiented by both the equations e1 � e2 where (e1 , e2) ∈ E,
and by the axioms of symmetric strict monoidal categories.

Remark 5.34. Given a presentation (G, s , t , E), it can be shown that the prop G has

a universal property in terms of “maps out.” Namely prop functors from G to any

6
Elements of E, which we call equations, are traditionally called “relations.” We think of (e

1
, e

2
) ∈ E

as standing for the equation e
1
� e

2
, as this will be forced soon.
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other prop C are in one-to-one correspondence with functions f from G to the set of

morphisms in C such that

• for all 1 ∈ G, f (1) is a morphism s(1) → t(1), and
• for all (e1 , e2) ∈ E, we have that f (e1) � f (e2) in C, where f (e) denotes the

morphism in C obtained by applying f to each generators in the expression e,
and then composing the result in C.

Exercise 5.35. Is it the case that the free prop on generators (G, s , t), defined in

Definition 5.25, is the same thing as the prop presented by (G, s , t ,�), having no

relations, as defined in Definition 5.33? Or is there a subtle difference somehow? ♦

5.3 Simplified signal flow graphs

We now return to signal flow graphs, expressing them in terms of props. We will

discuss a simplified form without feedback (the only sort we have discussed so far),

and then extend to the usual form of signal flow graphs in Section 5.4.3. But before

we can do that, we must say what we mean by signals; this gets us into the algebraic

structure of “rigs.” We will get to signal flow graphs in Section 5.3.2.

5.3.1 Rigs

Signals can be amplified, and they can be added. Adding and amplification interact via

a distributive law, as follows: if we add two signals, and then amplify them by some

amount a, it should be the same as amplifying the two signals separately by a, then
adding the results.

We can think of all the possible amplifications as forming a structure called a rig,7

defined as follows.

Definition 5.36. A rig is a tuple (R, 0,+, 1, ∗), where R is a set, 0, 1 ∈ R are elements,

and +, ∗ : R × R→ R are functions, such that

(a) (R,+, 0) is a commutative monoid,

(b) (R, ∗, 1) is a monoid,
8
and

(c) a ∗ (b + c) � a ∗ b + a ∗ c and (a + b) ∗ c � a ∗ c + b ∗ c for all a , b , c ∈ R.

(d) a ∗ 0 � 0 � 0 ∗ a for all a ∈ R.

We have already encountered many examples of rigs.

Example 5.37. The natural numbers form a rig (N, 0,+, 1, ∗).

7
Rigs are also known as semi-rings.

8
Note that we did not demand that (R, ∗, 1) be commutative; we will see a naturally-arising example

where it is not commutative in Example 5.40.
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Example 5.38. The Booleans form a rig (B, false,∨, true,∧).

Example 5.39. Any quantale V � (V, ≤, I , ⊗) determines a rig (V, 0,∨, I , ⊗), where 0 �∨� is the empty join. See Definition 2.79.

Example 5.40. If R is a rig and n ∈ N is any natural number, then the set Matn(R) of
(n × n)-matrices in R forms a rig. A matrix M ∈ Matn(R) is a function M : n × n →
R. Addition M + N of matrices is given by (M + N)(i , j) B M(i , j) + N(i , j) and
multiplication M ∗ N is given by (M ∗ N)(i , j) B ∑

k∈n M(i , k) ∗ N(k , j). The 0-matrix is

0(i , j) B 0 for all i , j ∈ n. Note that Matn(R) is generally not commutative.

Exercise 5.41.
1. We said in Example 5.40 that for any rig R, the set Matn(R) forms a rig. What is

its multiplicative identity 1 ∈ Matn(R)?
2. We also said that Matn(R) is generally not commutative. Pick an n and show that

that Matn(N) is not commutative, where N is as in Example 5.37. ♦

The following is an example for readerswho are familiarwith the algebraic structure

known as “rings.”

Example 5.42. Any ring forms a rig. In particular, the real numbers (R, 0,+, 1, ∗) are a

rig. The difference between a ring and rig is that a ring, in addition to all the properties

of a rig, must also have additive inverses, or negatives. A common mnemonic is that a

rig is a ring without negatives.

5.3.2 The iconography of signal flow graphs

A signal flow graph is supposed to keep track of the amplification, by elements of a

rig R, to which signals are subjected. While not strictly necessary,9 we will assume the

signals themselves are elements of the same rig R. We refer to elements of R as signals
for the time being.

Amplification of a signal by some value a ∈ R is simply depicted like so:

a
(scalar mult.)

We interpret the above icon as a depicting a system where a signal enters on the

left-hand wire, is multiplied by a, and is output on the right-hand wire.

9
The necessary requirement for the material below to make sense is that the signals take values in an

R-module M. We will not discuss this here, keeping to the simpler requirement that M � R.
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What is more interesting than just a single signal amplification, however, is the

interaction of signals. There are four other important icons in signal flow graphs.

Let’s go through them one by one. The first two are old friends from Chapter 2: copy

and discard.

(copy)

We interpret this diagram as taking in an input signal on the left, and outputting

that same value to both wires on the right. It is basically the “copy” operation from

Section 2.2.3.

Next, we have the ability to discard signals.

(discard)

This takes in any signal, and outputs nothing. It is basically the “waste” operation from

Section 2.2.3.

Next, we have the ability to add signals.

(add, +)

This takes the two input signals and adds them, to produce a single output signal.

Finally, we have the zero signal.

(zero, 0)

This has no inputs, but always outputs the 0 element of the rig.

Using these icons, we can build more complex signal flow graphs. To compute the

operation performed by a signal flow graph we simply trace the paths with the above

interpretations, plugging outputs of one icon into the inputs of the next icon.

For example, consider the rig R � N from Example 5.37, where the scalars are the

natural numbers. Recall the signal flow graph from Eq. (5.1) in the introduction:

7

5 3

2

Aswe explained, this takes in two input signals x and y, and returns two output signals

a � 15x and b � 3x + 21y.
In addition to tracing the processing of the values as they move forward through

the graph, we can also calculate these values by summing over paths. More explicitly,

to get the contribution of a given input wire to a given output wire, we take the sum,

over all paths p joining the wires, of the total amplification along that path.

So, for example, there is one path from the top input to the top output. On this

path, the signal is first copied, which does not affect its value, then amplified by 5, and
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finally amplified by 3. Thus, if x is the first input signal, then this contributes 15x to the

first output. Since there is no path from the bottom input to the top output (one is not

allowed to traverse paths backwards), the signal at the first output is exactly 15x. Both
inputs contribute to the bottom output. In fact, each input contributes in two ways, as

there are two paths to it from each input. The top input thus contributes 3x � x + 2x,
whereas the bottom input, passing through an additional ∗7 amplification, contributes

21y.

Exercise 5.43. The following flow graph takes in two natural numbers x and y

3

5 3

and produces two output signals. What are they? ♦

Example 5.44. This example is for those who have some familiarity with differential

equations. A linear system of differential equations provides a simple way to specify

the movement of a particle. For example, consider a particle whose position (x , y , z) in
3-dimensional space is determined by the following equations:

Ûx + 3 Üy − 2z � 0

Üy + 5 Ûz � 0

Using what is known as the Laplace transform, one can convert this into a linear

system involving a formal variable D, which stands for “differentiate.” Then the

system becomes

Dx + 3D2 y − 2z � 0

D2 y + 5Dz � 0

which can be represented by the signal flow graph

D

−2

D2

5D

3D2

Signal flow graphs as morphisms in a free prop. We can formally define simplified

signal flow graphs using props.
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Definition 5.45. Let R be a rig (see Definition 5.36). Consider the set

GR :�

{
, , ,

}
∪

{
a | a ∈ R

}
,

and let s , t : GR → N be given by the number of dangling wires on the left and right of

the generator icon respectively. A simplified signal flow graph is a morphism in the free

prop Free(GR) on this set GR of generators. We define SFGR B Free(GR).

For now we’ll drop the term ‘simplified’, since these are the only sort of signal flow

graph we know. We’ll return to signal flow graphs in their full glory—i.e. including

feedback—in Section 5.4.3.

Example 5.46. To be more in line with our representations of both wiring diagrams and

port graphs, morphisms in Free(GR) should be drawn slightly differently. For example,

technically the signal flow graph from Exercise 5.43 should be drawn as follows:

3

5 3

because we said we would label boxes with the elements of G. But it is easier on the

eye to draw remove the boxes and just look at the icons inside as in Exercise 5.43, and

so we’ll draw our diagrams in that fashion.

More importantly, props provide language to understand the semantics of sig-

nal flow graphs. Although the signal flow graphs themselves are free props, their

semantics—their meaning in our model of signals flowing—will arise when we add

equations to our props, as in Definition 5.33. These equations will tell us when two

signal flow graphs act the same way on signals. For example,

and (5.47)

both express the same behavior: a single input signal is copied twice so that three

identical copies of the input signal are output.

If two signal flow graphs S, T are almost the same, with the one exception being that

somewhere we replace the left-hand side of Eq. (5.47) with the right-hand side, then S
and T have the same behavior. But there are other replacements we could make to a

signal flow graph that do not change its behavior. Our next goal is to find a complete

description of these replacements.
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5.3.3 The prop of matrices over a rig

Signal flow graphs are closely related to matrices. In previous chapters we showed

how amatrix with values in a quantale V—a closed monoidal preorder with all joins—

represents a system of interrelated points and connections between them, such as

a profunctor. The quantale gave us the structure and axioms we needed in order for

matrixmultiplication towork properly. But we know fromExample 5.39 that quantales

are examples of rigs, and in fact matrix multiplication makes sense in any rig R. In

Example 5.40, we explained that the set Matn(R) of (n × n)-matrices in R can naturally

be assembled into a rig, for any fixed choice of n ∈ N. But what if we want to do better,

and assemble allmatrices into a single algebraic structure? The result is a prop!

An (m × n)-matrix M with values in R is a function M : (m × n) → R. Given an

(m × n)-matrix M and an (n × p)-matrix N , their composite is the (m × p)-matrix M # N
defined as follows for any a ∈ m and c ∈ p:

M # N(a , c) B
∑
b∈n

M(a , b) × N(b , c), (5.48)

Here the

∑
b∈n just means repeated addition (using the rig R’s + operation), as usual.

Remark 5.49. Conventionally, one generally considers a matrix A acting on a vector v
by multiplication in the order Av, where v is a column vector. In keeping with our

composition convention, we use the opposite order, v # A, where v is a row vector. See

for example Eq. (5.52) for when this is implicitly used.

Definition 5.50. Let R be a rig. We define the prop of R-matrices, denoted Mat(R),
to be the prop whose morphisms m → n are the (m × n)-matrices with values in R.

Composition of morphisms is given by matrix multiplication as in Eq. (5.48). The

monoidal product is given by the direct sum of matrices: given matrices A : m → n
and b : p → q, we define A + B : m + p → n + q to be the block matrix(

A 0

0 B

)
where each 0 represents a matrix of zeros of the appropriate dimension (m × q and

n×p). We refer to any combination ofmultiplication and direct sum as a interconnection
of matrices.

Exercise 5.51. Let A and B be the following matrices with values in N:

A �

(
3 3 1

2 0 4

)
B �

(
2 5 6 1

)
.

What is the direct sum matrix A + B? ♦
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5.3.4 Turning signal flow graphs into matrices

Let’s now consider more carefully what we mean when we talk about the meaning, or

semantics, of each signal flow graph. We’ll use matrices.

7

5 3

2

In the examples like the above (copied from Eq. (5.1)), the signals emanating from

output wires, say a and b, are given by certain sums of amplified input values, say x
and y. If we can only measure the input and output signals, and care nothing for what

happens in between, then each signal flow graph may as well be reduced to a matrix of

amplifications. We can represent the signal flow graph of Eq. (5.1) by either the matrix

on the left (formore detail) or thematrix on the right if the labels are clear from context:

a b
x 15 3

y 0 21

(
15 3

0 21

)

Every signal flow graph can be interpreted as a matrix. The generators GR from

Definition 5.45 are shown again in the table below, where each is interpreted as a

matrix. For example, we interpret amplification by a ∈ R as the 1×1 matrix (a) : 1→ 1:

it is an operation that takes an input x ∈ R and returns a ∗ x. Similarly, we can interpret

as the 2 × 1 matrix

(
1

1

)
: it is an operation that takes a row vector consisting of two

inputs, x and y, and returns x + y. Here is a table showing the interpretation of each

generator.

generator icon matrix arity

amplify by a ∈ R a
(
a
)

1→ 1

add

(
1

1

)
2→ 1

zero () 0→ 1

copy

(
1 1

)
1→ 2

discard () 1→ 0

(5.52)

Note that both zero and discard are represented by empty matrices, but of differing

dimensions. In linear algebra it is unusual to considermatrices of the form 0×n or n×0

for various n to be different, but they can be kept distinct for bookkeeping purposes:

you can multiply a 0× 3 matrix by a 3× n matrix for any n, but you can not multiply it

by a 2 × n matrix.

Since signal flow graphs are morphisms in a free prop, the table in (5.52) is enough

to show that we can interpret any signal flow diagram as a matrix.
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Theorem 5.53. There is a prop functor S : SFGR → Mat(R) that sends the generators

1 ∈ G icons to the matrices as described in Table 5.52.

Proof. This follows immediately from the universal property of free props, Remark 5.34.

�

We have now constructed a matrix S(1) from any signal flow graph 1. But how can

we produce this matrix explicitly? Both for the example signal flow graph in Eq. (5.1)

and for the generators in Definition 5.45, the associated matrix has dimension m × n,
where m is the number of inputs and n the number of outputs, with (i , j)th entry

describing the amplification of the ith input that contributes to the jth output. This

is how one would hope or expect the functor S to work in general; but does it? We

have used a big hammer—the universal property of free constructions—to obtain our

functor S. Our next goal is to check that it works in the expected way. Doing so is a

matter of using induction over the set of prop expressions, as we now see.10

Proposition 5.54. Let 1 be a signal flowgraphwith m inputs and n outputs. Thematrix

S(1) is the (m × n)-matrix whose (i , j)-entry describes the amplification of the ith input

that contributes to the jth output.

Proof. Recall from Definition 5.30 that an arbitrary GR-generated prop expression is

built from the morphisms id0 : 0→ 0, id1 : 1→ 1, σ : 2→ 2, and the generators in GR,

using the following two rules:

• if α : m → n and β : p → q are expressions, then (α + β) : (m + p) → (n + q) is an
expression.

• if α : m → n and β : n → p are expressions, then α # β : m → p is an expression.

S is a prop functor by Theorem 5.53, which by Definition 5.11 must preserve identities,

compositions, monoidal products, and symmetries. We first show that the proposition

is true when 1 is equal to id0, id1, and σ.

The empty signal flow graph id0 : 0→ 0 must be sent to the unique (empty) matrix

() : 0 → 0. The morphisms id1, σ, and a ∈ R map to the identity matrix, the swap

matrix, and the scalar matrix (a) respectively:

7→
(
1

)
and 7→

(
0 1

1 0

)
and a 7→

(
a
)

In each case, the (i , j)-entry gives the amplification of the ith input to the jth output.

It remains to show that if the proposition holds for α : m → n and β : p → q, then it

holds for (i) α # β (when n � p) and for (ii) α + β (in general).

10
Mathematical induction is a formal proof technique that can be thought of like a domino rally: if

you knock over all the starting dominoes, and you’re sure that each domino will be knocked down if its

predecessors are, then you’re sure every domino will eventually fall. If you want more rigor, or you want

to understand the proof of Proposition 5.54 as a genuine case of induction, ask a friendly neighborhood

mathematician!
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To prove (i), consider the following picture of α # β:

α β...
...

m inputs
...

q outputs

Here α : m → n and β : n → q are signal flow graphs, assumed to obey the proposition.

Consider the ith input and kth output of α # β; we’ll just call these i and k. We want to

show that the amplification that i contributes to k is the sum—over all paths from i to
k—of the amplification along that path. So let’s also fix some j ∈ n, and consider paths

from i to k that run through j. By distributivity of the rig R, the total amplification

from i to k through j is the total amplification over all paths from i to j times the total

amplication over all paths from j to k. Since all paths from i to k must run through

some jth output of α/input of β, the amplification that i contributes to k is∑
j∈n

α(i , j) ∗ β( j, k).

This is exactly the formula for matrix multiplication, which is composition S(α) # S(β)
in the prop Mat(R); see Definition 5.50. So α # β obeys the proposition when α and β

do.

Proving (ii) is more straightforward. The monoidal product α + β of signal flow

graphs looks like this:

α

β

...
m inputs

...
n outputs

...
p inputs

...
q outputs

No new paths are created; the only change is to reindex the inputs and outputs. In

particular, the ith input of α is the ith input of α+β, the jth output of α is the jth output

of α + β, the ith input of β is the (m + i)th output of α + β, and the jth output of β is the

(n + j)th output of α + β. This means that the matrix with (i , j)th entry describing the

amplification of the ith input that contributes to the jth output is S(α)+S(β) � S(α+β),
as in Definition 5.50. This proves the proposition. �

Exercise 5.55.
1. What matrix does the signal flow graph

represent?
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2. What about the signal flow graph

3. Are they equal? ♦

5.3.5 The idea of functorial semantics

Let’s pause for a moment to reflect on what we have just learned. First, signal flow

diagrams are the morphisms in a prop. This means we have two special operations we

can do to form new signal flow diagrams from old, namely composition (combining

in series) and monoidal product (combining in parallel). We might think of this as

specifying a ‘grammar’ or ‘syntax’ for signal flow diagrams.

As a language, signal flow graphs have not only syntax but also semantics: each

signal flow diagram can be interpreted as a matrix. Moreover, matrices have the same

grammatical structure: they form a prop, and we can construct new matrices from

old using composition and monoidal product. In Theorem 5.53 we completed this

picture by showing that semantic interpretation is a prop functor between the prop of

signal flow graphs and the prop of matrices. Thus we say that matrices give functorial
semantics for signal flow diagrams.

Functorial semantics is a key manifestation of compositionality. It says that the

matrix meaning S(1) for a big signal flow graph 1 can be computed by:

1. splitting 1 up into little pieces,

2. computing the very simple matrices for each piece, and

3. using matrix multiplication and direct sum to put the pieces back together to

obtain the desired meaning, S(1).
This functoriality is useful in practice, for example in speeding up computation of the

semantics of signal flow graphs: for large signal flow graphs, composing matrices is

much faster than tracing paths.

5.4 Graphical linear algebra

In this sectionwewill begin todevelop something called graphical linear algebra,which

extends the ideas above. This formalism is actually quite powerful. For example,

with it we can easily and graphically prove certain conjectures from control theory

that, although they were eventually solved, required fairly elaborate matrix algebra

arguments [FSR16].

5.4.1 A presentation of Mat(R)

Let R be a rig, as defined in Definition 5.36. The main theorem of the previous section,

Theorem 5.53, provided a functor S : SFGR → Mat(R) that converts any signal flow
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graph into a matrix. Next we show that S is “full”: that any matrix can be represented

by a signal flow graph.

Proposition 5.56. Given any matrix M ∈ Mat(R), there exists a signal flow graph

1 ∈ SFGR such that such that S(1) � M.

Proof sketch. Let M ∈ Mat(R) be an (m × n)-matrix. We want a signal flow graph 1

such that S(1) � M. In particular, to compute S(1)(i , j), we know that we can simply

compute the amplification that the ith input contributes to the jth output. The key idea

then is to construct 1 so that there is exactly one path from ith input to the jth output,

and that this path has exactly one scalar multiplication icon, namely M(i , j).
The general construction is a little technical (see Exercise 5.59), but the idea is clear

from just considering the case of 2 × 2-matrices. Suppose M is the 2 × 2-matrix ( a b
c d ).

Then we define 1 to be the signal flow graph

a

b
c

d (5.57)

Tracing paths, it is easy to see that S(1) � M. Note that 1 is the composite of four

layers, each layer respectively a monoidal product of (i) copy and discard maps, (ii)

scalar multiplications, (iii) swaps and identities, (iv) addition and zero maps.

For the general case, see Exercise 5.59. �

Exercise 5.58. Draw signal flow graphs that represent the following matrices:

1.

©«
0

1

2

ª®®¬ 2.

(
0 0

0 0

)
3.

(
1 2 3

4 5 6

)
♦

Exercise 5.59. Write down a detailed proof of Proposition 5.56. Suppose M is an

m × n-matrix. Follow the idea of the (2 × 2)-case in Eq. (5.57), and construct the

signal flow graph 1—having m inputs and n outputs—as the composite of four layers,

respectively comprising (i) copy anddiscardmaps, (ii) scalars, (iii) swaps and identities,

(iv) addition and zero maps. ♦

We can also use Proposition 5.56 and its proof to give a presentation of Mat(R),
which was defined in Definition 5.50.
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Theorem 5.60. The prop Mat(R) is isomorphic to the prop with the following presen-

tation. The set of generators is the set

GR :�

{
, , ,

}
∪

{
a | a ∈ R

}
,

the same as the set of generators for SFGR; see Definition 5.45.

We have the following equations for any a , b ∈ R:

� � �

� � �

� � �

�

a b � ab
a

b � a+b

1 � 0 �

a �

a

a
a �

a

a

a � a �

Proof. The key idea is that these equations are sufficient to rewrite any GR-generated

prop expression into a normal form—the one used in the proof of Proposition 5.56—

with all the black nodes to the left, all the white nodes to the right, and all the scalars in

the middle. This is enough to show the equality of any two expressions that represent

the same matrix. Details can be found in [BE15] or [BS17]. �

Sound and complete presentation ofmatrices. Once you get used to it, Theorem 5.60

provides an intuitive, visualway to reason aboutmatrices. Indeed, the theorem implies

two signal flow graphs represent the same matrix if and only if one can be turned into

the other by local application of the above equations and the prop axioms.

The fact that you can prove two SFGs to be the same by using only graphical rules

can be stated in the jargon of logic: we say that the graphical rules provide a sound and
complete reasoning system. To be more specific, sound refers to the forward direction of

the above statement: two signal flow graphs represent the same matrix if one can be

turned into the other using the given rules. Complete refers to the reverse direction: if
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two signal flow graphs represent the same matrix, then we can convert one into the

other using the equations of Theorem 5.60.

Example 5.61. Both of the signal flow graphs below represent the same matrix,

(
0

6

)
:

3

2

and
6

This means that one can be transformed into the other by using only the equations

from Theorem 5.60. Indeed, here

3

2

�

3

2

�
32

�
6

Exercise 5.62.
1. For each matrix in Exercise 5.58, draw another signal flow graph that represents

that matrix.

2. Using the above equations and the prop axioms, prove that the two signal flow

graphs represent the same matrix. ♦

Exercise 5.63. Consider the signal flow graphs

and 3

5 3

3

3

5 3

(5.64)

1. Let R � (N, 0,+, 1, ∗). By examining the presentation of Mat(R) in Theorem 5.60,

and without computing the matrices that the two signal flow graphs in Eq. (5.64)

represent, prove that they do not represent the same matrix.

2. Now suppose the rig is R � N/3N; if you do not know what this means, just

replace all 3’s with 0’s in the right-hand diagram of Eq. (5.64). Find what you

would call a minimal representation of this diagram, using the presentation in

Theorem 5.60. ♦
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5.4.2 Aside: monoid objects in a monoidal category

Various subsets of the equations in Theorem 5.60 encode structures that are familiar

from many other parts of mathematics, e.g. representation theory. For example one

can find the axioms for (co)monoids, (co)monoid homomorphisms, Frobenius algebras,

and (with a little rearranging) Hopf algebras, sitting inside this collection. The first

example, the notion of monoids, is particularly familiar to us by now, so we briefly

discuss it below, both in algebraic terms (Definition 5.65) and in diagrammatic terms

(Example 5.68).

Definition 5.65. Amonoid object (M, µ, η) in a symmetric monoidal category (C, I , ⊗) is
an object M of C together with morphisms µ : M ⊗M → M and η : I → M such that

(a) (µ ⊗ id) # µ � (id ⊗ µ) # µ and

(b) (η ⊗ id) # µ � id � (id ⊗ η) # µ.
A commutative monoid object is a monoid object that further obeys

(c) σM,M # µ � µ.

where σM,M is the swap map on M in C. We often denote it simply by σ.

Monoid objects are so-named because they are an abstraction of the usual concept

of monoid.

Example 5.66. A monoid object in (Set, 1,×) is just a regular old monoid, as defined in

Example 2.6; see also Example 3.13. That is, it is a set M, a function µ : M ×M → M,

which we denote by infix notation ∗, and an element η(1) ∈ M, which we denote by e,
satisfying (a ∗ b) ∗ c � a ∗ (b ∗ c) and a ∗ e � a � e ∗ a.

Exercise 5.67. Consider the set R of real numbers.

1. Show that if µ : R × R→ R is defined by µ(a , b) � a ∗ b and if η ∈ R is defined to

be η � 1, then (R, ∗, 1) satisfies all three conditions of Definition 5.65.

2. Show that if µ : R ×R→ R is defined by µ(a , b) � a + b and if η ∈ R is defined to

be η � 0, then (R,+, 0) satisfies all three conditions of Definition 5.65. ♦

Example 5.68. Graphically, we can depict µ � and η � . Then axioms (a), (b), and

(c) from Definition 5.65 become:

(a) �

(b) �

(c) �

All three of these are found in Theorem 5.60. Thus we can immediately conclude the

following: the triple (1, , ) is a commutative monoid object in the prop Mat(R).
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Exercise 5.69. For any rig R, there is a functor U : Mat(R) → Set, sending the object

n ∈ N to the set Rn
, and sending a morphism (matrix) M : m → n to the function

Rm → Rn
given by vector-matrix multiplication.

Recall that in Mat(R), themonoidal unit is 0 and themonoidal product is+, because

it is a prop. Recall also that in (the usual monoidal structure on) Set, the monoidal unit

is {1}, a set with one element, and the monoidal product is × (see Example 4.49).

1. Check that the functor U : Mat(R) → Set, defined above, preserves the monoidal

unit and the monoidal product.

2. Show that if (M, µ, η) is a monoid object in Mat(R) then (U(M),U(µ),U(η)) is
a monoid object in Set. (This works for any monoidal functor—which we will

define in Definition 6.68—not just for U in particular.)

3. In Example 5.68, we said that the triple (1, , ) is a commutative monoid object

in the prop Mat(R). If R � R is the rig of real numbers, this means that we have

a monoid structure on the set R. But in Exercise 5.67 we gave two such monoid

structures. Which one is it? ♦

Example 5.70. The triple (1, , ) in Mat(R) forms a commutative monoid object in

Mat(R)op. We hence also say that (1, , ) forms a co-commutative comonoid object in
Mat(R).

Example 5.71. A symmetric strict monoidal category, is just a commutative monoid object

in (Cat,×, 1). We will unpack this in Section 6.4.1.

Example 5.72. A symmetric monoidal preorder, which we defined in Definition 2.2, is

just a commutative monoid object in the symmetric monoidal category (Preord,×, 1)
of preorders and monotone maps.

Example 5.73. For those who know what tensor products of commutative monoids

are (or can guess): A rig is a monoid object in the symmetric monoidal category

(CMon, ⊗,N) of commutative monoids with tensor product.

Remark 5.74. If we present a prop M using two generators µ : 2 → 1 and η : 0 → 1,

and the three equations from Definition 5.65, we could call it ‘the theory of monoids in

monoidal categories.’ This means that in any monoidal category C, the monoid objects

in C correspond to strict monoidal functorsM→ C. This sort of idea leads to the study

of algebraic theories, due to Bill Lawvere and extended bymany others; see Section 5.5.
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5.4.3 Signal flow graphs: feedback and more

At this point in the story, we have seen that every signal flow graph represents amatrix,

and this gives us a new way of reasoning about matrices. This is just the beginning of

a beautiful tale, one not only of graphical matrices, but of graphical linear algebra. We

close this chapter with some brief hints at how the story continues.

The pictoral nature of signal flow graphs invites us to play with them. While we

normally draw the copy icon like so, , we could just as easily reverse it and draw an

icon . What might it mean? Let’s think again about the semantics of flow graphs.

The behavioral approach. A signal flow graph 1 : m → n takes an input x ∈ Rm
and

gives an output y ∈ Rn
. In fact, since this is all we care about, we might just think

about representing a signal flow graph 1 as describing a set of input and output pairs

(x , y). We’ll call this set the behavior of 1 and denote it B(1) ⊆ Rm × Rn
. For example,

the ‘copy’ flow graph

sends the input 1 to the output (1, 1), so we consider (1, (1, 1)) to be an element of

copy-behavior. Similarly, (x , (x , x)) is copy behavior for every x ∈ R, thus we have

B( ) � {(x , (x , x)) | x ∈ R}.

In the abstract, the signal flow graph 1 : m → n has the behavior

B(1) �
{(

x , S(1)(x)
)
| x ∈ Rm}

⊆ Rm × Rn . (5.75)

Mirror image of an icon. The above behavioral perspective provides a clue about

how to interpret the mirror images of the diagrams discussed above. Reversing an icon

1 : m → n exchanges the inputs with the outputs, so if we denote this reversed icon by

1op, wemust have 1op : n → m. Thus if B(1) ⊆ Rm×Rn
thenwe need B(1op) ⊆ Rn×Rm

.

One simple way to do this is to replace each (a , b)with (b , a), so we would have

B(1op) B
{(

S(1)(x), x
)
| x ∈ Rm}

⊆ Rn × Rm . (5.76)

This is called the transposed relation.

Exercise 5.77.
1. What is the behavior B( ) of the reversed addition icon : 1→ 2?

2. What is the behavior B( ) of the reversed copy icon, : 2→ 1? ♦

Eqs. (5.75) and (5.76) give us formulas for interpreting signal flow graphs and their

mirror images. But this would easily lead to disappointment, if we couldn’t combine

the two directions behaviorally; luckily we can.
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Combining directions. What should the behavior be for a diagram such as the fol-

lowing:

3

−1 3

Let’s formalize our thoughts a bit and begin by thinking about behaviors. The behavior

of a signal flow graph m → n is a subset B ⊆ Rm × Rn
, i.e. a relation. Why not try to

construct a prop where the morphisms m → n are relations?

We’ll need to know how to compose and take monoidal products of relations.

And if we want this prop of relations to contain the old prop Mat(R), we need the new

compositions andmonoidal products to generalize the old ones inMat(R). Given signal

flow graphs with matrices M : m → n and N : n → p, we see that their behaviors are

the relations B1 B {(x ,Mx) | x ∈ Rm} and B2 B {(y ,N y) | y ∈ Rn}, while the behavior

of M # N is the relation {(x , x # M # N) | x ∈ Rm}. This is a case of relation composition.

Given relations B1 ⊆ Rm × Rn
and B2 ⊆ Rn × Rp

, their composite B1
# B2 ⊆ Rm × Rp

is

given by

B1
# B2 B {(x , z) | there exists y ∈ Rn

such that (x , y) ∈ B1 and (y , z) ∈ B2}. (5.78)

We shall use this as the general definition for composing two behaviors.

Definition 5.79. Let R be a rig. We define the prop RelR of R-relations to have subsets

B ⊆ Rm × Rn
as morphisms. These are composed by the composition rule from

Eq. (5.78), and we take the product of two sets to form their monoidal product.

Exercise 5.80. In Definition 5.79 we went quickly through monoidal products + in the

prop RelR. If B ⊆ Rm × Rn
and C ⊆ Rp × Rq

are morphisms in RelR, write down B + C
in set-notation. ♦

(No-longer simplified) signal flow graphs. Recall that above, e.g. in Definition 5.45,

we wrote GR for the set of generators of signal flow graphs. In Section 5.4.3, we wrote

1op for the mirror image of 1, for each 1 ∈ GR. So let’s write Gop

R B {1op | 1 ∈ GR} for
the set of all the mirror images of generators. We define a prop

SFG+

R B Free
(
GR tGop

R

)
. (5.81)

We call a morphism in the prop SFG+

R a (non-simplified) signal flow graph: these extend
our simplified signal flow graphs fromDefinition 5.45 because nowwe can also use the

mirrored icons. By the universal property of free props, since we have said what the

behavior of the generators is (the behavior of a reversed icon is the transposed relation;

see Eq. (5.76)), we have specified the behavior of any signal flow graph.

The following two exercises help us understand what this behavior is.
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Exercise 5.82. Let 1 : m → n, h : ` → n be signal flow graphs. Note that hop
: n → ` is

a signal flow graph, and we can form the composite 1 # (hop):

−→
1

←−
hop

...
...

...

Show that the behavior of 1 # (hop) ⊆ Rm × R`
is equal to

B(1 # (hop)) � {(x , y) | S(1)(x) � S(h)(y)}. ♦

Exercise 5.83. Let 1 : m → n, h : m → p be signal flow graphs. Note that (1op) : n → m
is a signal flow graph, and we can form the composite 1op # h

←−
1op

−→
h

...
...

...

Show that the behavior of 1op # h is equal to

B((1op) # h) � {(S(1)(x), S(h)(x)) | x ∈ Rm}. ♦

Linear algebra via signal flow graphs. In Eq. (5.75) we see that everymatrix, or linear

map, can be represented as the behavior of a signal flow graph, and in Exercise 5.82 we

see that solution sets of linear equations can also be represented. This includes central

concepts in linear algebra, like kernels and images.

Exercise 5.84. Here is an exercise for those that know linear algebra, in particular

kernels and cokernels. Let R be a field, let 1 : m → n be a signal flow graph, and let

S(1) ∈Mat(R) be the associated (m × n)-matrix (see Theorem 5.53).

1. Show that the composite of 1 with 0-reverses, shown here

−→
1

...
...

is equal to the kernel of the matrix S(1).
2. Show that the composite of discard-reverses with 1, shown here

−→
1

...
...

is equal to the image of the matrix S(1).
3. Show that for any signal flow graph 1, the subset B(1) ⊆ Rm × Rn

is a linear

subspace. That is, if b1 , b2 ∈ B(1) then so are b1 + b2 and r ∗ b1, for any r ∈ R. ♦



5.4. GRAPHICAL LINEAR ALGEBRA 177

We have thus seen that signal flow graphs provide a uniform, compositional lan-

guage to talk about many concepts in linear algebra. Moreover, in Exercise 5.84 we

showed that the behavior of a signal flow graph is a linear relation, i.e. a relation whose

elements can be added and multiplied by scalars r ∈ R. In fact the converse is true too:

any linear relation B ⊆ Rm × Rn
can be represented by a signal flow graph.

Exercise 5.85. One might want to show that linear relations on R form a prop,

LinRelR. That is, one might want to show that there is a sub-prop of the prop RelR

from Definition 5.79, where the morphisms m → n are the subsets B ⊆ Rm × Rn
such

that B is linear. In other words, where for any (x , y) ∈ B and r ∈ R, the element

(r ∗ x , r ∗ y) ∈ Rm ×Rn
is in B, and for any (x′, y′) ∈ B, the element (x + x′, y + y′) is in B.

This is certainly doable, but for this exercise, we only ask that you prove that the

composite of two linear relations is linear. ♦

Just like we gave a sound and complete presentation for the prop of matrices in

Theorem 5.60, it is possible to give a sound and complete presentation for linear

relations on R. Moreover, it is possible to give such a presentation whose generating

set is GR t Gop

R as in Eq. (5.81) and whose equations include those from Theorem 5.60,

plus a few more. This presentation gives a graphical method for doing linear algebra:

an equation between linear subspaces is true if and only if it can be proved using the

equations from the presentation.

Although not difficult, we leave the full presentation to further reading (Section 5.5).

Instead, we’ll conclude our exploration of the prop of linear relations by noting that

some of these ‘few more’ equations state that relations—just like co-design problems

in Chapter 4—form a compact closed category.

Compact closed structure. Using the icons available to us for signal flow graphs, we

can build morphisms that look like the ‘cup’ and ‘cap’ from Definition 4.58:

and (5.86)

The behaviors of these graphs are respectively

{(0, (x , x)) | x ∈ R} ⊆ R0 × R2

and {((x , x), 0) | x ∈ R} ⊆ R2 × R0.

In fact, these show the object 1 in the prop RelR is dual to itself: the morphisms from

Eq. (5.86) serve as the η1 and ε1 fromDefinition 4.58. Usingmonoidal products of these

morphisms, one can show that any object in RelR is dual to itself.

Graphically, this means that the three signal flow graphs

all represent the same relation.

Using these relations, it is straightforward to check the following result.
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Theorem 5.87. The propRelR is a compact closed category inwhich every object n ∈ N
is dual to itself, n � n∗.

To make our signal flow graphs simpler, we define new icons cup and cap by the

equations

B
and

B

Back to control theory. Let’s close by thinking about how to represent a simple control

theory problem in this setting. Suppose we want to design a system to maintain the

speed of a car at a desired speed u. We’ll work in signal flow diagrams over the rig

R[s , s−1] of polynomials in s and s−1
with coefficients in R and where ss−1 � s−1s � 1.

This is standard in control theory: we thinkof s as integration, and s−1
asdifferentiation.

There are three factors that contribute to the actual speed v. First, there is the actual
speed v. Second, there are external forces F. Third, we have our control system: this

will take some linear combination a ∗ u + b ∗ v of the desired speed and actual speed,

amplify it by some factor p to give a (possibly negative) acceleration. We can represent

this system as follows, where m is the mass of the car.

1

m s

p s
a

b

F

u
v

This can be read as the following equation, where one notes that v occurs twice:

v �

∫
1

m
F(t)dt + u(t) + p

∫
au(t) + bv(t)dt .

Our control problem then asks: how do we choose a and b to make the behavior of

this signal flow graph close to the relation {(F, u , v) | u � v}? By phrasing problems in

this way, we can use extensions of the logic we have discussed above to reason about

such complex, real-world problems.

5.5 Summary and further reading

The goal of this chapter was to explain how props formalize signal flow graphs, and

provide a new perspective on linear algebra. To do this, we examined the idea of free

and presented structures in terms of universal properties. This allowed us to build

props that exactly suited our needs.

Paweł Sobociński’s Graphical Linear Algebra blog is an accessible and fun exploration

of the key themes of this chapter, which goes on to describe how concepts such as

determinants, eigenvectors, and division by zero can be expressed using signal flow
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graphs [Sob]. For the technical details, one could start with Baez and Erbele [BE15],

or Zanasi’s thesis [Zan15] and its related series of papers [BSZ14; BSZ15; BS17]. For

details about applications to control theory, see [FSR16]. From the control theoretic

perspective, the ideas andphilosophy of this chapter are heavily influenced byWillems’

behavioral approach [Wil07].

For the reader that has not studied abstract algebra, wemention that rings, monoids,

and matrices are standard fare in abstract algebra, and can be found in any standard

introduction, such as [Fra67]. Rigs, also known as semirings, are a bit less well known,

but no less interesting; a comprehensive survey of the literature can be found in [Gla13].

Perhaps the most significant idea in this chapter is the separation of structure into

syntax and semantics, related by a functor. This is not only present in the running

theme of studying signal flow graphs, but in our aside Section 5.4.2, where we talk,

for example, about monoid objects in monoidal categories. The idea of functorial

semantics is yet another due to Lawvere, first appearing in his thesis [Law04].





Chapter 6

Electric circuits:
Hypergraph categories and operads

6.1 The ubiquity of network languages

Electric circuits, chemical reaction networks, finite state automata, Markov processes:

these are all models of physical or computational systems that are commonly described

using network diagrams. Here, for example, we draw adiagram thatmodels a flip-flop,

an electric circuit—important in computermemory—that can store a bit of information:

VS

OUTPUT

OUTPUT

SET

RESET

1KΩ

1KΩ

10KΩ

10KΩ

Network diagrams have time-tested utility. In this chapter, we are interested in

understanding the commonmathematical structure that they share, for the purposes of

translating between and unifying them; for example certain types of Markov processes

can be simulated and hence solved using circuits of resisters. When we understand

the underlying structures that are shared by network diagram languages, we can make

comparisons between the corresponding mathematical models easily.

At first glance networkdiagrams appear quite different from thewiringdiagramswe

have seen so far. For example, the wires are undirected in the case above, whereas in a

181
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category—includingmonoidal categories seen in resource theories or co-design—every

morphism has a domain and codomain, giving it a sense of direction. Nonetheless,

we shall see how to use categorical constructions such as universal properties to create

categoricalmodels that precisely capture the above type of “network” compositionality,

i.e. allowing us to effectively drop directedness when convenient.

In particular we’ll return to the idea of a colimit, which we sketched for you at the

end of Chapter 3, and show how to use colimits in the category of sets to formalize

ideas of connection. Here’s the key idea.

Connections via colimits. Let’s say we want to install some lights: we want to create

a circuit so that whenwe flick a switch, a light turns on or off. To start, we have a bunch

of circuit components: a power source, a switch, and a lamp connected to a resistor:

We want to connect them together, but there are many ways to do so. How should we

describe the particular way that will form a light switch?

First, we claim that circuits should really be thought of as open circuits: each carries

the additional structure of an ‘interface’ exposing it to the rest of the electrical world.

Here by interface we mean a certain set of locations, or ports, at which we are able to

connect them with other components.1 As is so common in category theory, we begin

by making this more-or-less obvious fact explicit. Let’s depict the available ports using

a bold •. If we say that in the each of the three drawings above, the ports are simply

the dangling end points of the wires, they would be redrawn as follows:

Next, we have to describe which ports should be connected. We’ll do this by draw-

ing empty circles ◦ connected by arrows to two ports •. Each will be a witness-to-

connection, saying ‘connect these two!’

1
If your circuit has no such ports, it still falls within our purview, by taking its interface to be the

empty set.
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Looking at this picture, it is clear what we need to do: just identify—i.e. merge or make
equal—the ports as indicated, to get the following circuit:

But mathematics doesn’t have a visual cortex with which to generate the intuitions

we can count on with a human reader such as yourself.2 Thus we need to specify

formally what ‘identifying ports as indicated’ means mathematically. As it turns out,

we can do this using finite colimits in a given category C.

Colimits are diagramswith certain universal properties, which is kind of an epiphe-

nomenon of the category C. Our goal is to obtain C’s colimits more directly, as a kind

of operation in some context, so that we can think of them as telling us how to connect

circuit parts together. To that end, we produce a certain monoidal category—namely

that of cospans in C, denoted CospanC—that can conveniently package C’s colimits in

terms of its own basic operations: composition and monoidal product.

In summary, the first part of this chapter is devoted to the slogan ‘colimits model

interconnection’. In addition to universal constructions such as colimits, however,

another way to describe interconnection is to use wiring diagrams. We go full circle

whenwe find that these wiring diagrams are strongly connected to cospans, and hence

colimits.

Composition operations and wiring diagrams. In this book we have seen the utility

of defining syntactic or algebraic structures that describe the sort of composition op-

erations that make sense and can be performed in a given application area. Examples

include monoidal preorders with discarding, props, and compact closed categories.

Each of these has an associated sort of wiring diagram style, so that any wiring dia-

gram of that style represents a composition operation that makes sense in the given

area: the first makes sense in manufacturing, the second in signal flow, and the third

in collaborative design. So our second goal is to answer the question, “how do we

describe the compositional structure of network-style wiring diagrams?”

Network-type interconnection can be described using something called a hyper-

graph category. Roughly speaking, these are categories whose wiring diagrams are

those of symmetricmonoidal categories togetherwith, for each pair of natural numbers

(m , n), an icon sm ,n : m → n. These icons, known as spiders,3 are drawn as follows:

Two spiders can share a leg, and when they do, we can fuse them into one spider. The

intuition is that spiders are connection points for a number of wires, and when two

2
Unless the future has arrived since the writing of this book.

3
Our spiders have any number of legs.
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connection points are connected, they fuse to form an evenmore ‘connect-y’ connection

point. Here is an example:

�

A hypergraph category may have many species of spiders with the rule that spiders

of different species cannot share a leg—and hence not fuse—but two spiders of the

same species can share legs and fuse. We add spider diagrams to the iconography of

hypergraph categories.

As we shall see, the ideas of describing network interconnection using colimits and

hypergraph categories come together in the notion of a theory. We first introduced the

idea of a theory in Section 5.4.2, but here we explore it more thoroughly, starting with

the idea that, approximately speaking, cospans in the category FinSet form the theory

of hypergraph categories.

We can assemble all cospans in FinSet into something called an ‘operad’. Through-

out this book we have talked about using free structures and presentations to create

instances of algebraic structures such as preorders, categories, and props, tailored

to the needs of a particular situation. Operads can be used to tailor the algebraic

structures themselves to the needs of a particular situation. We will discuss how this

works, in particular how operads encode various sorts of wiring diagram languages

and corresponding algebraic structures, at the end of the chapter.

6.2 Colimits and connection

Universal constructions are central to category theory. They allow us to define objects,

at least up to isomorphism, by describing their relationship with other objects. So far

we have seen this theme in a number of different forms: meets and joins (Section 1.3),

Galois connections and adjunctions (Sections 1.4 and 3.4), limits (Section 3.5), and free

and presented structures (Section 5.2.3-5.2.5). Here we turn our attention to colimits.

In this section, our main task is to have a concrete understanding of colimits in the

category FinSet of finite sets and functions. The idea will be to take a bunch of sets—

say two or fifteen or zero—use functions between them to designate that elements in

one set ‘should be considered the same’ as elements in another set, and then merge the

sets together accordingly.

6.2.1 Initial objects

Just as the simplest limit is a terminal object (see Section 3.5.1), the simplest colimit is

an initial object. This is the case where you start with no objects and you merge them

together.
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Definition 6.1. Let C be a category. An initial object in C is an object � ∈ C such that for

each object T in C there exists a unique morphism !T : � → T.

The symbol � is just a default name, a notation, intended to evoke the right idea;

see Example 6.4 for the reason why we use the notation �, and Exercise 6.7 for a case

when the default name �would probably not be used.

Again, the hallmark of universality is the existence of a unique map to any other

comparable object.

Example 6.2. An initial object of a preorder is a bottom element—that is, an element that

is less than every other element. For example 0 is the initial object in (N, ≤), whereas

(R, ≤) has no initial object.

Exercise 6.3. Consider the set A � {a , b}. Find a preorder relation ≤ on A such that

1. (A, ≤) has no initial object.

2. (A, ≤) has exactly one initial object.

3. (A, ≤) has two initial objects. ♦

Example 6.4. The initial object in FinSet is the empty set. Given any finite set T, there
is a unique function � → T, since � has no elements.

Example 6.5. As seen in Exercise 6.3, a category C need not have an initial object. As a

different sort of example, consider the category shown here:

C B
A• B•

f

1

If there were to be an initial object �, it would either be A or B. Either way, we need to

show that for each object T ∈ Ob(C) (i.e. for both T � A and T � B) there is a unique

morphism � → T. Trying the case � �? A this condition fails when T � B: there are

two morphisms A→ B, not one. And trying the case � �? B this condition fails when

T � A: there are zero morphisms B→ A, not one.

Exercise 6.6. For each of the graphs below, consider the free category on that graph,

and say whether it has an initial object.

1.

a• 2.

a• → b• → c• 3.

a• b• 4.

a• ♦

Exercise 6.7. Recall the notion of rig from Chapter 5. A rig homomorphism from

(R, 0R ,+R , 1R , ∗R) to (S, 0S ,+S , 1S , ∗S) is a function f : R → S such that f (0R) � 0S,

f (r1 +R r2) � f (r1) +S f (r2), etc.
1. We said “etc.” Guess the remaining conditions for f to be a rig homomorphism.
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2. Let Rig denote the category whose objects are rigs and whose morphisms are rig

homomorphisms. We claim Rig has an initial object. What is it? ♦

Exercise 6.8. Explain the statement “the hallmark of universality is the existence of

a unique map to any other comparable object,” in the context of Definition 6.1. In

particular, what is being universal in Definition 6.1, and which is the “comparable

object”? ♦

Remark 6.9. As mentioned in Remark 3.85, we often speak of ‘the’ object that satisfies a

universal property, such as ‘the initial object’, even thoughmany different objects could

satisfy the initial object condition. Again, the reason is that initial objects are unique

up to unique isomorphism: any two initial objects will have a canonical isomorphism

between them, which one finds using various applications of the universal property.

Exercise 6.10. Let C be a category, and suppose that c1 and c2 are initial objects. Find

an isomorphism between them, using the universal property from Definition 6.1. ♦

6.2.2 Coproducts

Coproducts generalize both joins in a preorder and disjoint unions of sets.

Definition 6.11. Let A and B be objects in a category C. A coproduct of A and B
is an object, which we denote A + B, together with a pair of morphisms (ιA : A →
A + B, ιB : B → A + B) such that for all objects T and pairs of morphisms ( f : A →
T, 1 : B→ T), there exists a uniquemorphism [ f , 1] : A+B→ T such that the following

diagram commutes:

A A + B B

T

ιA

f
[ f ,1]

ιB

1
(6.12)

We call [ f , 1] the copairing of f and 1.

Exercise 6.13. Explain why, in a preorder, coproducts are the same as joins. ♦

Example 6.14. Coproducts in the categories FinSet and Set are disjoint unions. More

precisely, suppose A and B are sets. Then the coproduct of A and B is given by

the disjoint union At B together with the inclusion functions ιA : A −→ At B and
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ιB : B→ At B.

apple

•
banana•
pear

•
cherry

•
orange

•

A

apple

•
tomato•
mango

•

B

t

apple1

•
banana1•
pear1

•
cherry1

•
orange1

•

apple2

•
tomato2•
mango2

•

A t B

� (6.15)

Suppose we have functions f : A → T and 1 : B → T for some other set T,
unpictured. The universal property of coproducts says there is a unique function

[ f , 1] : At B → T such that ιA # [ f , 1] � f and ιB # [ f , 1] � 1. What is it? Any element

x ∈ At B is either ‘from A’ or ‘from B’, i.e. either there is some a ∈ A with x � ιA(a) or
there is some b ∈ B with x � ιB(b). By Eq. (6.12), we must have:

[ f , 1](x) �
{

f (x) if x � ιA(a) for some a ∈ A;

1(x) if x � ιB(b) for some b ∈ B.

Exercise 6.16. Suppose T � {a , b , c , . . . , z} is the set of letters in the alphabet, and let

A and B be the sets from Eq. (6.15). Consider the function f : A → T sending each

element of A to the first letter of its label, e.g. f (apple) � a. Let 1 : B → T be the

function sending each element of B to the last letter of its label, e.g. 1(apple) � e. Write

down the function [ f , 1](x) for all eight elements of A t B. ♦

Exercise 6.17. Let f : A→ C, 1 : B→ C, and h : C→ D be morphisms in a category C

with coproducts. Show that

1. ιA # [ f , 1] � f .
2. ιB # [ f , 1] � 1.
3. [ f , 1] # h � [ f # h , 1 # h].
4. [ιA , ιB] � idA+B. ♦

Exercise 6.18. Suppose a category C has coproducts, denoted +, and an initial object,

denoted�. Then (C,+,�) is a symmetric monoidal category (recall Definition 4.45). In

this exercise we develop the data relevant to this fact:

1. Show that + extends to a functor C × C → C. In particular, how does it act on

morphisms in C × C?
2. Using the universal properties of the initial object and coproduct, show that there

are isomorphisms A + � → A and � + A→ A.

3. Using the universal property of the coproduct, write down morphisms

a) (A + B) + C→ A + (B + C).
b) A + B→ B + A.
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If you like, check that these are isomorphisms.

It can thenbe checked that this data obeys the axiomsof a symmetricmonoidal category,

but we’ll end the exercise here. ♦

6.2.3 Pushouts

Pushouts are a way of combining sets. Like a union of subsets, a pushout can combine

two sets in a non-disjoint way: elements of one set may be identified with elements of

the other. The pushout construction, however, is much more general: it allows (and

requires) the user to specify exactly which elements will be identified. We’ll see a

demonstration of this additional generality in Example 6.29.

Definition 6.19. Let C be a category and let f : A → X and 1 : A → Y be morphisms

in C that have a common domain. The pushout X +A Y is the colimit of the diagram

A X

Y

f

1

In more detail, a pushout consists of (i) an object X +A Y and (ii) morphisms ιX : X →
X +A Y and ιY : Y → X +A Y satisfying (a) and (b) below.

(a) The diagram

A X

Y X +A Y

f

1 ιX

ιY

p
(6.20)

commutes. (We will explain the ‘p’ symbol below.)

(b) For all objects T and morphisms x : X → T, y : Y → T, if the diagram

A X

Y T

f

1 x

y

commutes, then there exists a unique morphism t : X +A Y → T such that

A X

Y X +A Y

T

f

1 ιX x
ιY

y
t

(6.21)

commutes.
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If X +A Y is a pushout, we denote that fact by drawing the commutative square

Eq. (6.20), together with the p symbol as shown; we call it a pushout square.
We further call ιX the pushout of 1 along f , and similarly ιY the pushout of f along 1.

Example 6.22. In a preorder, pushouts and coproducts have a lot in common. The

pushout of a diagram B ← A → C is equal to the coproduct B t C: namely, both are

equal to the join B ∨ C.

Example 6.23. Let f : A → X be a morphism in a category C. For any isomorphisms

i : A→ A′ and j : X → X′, we can take X′ to be the pushout X +A A′, i.e. the following

is a pushout square:

A X

A′ X′

f

i j

f ′

p

where f ′ B i−1 # f # j. To see this, observe that if there is any object T such that the

following square commutes:

A X

A′ T

f

i x

a

then f # x � i # a, and so we are forced to take x′ : X → T to be x′ B j−1 # x. This makes

the following diagram commute:

A X

A′ X′

T

f

i j
x

f ′

a

x′

because f ′ # x′ � i−1 # f # j # j−1 # x � i−1 # i # a � a.

Exercise 6.24. For any set S, we have the discrete category DiscS, with S as objects

and only identity morphisms.

1. Show that all pushouts exist in DiscS, for any set S.
2. For what sets S does DiscS have an initial object? ♦

Example 6.25. In the category FinSet, pushouts always exist. The pushout of functions

f : A → X and 1 : A → Y is the set of equivalence classes of X tY under the equiva-

lence relation generated by—that is, the reflexive, transitive, symmetric closure of—the
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relation { f (a) ∼ 1(a) | a ∈ A}.
We can think of this in terms of interconnection too. Each element a ∈ A provides

a connection between f (a) in X and 1(a) in Y. The pushout is the set of connected

components of X tY.

Exercise 6.26. What is the pushout of the functions f : 4→ 5 and 1 : 4→ 3 pictured

below?

f : 4→ 5 1 : 4→ 3

♦

Check your answer using the abstract description from Example 6.25.

Example 6.27. Suppose a category C has an initial object �. For any two objects X,Y ∈
ObC, there is a unique morphism f : � → X and a unique morphism 1 : � → Y; this

is what it means for � to be initial.

The diagram X
f
←− �

1

−→ Y has a pushout in C iff X and Y have a coproduct in C,

and the pushout and the coproduct will be the same. Indeed, suppose X and Y have a

coproduct X + Y; then the diagram to the left

� X

Y X + Y

f

1 ιX

ιY

� X

Y T

f

1 x

y

commutes (why?
1
), and for any object T and commutative diagram as to the right, there

is a unique map X + Y → T making the diagram as in Eq. (6.21) commute (why?
2
).

This shows that X + Y is a pushout, X +� Y � X + Y.

Similarly, if a pushout X +� Y exists, then it satisfies the universal property of the

coproduct (why?
3
).

Exercise 6.28. In Example 6.27 we asked “why?” three times.

1. Give a justification for “why?
1
”.

2. Give a justification for “why?
2
”.

3. Give a justification for “why?
3
”. ♦

Example 6.29. Let A � X � Y � N. Consider the functions f : A → X and 1 : A → Y



6.2. COLIMITS AND CONNECTION 191

given by the ‘floor’ functions, f (a) B ba/2c and 1(a) B b(a + 1)/2c.

X

A

Y

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

· · ·

· · ·

· · ·

f

1

What is their pushout? Let’s figure it out using the definition.

If T is any other set and we have maps x : X → T and y : Y → T that commute with

f and 1, i.e. f � x � 1 � y, then this commutativity implies that

y(0) � y(1(0)) � x( f (0)) � x(0).

In other words, Y’s 0 and X’s 0 go to the same place in T, say t. But since f (1) � 0

and 1(1) � 1, we also have that t � x(0) � x( f (1)) � y(1(1)) � y(1). This means Y’s 1

goes to t also. But since 1(2) � 1 and f (2) � 1, we also have that t � 1(1) � y(1(2)) �
x( f (2)) � x(1), which means that X’s 1 also goes to t. One can keep repeating this

and find that every element of Y and every element of X go to t! Using mathematical

induction, one can prove that the pushout is in fact a 1-element set, X tA Y � {1}.

6.2.4 Finite colimits

Initial objects, coproducts, and pushouts are all types of colimits. We gave the general

definition of colimit in Section 3.5.4. Just as a limit in C is a terminal object in a

category of cones over a diagram D : J→ C, a colimit is an initial object in a category of

cocones over some diagram D : J→ C. For our purposes it is enough to discuss finite

colimits—i.e. when J is a finite category—which subsume initial objects, coproducts,

and pushouts.4

In Definition 3.102, cocones in C are defined to be cones in Cop
. For visualization

purposes, if D : J→ C looks like the diagram to the left, then a cocone on it shown in

the diagram to the right:

D1 D3

D2 D4 D5

C

D1 D3

D2 D4 D5

T

Here, any two parallel paths that end at T are equal in C.

4
If a category J has finitely many morphisms, we say that J is a finite category. Note that in this case it

must have finitely many objects too, because each object j ∈ Ob J has its own identity morphism id j .
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Definition 6.30. We say that a category C has finite colimits if a colimit, colimJ D, exists

whenever J is a finite category and D : J→ C is a diagram.

Example 6.31. The initial object in a category C, if it exists, is the colimit of the functor

! : 0→ C, where 0 is the categorywith no objects and nomorphisms, and ! is the unique

such functor. Indeed, a cocone over ! is just an object of C, and so the initial cocone over

! is just the initial object of C.

Note that 0 has finitely many objects (none); thus initial objects are finite colimits.

We often want to know that a category C has all finite colimits (in which case, we

often drop the ‘all’ and just say ‘C has finite colimits’). To check that C has (all) finite

colimits, it’s enough to check it has a few simpler forms of colimit, which generate all

the rest.

Proposition 6.32. Let C be a category. The following are equivalent:

1. C has all finite colimits.

2. C has an initial object and all pushouts.

3. C has all coequalizers and all finite coproducts.

Proof. We will not give precise details here, but the key idea is an inductive one: one

can build arbitrary finite diagrams using some basic building blocks. Full details can

be found in [Bor94, Prop 2.8.2]. �

Example 6.33. Let C be a category with all pushouts, and suppose we want to take the

colimit of the following diagram in C:

B Z

A C

D

(6.34)

In it we see two diagrams ready to be pushed out, and we know how to take pushouts.

So suppose we do that; then we see another pushout diagram so we take the pushout

again:

B Z

A Y R

X Q

p

p

B Z

A Y R

X Q S

p

p p



6.2. COLIMITS AND CONNECTION 193

is the result—consisting of the object S, together with all the morphisms from the

original diagram to S—the colimit of the original diagram? One can check that it

indeed has the correct universal property and thus is a colimit.

Exercise 6.35. Check that the pushout of pushouts from Example 6.33 satisfies the

universal property of the colimit for the original diagram, Eq. (6.34). ♦

We have already seen that the categories FinSet and Set both have an initial object

and pushouts. We thus have the following corollary.

Corollary 6.36. The categories FinSet and Set have (all) finite colimits.

In Theorem 3.95 we gave a general formula for computing finite limits in Set. It is
also possible to give a formula for computing finite colimits. There is a duality between

products and coproducts and between subobjects and quotient objects, so whereas a

finite limit is given by a subset of a product, a finite colimit is given by a quotient of a

coproduct.

Theorem 6.37. Let J be presented by the finite graph (V,A, s , t) and some equations,

and let D : J→ Set be a diagram. Consider the set

colim

J
D B

{
(v , d) | v ∈ V and d ∈ D(v)

}
/∼

where this denotes the set of equivalence classes under the equivalence relation ∼
generated by putting (v , d) ∼ (w , e) if there is an arrow a : v → w in J such that

D(a)(d) � e. Then this set, together with the functions ιv : D(v) → colimJ D given by

sending d ∈ D(v) to its equivalence class, constitutes a colimit of D.

Example 6.38. Recall that an initial object is the colimit on the empty graph. The formula

thus says the initial object in Set is the empty set �: there are no v ∈ V .

Example 6.39. A coproduct is a colimit on the graph J �
v1• v2• . A functor D : J→ Set

can be identified with a choice of two sets, X B D(v1) and Y B D(v2). Since there are
no arrows in J, the equivalence relation ∼ is vacuous, so the formula in Theorem 6.37

says that a coproduct is given by

{(v , d) | d ∈ D(v), where v � v1 or v � v2}.

In other words, the coproduct of sets X and Y is their disjoint union XtY, as expected.
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Example 6.40. If J is the category 1 �
v• , the formula in Theorem 6.37 yields the set

{(v , d) | d ∈ D(v)}

This is isomorphic to the set D(v). In other words, if X is a set considered as a diagram

X : 1→ Set, then its colimit (like its limit) is just X again.

Exercise 6.41. Use the formula in Theorem 6.37 to show that pushouts—colimits on a

diagram X
f
←− N

1

−→ Y—agree with the description we gave in Example 6.25. ♦

Example 6.42. Another important type of finite colimit is the coequalizer. These are

colimits over the graph •⇒ • consisting of two parallel arrows.

Consider some diagram X Y
f

1
on this graph in Set. The coequalizer of this

diagram is the set of equivalence classes of Y under equivalence relation generated by

declaring y ∼ y′ whenever there exists x in X such that f (x) � y and 1(x) � y′.
Let’s return to the example circuit in the introduction to hint at why colimits are

useful for interconnection. Consider the following picture:

We’ve redrawn this picture with one change: some of the arrows are now red, and

others are now blue. If we let X be the set of white circles ◦, and Y be the set of black

circles •, the blue and red arrows respectively define functions f , 1 : X → Y. Let’s

leave the actual circuit components out of the picture for now; we’re just interested in

the dots. What is the coequalizer?

It is a three element set, consisting of one element for each newly-connected pair of

•’s . Thus the colimit describes the set of terminals after performing the interconnection

operation. In Section 6.4 we’ll see how to keep track of the circuit components too.

6.2.5 Cospans

When a category C has finite colimits, an extremely useful way to package them is by

considering the category of cospans in C.

Definition 6.43. Let C be a category. A cospan in C is just a pair of morphisms to a

common object A → N ← B. The common object N is called the apex of the cospan

and the other two objects A and B are called its feet.
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If we want to say that cospans form a category, we should begin by saying how

composition would work. So suppose we have two cospans in C

N

A B

f 1
and

P

B C

h k

Since the right foot of the first is equal to the left foot of the second, we might stick

them together into a diagram like this:

N P

A B C

f 1 h k

Then, if a pushout of N
1

←− B
h−→ P exists in C, as shown on the left, we can extract a

new cospan in C, as shown on the right:

N +B P

N P

A B C

yιN ιP

f 1 h k
 

N +B P

A C

f #ιN k#ιP

(6.44)

Itmight look likewehave achievedourgoal, butwe’remissing some things. First, we

need an identity on every object C ∈ ObC; but that’s not hard: use C→ C← C where

bothmaps are identities in C. More importantly, we don’t know that C has all pushouts,

so we don’t know that every two sequential morphisms A→ B→ C can be composed.

And beyond that, there is a technical condition that when we form pushouts, we only

get an answer ‘up to isomorphism’: anything isomorphic to a pushout counts as a

pushout (check the definition to see why). We want all these different choices to count

as the same thing, sowe define two cospans to be equivalent iff there is an isomorphism

between their respective apexes. That is, the cospan A → P ← B and A → P′ ← B
in the diagram shown left below are equivalent iff there is an isomorphism P � P′

making the diagram to the right commute:

P
A B

P′

P
A B

P′
�

Now we are getting somewhere. As long as our category C has pushouts, we are in

business: CospanC will form a category. But in fact, we are very close to getting more.

If we also demand that C has an initial object � as well, then we can upgrade CospanC

to a symmetric monoidal category.

Recall from Proposition 6.32 that a category C has all finite colimits iff it has an

initial object and all pushouts.
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Definition 6.45. Let C be a category with finite colimits. Then there exists a category

CospanC with the same objects as C, i.e. Ob(CospanC) � Ob(C), where the morphisms

A→ B are the (equivalence classes of) cospans from A to B, and composition is given

by the above pushout construction.

There is a symmetric monoidal structure on this category, denoted (CospanC ,�,+).
The monoidal unit is the initial object � ∈ C and the monoidal product is given by

coproduct. The coherence isomorphisms, e.g. A + � � A, can be defined in a similar

way to those in Exercise 6.18.

It is a straightforward but time-consuming exercise to verify that (CospanC ,�,+)
fromDefinition 6.45 really does satisfy all the axiomsof a symmetricmonoidal category,

but it does.

Example 6.46. The category FinSet has finite colimits (see 6.36). So, we can define a

symmetric monoidal category CospanFinSet. What does it look like? It looks a lot like

wires connecting ports.

The objects of CospanFinSet are finite sets; here let’s draw them as collections of •’s.
The morphisms are cospans of functions. Let A and N be five element sets, and B be a

six element set. Below are two depictions of a cospan A
f
−→ N

1

←− B.

A BN

A B

In the depiction on the left, we simply represent the functions f and 1 by drawing

arrows from each a ∈ A to f (a) and each b ∈ B to 1(b). In the depiction on the right, we

make this picture resemble wires a bit more, simply drawing a wire where before we

had an arrow, and removing the unnecessary center dots. We also draw a dotted line

around points that are connected, to emphasize an important perspective, that cospans

establish that certain ports are connected, i.e. part of the same equivalence class.

The monoidal category CospanFinSet then provides two operations for combining

cospans: composition and monoidal product. Composition is given by taking the

pushout of the maps coming from the common foot, as described in Definition 6.45.

Here is an example of cospan composition, where all the functions are depicted with
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arrow notation:

A N B P C

{

A N +B P C

(6.47)

The monoidal product is given simply by the disjoint union of two cospans; in pictures

it is simply combining two cospans by stacking one above another.

Exercise 6.48. In Eq. (6.47) we showedmorphisms A→ B and B→ C in CospanFinSet.

Draw their monoidal product as a morphism A + B→ B + C in CospanFinSet. ♦

Exercise 6.49. Depicting the composite of cospans in Eq. (6.47) with the wire notation

gives

� (6.50)

Comparing Eq. (6.47) and Eq. (6.50), describe the composition rule in CospanFinSet in

terms of wires and connected components. ♦

6.3 Hypergraph categories

A hypergraph category is a type of symmetric monoidal category whose wiring di-

agrams are networks. We will soon see that electric circuits can be organized into a

hypergraph category; this is what we’ve been building up to. But to define hypergraph

categories, it is useful to first introduce Frobenius monoids.

6.3.1 Frobenius monoids

The pictures of cospans we saw above, e.g. in Eq. (6.50) look something like icons in

signal flow graphs (see Section 5.3.2): various wires merge and split, initialize and

terminate. And these follow the same rules they did for linear relations, which we

briefly discussed in Exercise 5.84. There’s a lot of potential for confusion, so let’s start

from scratch and build back up.

In any symmetric monoidal category (C, I , ⊗), recall from Section 4.4.2 that objects

can be drawn as wires and morphisms can be drawn as boxes. Particularly noteworthy

morphismsmight be iconified as dots rather than boxes, to indicate that themorphisms
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there are not arbitrary but notation-worthy. One case of this is when there is an object X
with special “abilities”, e.g. the ability to duplicate into two, or disappear into nothing.

Tomake this precise, recall fromDefinition 5.65 that a commutativemonoid (X, µ, η)
in symmetric monoidal category (C, I , ⊗) is an object X of C together with (noteworthy)

morphisms

µ : X ⊗ X → X η : I → X

obeying

� � �

(associativity) (unitality) (commutativity)

(6.51)

where is the symmetry on X ⊗ X. A cocommutative cocomonoid (X, δ, ε) is an

object X with maps δ : X → X ⊗ X, ε : X → I, obeying the mirror images of the laws in

Eq. (6.51).

Suppose X has both the structure of a commutative monoid and cocommutative

comonoid, and consider a wiring diagram built only from the icons µ, η, δ, and ε,

where every wire is labeled X. These diagrams have a left and right, and are pictures

of how ports on the left are connected to ports on the right. The commutative monoid

and cocommutative comonoid axioms thus both express when to consider two such

connection pictures should be considered the same. For example, associativity says the

order of connecting ports on the left doesn’t matter; coassociativity (not drawn) says

the same for the right.

If you want to go all the way and say “all I care about is which port is connected to

which; I don’t even care about left and right”, then you need a few more axioms to say

how the morphisms µ and δ, the merger and the splitter, interact.

Definition 6.52. Let X be an object in a symmetricmonoidal category (C, ⊗, I). A Frobe-
nius structure on X consists of a 4-tuple (µ, η, δ, ε) such that (X, µ, η) is a commutative

monoid and (X, δ, ε) is a cocommutative comonoid, which satisfies the six equations

above ((co-)associativity, (co-)unitality, (co-)commutativity), as well as the following

three equations:

� � �

(the Frobenius law) (the special law)

(6.53)

We refer to an object X equipped with a Frobenius structure as a special commutative
Frobenius monoid, or just Frobenius monoid for short.



6.3. HYPERGRAPH CATEGORIES 199

With these two equations, it turns out that two morphisms X⊗m → X⊗n
—defined

by composing and tensoring identities on X and the noteworthymorphisms µ, δ, etc.—

are equal if and only if their string diagrams connect the same ports. This link between

connectivity, and Frobenius monoids can be made precise as follows.

Definition 6.54. Let (X, µ, η, δ, ε) be a Frobenius monoid in a monoidal category

(C, I , ⊗). Let m , n ∈ N. Define sm ,n : X⊗m → X⊗n
to be the following morphism

...
...

m wires n wires

It can be written formally as (m− 1) µ’s followed by (n− 1) δ’s, with special cases when

m � 0 or n � 0.

We call sm ,n the spider of type (m , n), and can draw it more simply as the icon

m legs n legs

So a special commutative Frobenius monoid, aside from being a mouthful, is a

‘spiderable’ wire. You agree that in any monoidal category wiring diagram language,

wires represent objects and boxes represent morphisms? Well in our weird way of

talking, if a wire is spiderable, it means that we have a bunch of morphisms µ, η, δ, ε, σ

that we can combine without worrying about the order of doing so: the result is just

“how many in’s, and how many out’s”: a spider. Here’s a formal statement.

Theorem6.55. Let (X, µ, η, δ, ε)be aFrobeniusmonoid in amonoidal category (C, I , ⊗).
Suppose that we have a map f : X⊗m → X⊗n

each constructed from spiders and the

symmetry map σ : X⊗2 → X⊗2
using composition and the monoidal product, and such

that the string diagram of f has only one connected component. Then it is a spider:

f � sm ,n .

Example 6.56. As the following two morphisms both (i) have the same number of

inputs and outputs, (ii) are constructed only from spiders, and (iii) are connected,

Theorem 6.55 immediately implies they are equal:

�

Exercise 6.57. Let X be an object equipped with a Frobenius structure. Which of the

morphisms X ⊗ X → X ⊗ X ⊗ X in the following list are necessarily equal?

1.
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2.

3.

4.

5.

6.

♦

Back to cospans. Another way of understanding Frobenius monoids is to relate them

to cospans. Recall the notion of prop presentation from Definition 5.33.

Theorem 6.58. Consider the four-element set G B {µ, η, δ, ε} and define in, out : G→
N as follows:

in(µ) B 2, in(η) B 0, in(δ) B 1, in(ε) B 1,

out(µ) B 1, out(η) B 1, out(δ) B 2, out(ε) B 0.

Let E be the set of Frobenius axioms, i.e. the nine equations from Definition 6.52.

Then the free prop on (G, E) is equivalent, as a symmetric monoidal category,
a
to

CospanFinSet.

a
Wewill not explain precisely what it means to be equivalent as a symmetric monoidal category, but

you probably have some idea: “they are the same for all category-theoretic intents and purposes.” The

idea is similar to that of equivalence of categories, as explained in Remark 3.59.

Thus we see that ideal wires, connectivity, cospans, and objects with Frobenius

structures are all intimately related. We use Frobenius structures (all that splitting,

merging, initializing, and terminating stuff) as a way to capture the grammar of circuit

diagrams.

6.3.2 Wiring diagrams for hypergraph categories

We introduce hypergraph categories through their wiring diagrams. Just like for

monoidal categories, the formal definition is just the structure required to unambigu-

ously interpret these diagrams.
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Indeed, our interest in hypergraph categories is best seen in their wiring diagrams.

The key idea is that wiring diagrams for hypergraph categories are network diagrams.

This means, in addition to drawing labeled boxes with inputs and outputs, as we can

for monoidal categories, and in addition to bending these wires around as we can for

compact closed categories, we are allowed to split, join, terminate, and initialize wires.

Here is an example of a wiring diagram that represents a composite of morphisms

in a hypergraph category

f h

h

1

A
B

C

D
D

B

A

We have suppressed some of the object/wire labels for readability, since all types can

be inferred from the labeled ones.

Exercise 6.59.
1. What label should be on the input to h?
2. What label should be on the output of 1?

3. What label should be on the fourth output wire of the composite? ♦

Thus hypergraph categories are general enough to talk about all network-style dia-

grammatic languages, like circuit diagrams.

6.3.3 Definition of hypergraph category

We are now ready to define hypergraph categories formally. Since the wiring diagrams

for hypergraph categories are just those for symmetric monoidal categories with a few

additional icons, the definition is relatively straightforward: we just want a Frobenius

structure on every object. The only coherence condition is that these interact nicely

with the monoidal product.

Definition 6.60. A hypergraph category is a symmetric monoidal category (C, I , ⊗) in
which each object X is equipped with a Frobenius structure (X, µX , δX , ηX , εX) such
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that

X ⊗ Y

X ⊗ Y
X ⊗ Y �

X

X

X

Y

Y

Y

X ⊗ Y �
X
Y

X ⊗ Y

X ⊗ Y
X ⊗ Y �

X

X

X

Y

Y

Y

X ⊗ Y �
X
Y

for all objects X, Y, and such that ηI � idI � εI .

A hypergraph prop is a hypergraph category that is also a prop, e.g. Ob(C) � N, etc.

Example 6.61. For any C with finite colimits, CospanC is a hypergraph category. The

Frobenius morphisms µX , δX , ηX , εX for each object X are constructed using the uni-

versal properties of colimits:

µX B
(
X + X

[idX ,idX]−−−−−−→ X
idX←−−−−−−−−−− X

)
ηX B

(
�

!X−−−−−−−−−−→ X
idX←−−−−−−−−−− X

)
δX B

(
X

idX−−−−−−−−−−→ X
[idX ,idX]←−−−−−− X + X

)
εX B

(
X

idX−−−−−−−−−−→ X
!X←−−−−−−−−−− �

)
Exercise 6.62. ByExample 6.61, the categoryCospanFinSet is a hypergraph category. (In

fact, it is equivalent to a hypergraph prop.) Draw the Frobenius morphisms for the ob-

ject 1 in CospanFinSet using both the function andwiring depictions as in Example 6.46.

♦

Exercise 6.63. Using your knowledge of colimits, show that the maps defined in

Example 6.61 do indeed obey the special law (see Definition 6.52). ♦

Example 6.64. Recall the monoidal category (Corel,�,t) from Example 4.61; its objects

are finite sets and its morphisms are corelations. Given a finite set X, define the

corelation µX : X t X → X such that two elements of X t X t X are equivalent if and

only if they come from the same underlying element of X. Define δX : X → X t X in

the same way, and define ηX : � → X and εX : X → � such that no two elements of

X � � t X � X t � are equivalent.

These maps define a special commutative Frobenius monoid (X, µX , ηX , δX , εX),
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and in fact give Corel the structure of a hypergraph category.

Example 6.65. The prop of linear relations, which we brieflymentioned in Exercise 5.84,

is a hypergraph category. In fact, it is a hypergraph category in two ways, by choosing

either the black ‘copy’ and ‘discard’ generators or the white ‘add’ and ‘zero’ generators

as the Frobenius maps.

We can generalize the construction we gave in Theorem 5.87.

Proposition 6.66. Hypergraph categories are self-dual compact closed categories, if

we define the cup and cap to be

B
and

B

Proof. The proof is a straightforward application of the Frobenius and unitality axioms:

� (definition)

�

Exercise 6.67!

(Frobenius)

� (unitality)

�

Exercise 6.67. Fill in the missing diagram in the proof of Proposition 6.66 using the

equations from Eq. (6.51), their opposites, and Eq. (6.53). ♦

6.4 Decorated cospans

The goal of this section is to show how we can construct a hypergraph category

whose morphisms are electric circuits. To do this, we first must introduce the no-

tion of structure-preserving map for symmetric monoidal categories, a generalization

of monoidal monotones known as symmetric monoidal functors. Then we introduce

a general method—that of decorated cospans—for producing hypergraph categories.

Doing all this will tie up lots of loose ends: colimits, cospans, circuits, and hypergraph

categories.
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6.4.1 Symmetric monoidal functors

Rough Definition 6.68. Let (C, IC , ⊗C) and (D, ID , ⊗D) be symmetric monoidal cate-

gories. To specify a symmetric monoidal functor (F, ϕ) between them,

(i) one specifies a functor F : C→ D;

(ii) one specifies a morphism ϕI : ID → F(IC).
(iii) for each c1 , c2 ∈ Ob(C), one specifies a morphism

ϕc1 ,c2
: F(c1) ⊗D F(c2) → F(c1 ⊗C c2),

natural in c1 and c2.

We call the various maps ϕ coherence maps. We require the coherence maps to obey

bookkeeping axioms that ensure they are well behaved with respect to the symmetric

monoidal structures on C andD. If ϕI and ϕc1 ,c2
are isomorphisms for all c1 , c2, we say

that (F, ϕ) is strong.

Example 6.69. Consider the power set functor P : Set → Set. It acts on objects by

sending a set S ∈ Set to its set of subsets P(S) B {R ⊆ S}. It acts on morphisms by

sending a function f : S → T to the image map im f : P(S) → P(T), which maps R ⊆ S
to { f (r) | r ∈ R} ⊆ T.

Now consider the symmetric monoidal structure ({1},×) on Set from Example 4.49.

To make P a symmetric monoidal functor, we need to specify a function ϕI : {1} →
P({1}) and for all sets S and T, a functor ϕS,T : P(S)×P(T) → P(S×T). One possibility is

to define ϕI(1) to be the maximal subset {1} ⊆ {1}, and given subsets A ⊆ S and B ⊆ T,
to define ϕS,T(A, B) to be the product subset A × B ⊆ S × T. With these definitions,

(P, ϕ) is a symmetric monoidal functor.

Exercise 6.70. Check that the maps ϕS,T defined in Example 6.69 are natural in S and

T. In other words, given f : S → S′ and 1 : T → T′, show that the diagram below

commutes:

P(S) × P(T) P(S × T)

P(S′) × P(T′) P(S′ × T′)

ϕS,T

im f × im1 im f×1

ϕS′ ,T′

♦

6.4.2 Decorated cospans

Now that we have briefly introduced symmetric monoidal functors, we return to the

task at hand: constructing a hypergraph category of circuits. To do so, we introduce

the method of decorated cospans.

Circuits have lots of internal structure, but they also have some external ports—also

called ‘terminals’—by which to interconnect them with others. Decorated cospans are

ways of discussing exactly that: things with external ports and internal structure.
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To see how this works, let us start with the following example circuit:

2Ω

3F
1Ω 1Ω

1H

(6.71)

We might formally consider this as a graph on the set of four ports, where each edge

is labeled by a type of circuit component (for example, the top edge would be labeled

as a resistor of resistance 2Ω). For this circuit to be a morphism in some category, i.e.

in order to allow for interconnection, we must equip the circuit with some notion of

interface. We do this by marking the ports in the interface using functions from finite

sets:

A BN

2Ω

3F
1Ω 1Ω

1H

(6.72)

Let N be the set of nodes of the circuit. Here the finite sets A, B, and N are sets

consisting of one, two, and four elements respectively, drawn as points, and the values

of the functions A → N and B → N are indicated by the grey arrows. This forms a

cospan in the category of finite sets, for which the apex set N has been decorated by our

given circuit.

Suppose given another such decorated cospan with input B

B C

5Ω

8Ω

Since the output of the first equals the input of the second (both are B), we can stick
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them together into a single diagram:

A N B

2Ω

3F
1Ω 1Ω

1H

M C

5Ω

8Ω (6.73)

The composition is given by gluing the circuits along the identifications specified by B,
resulting in the decorated cospan

A N +B M C

2Ω

3F
1Ω 1Ω

1H

5Ω

8Ω

(6.74)

We’ve seen this sort of gluing before when we defined composition of cospans in

Definition 6.45. But now there’s this whole ‘decoration’ thing; our goal is to formalize

it.

Definition 6.75. Let C be a category with finite colimits, and (F, ϕ) : (C,+) −→ (Set,×)
be a symmetric monoidal functor. An F-decorated cospan is a pair consisting of a cospan

A
i→ N

o← B in C together with an element s ∈ F(N).5 We call (F, ϕ) the decoration
functor and s the decoration.

The intuition here is to use C � FinSet, and, for each object N ∈ FinSet, the functor
F assigns the set of all legal decorations on a set N of nodes. When you choose an F-
decorated cospan, you choose a set A of left-hand external ports, a set B of right-hand

external ports, each of which maps to a set N of nodes, and you choose one of the

available decorations on N nodes, taken from the set F(N).
So, in our electrical circuit case, the decoration functor F sends a finite set N to

the set of circuit diagrams—graphs whose edges are labeled by resistors, capacitors,

etc.—that have N vertices.

Our goal is still to be able to compose such diagrams; so howdoes thatwork exactly?

Basically one combines theway cospans are composedwith the structures defining our

decoration functor: namely F and ϕ.

Let (A
f
−→ N

1

←− B, s) and (B h−→ P
k←− C, t) represent decorated cospans. Their

composite is represented by the composite of the cospans A
f
−→ N

1

←− B and B
h−→ P

k←− C,

5
Just like in Definition 6.45, we should technically use equivalence classes of cospans. We will elide

this point to get the bigger idea across. The interested reader should consult Section 6.6.
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paired with the following element of F(N +B P):

F([ιN , ιP])(ϕN,P(s , t)) (6.76)

That’s rather compact! We’ll unpack it, in a concrete case, in just a second. But let’s

record a theorem first.

Theorem 6.77. Given a category Cwith finite colimits and a symmetric monoidal func-

tor (F, ϕ) : (C,+) −→ (Set,×), there is a hypergraph category CospanF whose objects

are the objects of C, and whose morphisms are equivalence classes of F-decorated
cospans.

The symmetric monoidal and hypergraph structures are derived from those on

CospanC.

Exercise 6.78. Suppose you’re worried that the notation CospanC looks like the

notation CospanF, even though they’re very different. An expert tells you “they’re not

so different; one is a special case of the other. Just use the constant functor F(c) B {∗}.”
What does the expert mean? ♦

6.4.3 Electric circuits

In order to work with the above abstractions, we will get a bit more precise about the

circuits example and then have a detailed look at how composition works in decorated

cospan categories.

Let’s build some circuits. To begin, we’ll need to choose which components we want

in our circuit. This is simply a matter of what’s in our electrical toolbox. Let’s say we’re

carrying some lightbulbs, switches, batteries, and resistors of every possible resistance.

That is, define a set

C B {light, switch, battery} t {xΩ | x ∈ R+}.

Tobe clear, theΩare just labels; the above set is isomorphic to {light, switch, battery}t
R+

. But we write C this way to remind us that it consists of circuit components. If we

wanted, we could also add inductors, capacitors, and even elements connecting more

than two ports, like transistors, but let’s keep things simple for now.

Given our set C, a C-circuit is just a graph (V,A, s , t), where s , t : A → V are the

source and target functions, together with a function ` : A→ C labeling each edgewith

a certain circuit component from C.

For example, we might have the simple case of V � {1, 2}, A � {e}, s(e) � 1,

t(e) � 2—so e is an edge from 1 to 2—and `(e) � 3Ω. This represents a resistor with

resistance 3Ω:

3Ω

1 2
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Note that in the formalism we have chosen, we have multiple ways to represent any

circuit, as our representations explicitly choose directions for the edges. The above

resistor could also be represented by the ‘reversed graph’, with dataV � {1, 2}, A � {e},
s(e) � 2, t(e) � 1, and `(e) � 3F.

Exercise 6.79. Write a tuple (V,A, s , t , `) that represents the circuit in Eq. (6.71). ♦

A decoration functor for circuits. We want C-circuits to be our decorations, so let’s

use them to define a decoration functor as in Definition 6.75. We’ll call the functor

(Circ, ψ). We start by defining the functor part

Circ : (FinSet,+) −→ (Set,×)

as follows. On objects, simply send a finite set V to the set of C-circuits:

Circ(V) B {(V,A, s , t , `) | where s , t : A→ V, ` : E→ C}.

On morphisms, Circ sends a function f : V → V′ to the function

Circ( f ) : Circ(V) −→ Circ(V′);
(V,A, s , t , `) 7−→

(
V′,A, (s # f ), (t # f ), `

)
.

This defines a functor; let’s explore it a bit in an exercise.

Exercise 6.80. To understand this functor better, let c ∈ Circ(4) be the circuit

3Ω

1 2 3 4

and let f : 4→ 3 be the function

1 2 3 4

1 2 3

Draw a picture of the circuit Circ( f )(c). ♦

We’re trying to get a decoration functor (Circ, ψ) and so far we have Circ. For the

coherence maps ψV,V′ for finite sets V,V′, we define

ψV,V′ : Circ(V) × Circ(V′) −→ Circ(V + V′);(
(V,A, s , t , `), (V′,A′, s′, t′, `′)

)
7−→ (V + V′,A + A′, s + s′, t + t′, [`, `′]). (6.81)

This is simpler than it may look: it takes a circuit on V and a circuit on V′, and just

considers them together as a circuit on the disjoint union of vertices V + V′.

Exercise 6.82. Suppose we have circuits

b B and s B

in Circ(2). Use the definition of ψV,V′ from (6.81) to figure out what 4-vertex circuit

ψ2,2(b , s) ∈ Circ(2 + 2) � Circ(4) should be, and draw a picture. ♦
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Open circuits using decorated cospans. From the above data, just amonoidal functor

(Circ, ψ) : (FinSet,+) → (Set,×), we can construct our promised hypergraph category

of circuits!

Our notation for this category is CospanCirc. Following Theorem 6.77, the objects

of this category are the same as the objects of FinSet, just finite sets. We’ll reprise

our notation from the introduction and Example 6.42, and draw these finite sets as

collections of white circles ◦. For example, we’ll represent the object 2 of CospanCirc as

two white circles:

These white circles mark interface points of an open circuit.

More interesting than the objects, however, are the morphisms in CospanCirc. These

are open circuits. By Theorem 6.77, a morphism m → n is a Circ-decorated cospan:

that is, cospan m → p ← n together with an element c of Circ(p). As an example,

consider the cospan 1

i1−→ 2

i2←− 1 where i1(1) � 1 and i2(1) � 2, equipped with the

battery element of Circ(2) connecting node 1 and node 2. We’ll depict this as follows:

(6.83)

Exercise 6.84. Morphisms of CospanCirc are Circ-decorated cospans, as defined in

Definition 6.75. This means (6.83) depicts a cospan together with a decoration, which is

some C-circuit (V,A, s , t , `) ∈ Circ(2). What is it? ♦

Let’s now see how the hypergraph operations in CospanCirc can be used to construct

electric circuits.

Composition in CospanCirc. First we’ll consider composition. Consider the following

decorated cospan from 1 to 1:

Since this and the circuit in (6.83) are both morphisms 1→ 1, we may compose them

to get another morphism 1 → 1. How do we do this? There are two parts: to get

the new cospan, we simply compose the cospans of our two circuits, and to get the

new decoration, we use the formula Circ([ιN , ιP])(ψN,P(s , t)) from (6.76). Again, this is

rather compact! Let’s unpack it together.

We’ll start with the cospans. The cospans we wish to compose are

and
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(We simply ignore thedecorations for now.) Ifwepushout over the common set 1 � {◦},
we obtain the pushout square

(6.85)

This means the composite cospan is

In the meantime, we already had you start us off unpacking the formula for the

new decoration. You told us what the map ψ2,2 does in Exercise 6.82. It takes the two

decorations, both circuits in Circ(2), and turns them into the single, disjoint circuit

inCirc(4). So this iswhat theψN,P(s , t)partmeans. What does the [ιN , ιP]mean? Recall

this is the copairing of the pushoutmaps, as described in Examples 6.14 and 6.25. In our

case, the relevant pushout square is given by (6.85), and [ιN , ιP] is in fact the function

f from Exercise 6.80! This means the decoration on the composite cospan is

Putting this all together, the composite circuit is

Exercise 6.86. Refer back to the example at the beginning of Section 6.4.2. In particular,

consider the composition of circuits in Eq. (6.73). Express the two circuits in this

diagram as morphisms in CospanCirc, and compute their composite. Does it match the

picture in Eq. (6.74)? ♦

Monoidal products in CospanCirc. Monoidal products in CospanCirc are much sim-

pler than composition. On objects, we again just work as in FinSet: we take the disjoint

union of finite sets. Morphisms again have a cospan, and a decoration. For cospans,

we again just work in CospanFinSet: given two cospans A→ M ← B and C→ N ← D,

we take their coproduct cospan A + C → M + N ← B + D. And for decorations, we

use the map ψM,N : Circ(M) × Circ(N) → Circ(M + N). So, for example, suppose we

want to take the monoidal product of the open circuits
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and

The result is given by stacking them. In other words, their monoidal product is:

(6.87)

Easy, right?

We leave you to do two compositions of your own.

Exercise 6.88. Write x for the open circuit in (6.87). Also define cospans η : 0→ 2 and

η : 2→ 0 as follows:

η B � � � : ε

where each of these are decorated by the empty circuit (1,�, !, !, !) ∈ Circ(1).6
Compute the composite η # x # ε in CospanCirc. This is a morphism 0 → 0; we call

such things closed circuits. ♦

6.5 Operads and their algebras

In Theorem 6.77 we described how decorating cospans builds a hypergraph category

from a symmetric monoidal functor. We then explored how that works in the case that

the decoration functor is somehow “all circuit graphs on a set of nodes”.

In this book, we have devoted a great deal of attention to different sorts of composi-

tional theories, from monoidal preorders to compact closed categories to hypergraph

categories. Yet for an application you someday have in mind, it may be the case that

none of these theories suffice. You need a different structure, customized to a particular

situation. For example in [VSL15] the authors wanted to compose continuous dynam-

ical systems with control-theoretic properties and realized that in order for feedback

to make sense, the wiring diagrams could not involve what they called ‘passing wires’.

So to close our discussion of compositional structures, we want to quickly sketch

something we can use as a sort of meta-compositional structure, known as an operad.

We saw in Section 6.4.3 that we can build electric circuits from a symmetric monoidal

functor FinSet→ Set. Similarly we’ll see that we can build examples of new algebraic

structures from operad functors O→ Set.

6.5.1 Operads design wiring diagrams

Understanding that circuits aremorphisms in a hypergraph category is useful: itmeans

we can bring the machinery of category theory to bear on understanding electrical
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circuits. For example, we can build functors that express the compositionality of circuit

semantics, i.e. how to derive the functionality of the whole from the functionality and

interaction pattern of the parts. Or we can use the category-theoretic foundation to

relate circuits to other sorts of network systems, such as signal flow graphs. Finally,

the basic coherence theorems for monoidal categories and compact closed categories

tell us that wiring diagrams give sound and complete reasoning in these settings.

However, one perhaps unsatisfying result is that the hypergraph category intro-

duces artifacts like the domain and codomain of a circuit, which are not inherent to the

structure of circuits or their composition. Circuits just have a single boundary inter-

face, not ‘domains’ and ‘codomains’. This is not to say the above model is not useful:

in many applications, a vector space does not have a preferred basis, but it is often

useful to pick one so that we may use matrices (or signal flow graphs!). But it would

be worthwhile to have a category-theoretic model that more directly represents the

compositional structure of circuits. In general, we want the category-theoretic model

to fit our desired application like a glove. Let us quickly sketch how this can be done.

Let’s return to wiring diagrams for a second. We saw that wiring diagrams for

hypergraph categories basically look like this:

f

1

h

k

A

B
C

D

F

E

D

(6.89)

Note that if you had a box with A and B on the left and D on the right, you could plug

the above diagram right inside it, and get a new open circuit. This is the basic move of

operads.

But before we explain this, let’s get where we said we wanted to go: to a model

where there aren’t ports on the left and ports on the right, there are just ports. Wewant

a more succinct model of composition for circuit diagrams; something that looks more

like this:

f

h

1

k

B

C
A

D
E

F

D

(6.90)
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Do you see how diagrams Eq. (6.89) and Eq. (6.90) are actually exactly the same in

terms of interconnection pattern? The only difference is that the latter does not have

left/right distinction: we have lost exactly what we wanted to lose.

The cost is that the ‘boxes’ f , 1 , h , k in Eq. (6.90) no longer have a left/right dis-

tinction; they’re just circles now. That wouldn’t be bad except that it means they can

no longer represent morphisms in a category—like they used to above, in Eq. (6.89)—

because morphisms in a category by definition have a domain and codomain. Our

new circles have no such distinction. So now we need a whole new way to think about

‘boxes’ categorically: if they’re no longer morphisms in a category, what are they? The

answer is found in the theory of operads.

In understanding operads, we will find we need to navigate one of the level shifts

that we first discussed in Section 1.4.5. Notice that for decorated cospans, we define

a hypergraph category using a symmetric monoidal functor. This is reminiscent of

our brief discussion of algebraic theories in Section 5.4.2, where we defined something

called the theory ofmonoids as a propM, and definemonoids using functorsM→ Set;
see Remark 5.74. In the same way, we can view the category CospanFinSet as some sort

of ‘theory of hypergraph categories’, and so define hypergraph categories as functors

CospanFinSet → Set.
So that’s the idea. An operadOwill define a theory or grammar of composition, and

operad functors O → Set, known as O-algebras, will describe particular applications

that obey that grammar.

Rough Definition 6.91. To specify an operad O,
(i) one specifies a collection T, whose elements are called types;
(ii) for each tuple (t1 , . . . , tn , t) of types, one specifies a set O(t1 , . . . , tn ; t), whose

elements are called operations of arity (t1 , . . . , tn ; t);
(iii) for each pair of tuples (s1 , . . . , sm , ti) and (t1 , . . . , tn , t), one specifies a function

◦i : O(s1 , . . . , sm ; ti) × O(t1 , . . . , tn ; t) → O(t1 , . . . , ti−1 , s1 , . . . , sm , ti+1 , . . . , tn ; t);

called substitution; and
(iv) for each type t, one specifies an operation idt ∈ O(t; t) called the identity operation.
These must obey generalized identity and associativity laws.

7

Let’s ignore types for a moment and think about what this structure models. The

intuition is that an operad consists of, for each n, a set of operations of arity n—that is,

all the operations that accept n arguments. If we take an operation f of arity m, and

plug the output into the ith argument of an operation 1 of arity n, we should get an

operation of arity m + n − 1: we have m arguments to fill in m, and the remaining n − 1

6
As usual ! denotes the unique function, in this case from the empty set to the relevant codomain.

7
Often what we call types are called objects or colors, what we call operations are called morphisms,

what we call substitution is called composition, and what we call operads are called multicategories. A

formal definition can be found in [Lei04].
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arguments to fill in 1. Which operation of arity m+n−1 dowe get? This is described by

the substitution function ◦i , which says we obtain the operation f ◦i 1 ∈ O(m + n − 1).
The coherence conditions say that these functions ◦i capture the following intuitive

picture:

{

The types then allow us to specify the, well, types of the arguments—inputs—that

each function takes. So making tea is a 2-ary operation, an operation with arity 2,

because it takes in two things. To make tea you need some warm water, and you need

some tea leaves.

Example 6.92. Context-free grammars are to operads as graphs are to categories. Let’s

sketchwhat thismeans. First, a context-free grammar is away of describing a particular

set of ‘syntactic categories’ that can be formed from a set of symbols. For example, in

English we have syntactic categories like nouns, determiners, adjectives, verbs, noun

phrases, prepositional phrases, sentences, etc. The symbols are words, e.g. cat, dog,

the, chases.

To define a context-free grammar on some alphabet, one specifies some production
rules, which say how to form an entity in some syntactic category from a bunch of

entities in other syntactic categories. For example, we can form a noun phrase from

a determiner (the), an adjective (happy), and a noun (boy). Context free grammars

are important in both linguistics and computer science. In the former, they’re a basic

way to talk about the structure of sentences in natural languages. In the latter, they’re

crucial when designing parsers for programming languages.

So just like graphs present free categories, context-free grammars present free op-

erads. This idea was first noticed in [HMP98].

6.5.2 Operads from symmetric monoidal categories

We will see in Definition 6.97 that a large class of operads come from symmetric

monoidal categories. Before we explain this, we give a couple of examples. Perhaps

the most important operad is that of Set.

Example 6.93. The operad Set of sets has
(i) Sets X as types.

(ii) Functions X1 × · · · × Xn → Y as operations of arity (X1 , . . . ,Xn ; Y).
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(iii) Substitution defined by

(1 ◦i f )(x1 , . . . , xi−1 , w1 , . . . ,wm , xi+1 , . . . , xn)
� 1

(
x1 , . . . , xi−1 , f (w1 , . . . ,wm), xi+1 , . . . , xn

)
where f ∈ Set(W1 , . . . ,Wm ; Xi), 1 ∈ Set(X1 , . . . ,Xn ; Y), and hence 1 ◦i f is a

function

(1 ◦i f ) : X1 × · · · × Xi−1 ×W1 × · · · ×Wm × Xi+1 × · · · × Xn −→ Y

(iv) Identities idX ∈ Set(X; X) are given by the identity function idX : X → X.

Next we give an example that reminds us what all this operad stuff was for: wiring

diagrams.

Example 6.94. The operad Cospan of finite-set cospans has

(i) Natural numbers a ∈ N as types.

(ii) Cospans a1 + · · · + an → p ← b of finite sets as operations of arity (a1 , . . . , an ; b).
(iii) Substitution defined by pushout.

(iv) Identities ida ∈ Set(a; a) just given by the identity cospan a
ida
−−→ a

ida
←−− a.

This is the operadic analogue of the monoidal category (CospanFinSet , 0,+).
We can depict operations in this operad using diagrams like we drew above. For

example, here’s a picture of an operation:

f

h

1

k

(6.95)

This is an operation of arity (3, 3, 4, 2; 3). Why? The circles marked f and 1 have 3

ports, h has 4 ports, k has 2 ports, and the outer circle has 3 ports: 3, 3, 4, 2; 3.

So how exactly is Eq. (6.95) a morphism in this operad? Well a morphism of this

arity is, by (ii), a cospan 3 + 3 + 4 + 2

a−→ p
b←− 3. In the diagram above, the apex p is the

set 7, because there are 7 nodes • in the diagram. The function a sends each port on

one of the small circles to the node it connects to, and the function b sends each port of

the outer circle to the node it connects to.

We are able to depict each operation in the operad Cospan as a wiring diagram.

It is often helpful to think of operads as describing a wiring diagram grammar. The
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substitution operation of the operad signifies inserting onewiring diagram into a circle

or box in another wiring diagram.

Exercise 6.96.
1. Consider the following cospan f ∈ Cospan(2, 2; 2):

Draw it as a wiring diagram with two inner circles, each with two ports, and one

outer circle with two ports.

2. Draw thewiringdiagramcorresponding to the following cospan 1 ∈ Cospan(2, 2, 2; 0):

�

3. Compute the cospan 1 ◦1 f . What is its arity?

4. Draw the cospan 1 ◦1 f . Do you see it as substitution? ♦

We can turn any symmetric monoidal category into an operad in a way that gener-

alizes the above two examples.

Definition 6.97. For any symmetric monoidal category (C, I , ⊗), there is an operad OC,

called the operad underlying C, defined as having:

(i) Ob(C) as types.
(ii) morphisms C1 ⊗ · · · ⊗ Cn → D in C as the operations of arity (C1 , . . . , Cn ; D).
(iii) substitution is defined by

( f ◦i 1) B f ◦ (id, . . . , id, 1 , id, . . . , id)

(iv) identities ida ∈ OC(a; a) defined by ida .

We can also turn any monoidal functor into what’s called an operad functor.

6.5.3 The operad for hypergraph props

Anoperad functor takes the types of one operad to the types of another, and then the op-

erations of the first to the operations of the second in away that respects this.
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Rough Definition 6.98. Suppose given two operads O and P with type collections T
and U respectively. To specify an operad functor F : O→ P,

(i) one specifies a function f : T → U.

(ii) For all arities (t1 , . . . , tn ; t) in O, one specifies a function

F : O(t1 , . . . , tn ; t) → P( f (t1), . . . , f (tn); f (t))

such that composition and identities are preserved.

Just as set-valued functors C→ Set from any category C are of particular interest—

we saw themas database instances inChapter 3—so to areSet-valued functorsO→ Set
from any operad O.

Definition 6.99. An algebra for an operad O is an operad functor F : O→ Set.

We can think of functorsO→ Set as defining a set of possibleways to fill the boxes in

awiring diagram. Indeed, each box in awiring diagram represents a type t of the given
operad O and an algebra F : O → Set will take a type t and return a set F(t) of fillers
for box t. Moreover, given an operation (i.e., a wiring diagram) f ∈ O(t1 , . . . , tn ; t), we

get a function F( f ) that takes an element of each set F(ti), and returns an element of

F(t). For example, it takes n circuits with interface t1 , . . . , tn respectively, and returns

a circuit with boundary t.

Example 6.100. For electric circuits, the types are again finite sets, T � Ob(FinSet),
where each finite set t ∈ T corresponds to a cell with t ports. Just as before, we have a

set Circ(t) of fillers, namely the set of electric circuits with that t-marked terminals. As

an operad algebra, Circ : Cospan→ Set transforms wiring diagrams like this one

ϕ B

into formulas that build a new circuit from a bunch of existing ones. In the above-

drawn case, we would get a morphism Circ(ϕ) ∈ Set(Circ(2),Circ(2),Circ(2); Circ(0)),
i.e. a function

Circ(ϕ) : Circ(2) × Circ(2) × Circ(2) → Circ(0).

We could apply this function to the three elements of Circ(2) shown here
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and the result would be the closed circuit from the beginning of the chapter:

This is reminiscent of the story for decorated cospans: gluing fillers together to form

hypergraph categories. An advantage of the decorated cospan construction is that one

obtains an explicit category (where morphisms have domains and codomains and can

hence be composed associatively), equipped with Frobenius structures that allow us to

get around the strictures of domains and codomains. The operad perspective has other

advantages. First, whereas decorated cospans can produce only some hypergraph

categories, Cospan-algebras can produce any hypergraph category.

Proposition 6.101. There is an equivalence between Cospan-algebras and hypergraph

props.

Another advantage of using operads is that one can vary the operad itself, from

Cospan to something similar (like the operad of ‘cobordisms’), and get slightly different

compositionality rules.

In fact, operads—with the additional complexity in their definition—can be cus-

tomized even more than all compositional structures defined so far. For example, we

can define operads of wiring diagrams where the wiring diagrams must obey precise

conditions far more specific than the constraints of a category, such as requiring that

the diagram itself has no wires that pass straight through it. In fact, operads are strong

enough to define themselves: roughly speaking, there is an operad for operads: the

category of operads is equivalent to the category of algebras for a certain operad [Lei04,

Example 2.2.23]. While operads can, of course, be generalized again, they conclude

our march through an informal hierarchy of compositional structures, from preorders

to categories to monoidal categories to operads.

6.6 Summary and further reading

This chapter began with a detailed exposition of colimits in the category of sets; as we

saw, these colimits describe ways of joining or interconnecting sets. Our second way

of talking about interconnection was the use of Frobenius monoids and hypergraph

categories; we saw these two themes come together in the idea of a decorated cospans.

The decorated cospan construction uses a certain type of structured functor to construct

a certain type of structured category. More generally, we might be interested in other

types of structured category, or other compositional structure. To address this, we

briefly saw how these ideas fit into the theory of operads.
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Colimits are a fundamental concept in category theory. For more on colimits, one

might refer to any of the introductory category theory textbooks we mentioned in

Section 3.6.

Special commutative Frobenius monoids and hypergraph categories were first de-

fined, under thenames ‘separable commutative Frobenius algebra’ and ‘well-supported

compact closed category’, by Carboni and Walters [CW87; Car91]. The use of deco-

rated cospans to construct them is detailed in [Fon15; Fon18; Fon16]. The application

to networks of passive linear systems, such as certain electrical circuits, is discussed in

[BF15], while further applications, such as to Markov processes and chemistry can be

found in [BFP16; BP17]. For another interesting application of hypergraph categories,

we recommend the pixel array method for approximating solutions to nonlinear equa-

tions [Spi+16]. The story of this chapter is fleshed out in a couple of recent, more

technical papers [FS18b; FS18a].

Operads were introduced by May to describe compositional structures arising in

algebraic topology [May72]; Leinster has written a great book on the subject [Lei04].

More recently, with collaborators author-David has discussed using operads in applied

mathematics, to model composition of structures in logic, databases, and dynamical

systems [RS13; Spi13; VSL15].





Chapter 7

Logic of behavior:
Sheaves, toposes, and internal

languages

7.1 How can we prove our machine is safe?

Imagine you are trying to design a system of interacting components. You wouldn’t be

doing this if you didn’t have a goal in mind: you want the system to do something, to

behave in a certain way. In other words, youwant to restrict its possibilities to a smaller

set: you want the car to remain on the road, you want the temperature to remain in

a particular range, you want the bridge to be safe for trucks to pass. Out of all the

possibilities, your system should only permit some.

Since your system ismadeof components that interact in specifiedways, the possible

behavior of the whole—in any environment—is determined by the possible behaviors

of each of its components in their local environments, together with the precise way in

which they interact.1 In this chapter, we will discuss a logic wherein one can describe

general types of behavior that occur over time, and prove properties of a larger-scale

system from the properties and interaction patterns of its components.

For example, suppose we want an autonomous vehicle to maintain a distance of

some safe ∈ R from other objects. To do so, several components must interact: a

sensor that approximates the real distance by an internal variable S′, a controller that

uses S′ to decide what action A to take, and a motor that moves the vehicle with an

1
The well-known concept of emergence is not about possibilities, it is about prediction. Predicting

the behavior of a system given predictions of its components is notoriously hard. The behavior of a

double pendulum is chaotic—meaning extremely sensitive to initial conditions—whereas those of the two

component pendulums are not. However, the set of possibilities for the double pendulum is completely

understood: it is the set of possible angular positions and velocities of both arms. When we speak of a

machine’s properties in this chapter, we alwaysmean the guarantees on its behaviors, not the probabilities

involved, though the latter would certainly be an interesting thing to contemplate.

221
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acceleration based on A. This in turn affects the real distance S, so there is a feedback

loop.

Consider the following model diagram:

sensor controller motor
S′ A S

S

(7.1)

In the diagram shown, the distance S is exposed by the exterior interface. This just

means we imagine S as being a variable that other components of a larger system may

want to interact with. We could have exposed no variables (making it a closed system)

or we could have exposed A and/or S′ as well.

In order for the system to ensure S ≥ safe, we need each of the components to

ensure a property of its own. But what are these components, ‘sensor, controller,

motor’, and what do they do?

One way to think about any of the components is to open it up and see how it is

put together; with a detailed study we may be able to say what it will do. For example,

just as S was exposed in the diagram above, one could imagine opening up the ‘sensor’

component box in Eq. (7.1) and seeing an interaction between subcomponents

radar

sonar

processor

sensor

S S′

This ability to zoom in and see a single unit as being composed of others is important

for design. But at the end of the day, you eventually need to stop diving down and

simply use the properties of the components in front of you to prove properties of

the composed system. Have no fear: everything we do in this chapter will be fully

compositional, i.e. compatible with opening up lower-level subsystems and using the

fractal-like nature of composition. However at a given time, your job is to design the

system at a given level, taking the component properties of lower-level systems as

given.

We will think of each component in terms of the relationship it maintains (through

time) between the changing values on its ports. “Whenever I see a flash, I will increase

pressure on the button”: this is a relationship I maintain through time between the

changing values on my eye port and my finger port. We will make this more precise

soon, but fleshing out the situation in Eq. (7.1) should help. The sensor maintains a

relationshipbetween S andS′, e.g. that the real distanceS and its internal representation

S′ differ by no more than 5cm. The controller maintains a relationship between S′ and
the action signal A, e.g. that if at any time S < safe, then within one second it will
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emit the signal A � go. The motor maintains a relationship between A and S, e.g. that
A dictates the second derivative of S by the formula(

(A � go) ⇒ ÜS > 1

)
∧

(
(A � stop) ⇒ ÜS � 0

)
. (7.2)

If we want to prove properties of the whole interacting system, then the relation-

ships maintained by each component need to be written in a formal logical language,

something like what we saw in Eq. (7.2). From that basis, we can use standard proof

techniques to combine properties of subsystems into properties of the whole. This is

our objective in the present chapter.

We have said how component systems, wired together in some arrangement, create

larger-scale systems. We have also said that, given the wiring arrangement, the be-

havioral properties of the component systems dictate the behavioral properties of the

whole. But what exactly are behavioral properties?

In this chapter, we want to give a formal language and semantics for a very gen-

eral notion of behavior. Mathematics is itself a formal language; the usual style of

mathematical modeling is to use any piece of this vast language at any time and for

any reason. One uses “human understanding” to ensure that the different models

are fitting together in an appropriate way when different systems are combined. The

present work differs in that we want to find a domain-specific language for modeling

behavior, any sort of behavior, and nothing but behavior. Unlike in the wide world of

math, we want a setting where the only things that can be discussed are behaviors.

For this, we will construct what is called a topos, which is a special kind of category.

Our topos, let’s call it BT, will have behavior types—roughly speaking, sets whose

elements can change through time—as its objects. An amazing fact about toposes2 is

that they come with an internal language that looks very much like the usual formal

language ofmathematics itself. Thus one candefinegraphs, groups, topological spaces,

etc. in any topos. But in BT, what we call graphs will actually be graphs that change

through time, and similarly what we call groups and spaces will actually be groups

and spaces that change through time.

The topos BT not only has an internal language, but also a mathematical semantics

using the notion of sheaves. Technically, a sheaf is a certain sort of functor, but one can

imagine it as a space of possibilities, varying in a controlled way; in our case it will be

a space of possible behaviors varying in a certain notion of time. Every property we

prove in our logic of behavior types will have meaning in this category of sheaves.

When discussing systems and components—such as sensors, controllers, motors,

etc.—we mentioned behavior types; these will be the objects in the topos BT. Every

wire in the picture below will stand for a behavior type, and every box X will stand for

a behavioral property, a relation that X maintains between the changing values on its

2
The plural of topos is often written topoi, rather than toposes. This seems a bit fancy for our taste.

As Johnstone suggests in [Joh77], we might ask those who “persist in talking about topoi whether, when

they go out for a ramble on a cold day, they carry supplies of hot tea with them in thermoi.” It’s all in

good fun; either term is perfectly reasonable and well-accepted.
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ports.

sensor controller motor
S′ A A

S

For example we could imagine that

• S (wire): The behavior of S over a time-interval [a , b] is that of all continuous

real-valued functions [a , b] → R.

• A (wire): The behavior of A over a time-interval [a , b] is all piecewise constant

functions, taking values in the finite set such as {go, stop}.
• controller (box): the relation {(S′,A) | Eq. (7.2)}, i.e. all behavioral pairs (S′,A)

that conform to what we said our controller is supposed to do in Eq. (7.2).

7.2 The category Set as an exemplar topos

We want to think about a very abstract sort of thing, called a topos, because we will

see that behavior types form a topos. To get started, we begin with one of the easiest

toposes to think about, namely the topos Set of sets. In this section we will discuss

commonalities between sets and every other topos. We will go into some details about

the category of sets, so as to give intuition for other toposes. In particular, we’ll pay

careful attention to the logic of sets, because we eventually want to understand the

logic of behaviors.

Indeed, logic and sets are closely related. For example, the logical statement—more

formally known as a predicate—likes_cats defines a function from the set P of people

to the set B � {false, true} of truth values, where Brendan ∈ P maps to true because

he likes cats whereas Ursula ∈ P maps to false because she does not. Alternatively,

likes_cats also defines a subset of P, consisting of exactly the people that do like cats

{p ∈ P | likes_cats(p)}.

In terms of these subsets, logical operations correspond to set operations, e.g. AND

corresponds to intersection: indeed, the set of people for (mapped to true by) the pred-

icate likes_cats_AND_likes_dogs is equal to the intersection of the set for likes_cats

and the set for likes_dogs.

We saw in Chapter 3 that such operations, which are examples of database queries,

can be described in terms of limits and colimits in Set. Indeed, the category Set has
many such structures andproperties, which togethermake logic possible in that setting.

In this section we want to identify these properties, and show how logical operations

can be defined using them.

Why would we want to abstractly find such structures and properties? In the next

section, we’ll start our search for other categories that also have them. Such categories,

called toposes, will be Set-like enough to do logic, but have much more complex and
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interesting semantics. Indeed, we will discuss one whose logic allows us to reason not

about properties of sets, but about behavioral properties of very general machines.

7.2.1 Set-like properties enjoyed by any topos

Although we will not prove it in this book, toposes are categories that are similar to

Set in many ways. Here are some facts that are true of any topos E:

1. E has all limits,

2. E has all colimits,

3. E is cartesian closed,

4. E has epi-mono factorizations,

5. E has a subobject classifier 1

true−−−→ Ω.

In particular, since Set is a topos, all of the above facts are true for E � Set. Our first

goal is to briefly review these concepts, focusing most on the subobject classifier.

Limits and colimits. We discussed limits and colimits briefly in Section 3.4.2, but

the basic idea is that one can make new objects from old by taking products, using

equations to define subobjects, forming disjoint unions, and taking quotients.object

0. One of the most important types of limit (resp. colimit) is that of pullbacks (resp.

pushouts); see Example 3.99 and Definition 6.19. For our work below, we’ll need to

know a touch more about pullbacks than we have discussed so far, so let’s begin there.

Suppose that C is a category and consider the diagrams below:

A B C

D E F

y
A B C

D E F

y

In the left-hand square, the corner symbol y unambiguously means that the square

(B, C, E, F) is a pullback. But in the right-hand square, does the corner symbol mean

that (A, B,D , E) is a pullback or that (A, C,D , F) is a pullback? It’s ambiguous, but as

we next show, it becomes unambiguous if the right-hand square is a pullback.

Proposition 7.3. In the commutative diagram below, suppose that the (B, C, B′, C′)
square is a pullback:

A B C

A′ B′ C′

y y

Then the (A, B,A′, B′) square is a pullback iff the (A, C,A′, C′) rectangle is a pullback.

Exercise 7.4. Prove Proposition 7.3 using the definition of limit from Section 3.4.2. ♦
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Epi-mono factorizations. The abbreviation ‘epi’ stands for epimorphism, and the ab-

breviation ‘mono’ stands for monomorphism. Epimorphisms are maps that act like

surjections, and monomorphisms are maps that act like injections.3 We can define

them formally in terms of pushouts and pullbacks.

Definition 7.5. Let C be a category, and let f : A → B be a morphism. It is called a

monomorphism (resp. epimorphism) if the square to the left is a pullback (resp. the square

to the right is a pushout):

A A A B

A B B B

idA

idA f

f

f idB

f

y

idB

p

Exercise 7.6. Show that in Set, monomorphisms are just injections:

1. Show that if f is a monomorphism then it is injective.

2. Show that if f : A→ B is injective then it is a monomorphism. ♦

Exercise 7.7.
1. Show that the pullback of an isomorphism along any morphism is an isomor-

phism. That is, suppose that i : B′ → B is an isomorphism and f : A→ B is any

morphism. Show that i′ is an isomorphism, in the following diagram:

A′ B′

A B

f ′

i′ � i�

f

y

2. Show that for any map f : A→ B, the square shown is a pullback:

A B

A B

f

f

y ♦

Exercise 7.8. Suppose the following diagram is a pullback in a category C:

A′ A

B′ B

1

f ′ f

h

y

Use Proposition 7.3 and Exercise 7.7 to show that if f is a monomorphism, then so is

f ′. ♦

3
Surjections are sometimes called ‘onto’ and injections are sometimes called ‘one-to-one’, hence the

Greek prefixes epi and mono.
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Now that we have defined epimorphisms and monomorphisms, we can say what

epi-mono factorizations are. We say that a morphism f : C→ D in E has an epi-mono

factorization if it has an ‘image’; that is, there is an object im( f ), an epimorphism

C � im( f ), and a monomorphism im( f )� D, whose composite is f .
In Set, epimorphisms are surjections and monomorphisms are injections. Every

function f : C → D may be factored as a surjective function onto its image im( f ) �
{ f (c) | c ∈ C}, followed by the inclusion of this image into the codomain D. Moreover,

this factorization is unique up to isomorphism.

Exercise 7.9. Factor the following function f : 3→ 3 as an epimorphism followed by

a monomorphism.

•
•
•

•
•
•

♦

This is the case in any topos E: for any morphism f : c → d, there exists an

epimorphism e and a monomorphism m such that f � (e # m) is their composite.

Cartesian closed. A category C being cartesian closed means that C has a symmetric

monoidal structure given by products, and it is monoidal closed with respect to this.

(We previously saw monoidal closure in Definition 2.79 (for preorders) and Proposi-

tion 4.60, as a corollary of compact closure.) Slightly more down-to-earth, cartesian

closure means that for any two objects C,D ∈ C, there is a ‘hom-object’ DC ∈ C and a

natural isomorphism for any A ∈ C:

C(A × C,D) � C(A,DC) (7.10)

Think of it this way. Suppose you’re A and I’m C, and we’re interacting through

some game f (−,−) : A × C → D: for whatever action a ∈ A that you take and action

c ∈ C that I take, f (a , c) is some value in D. Since you’re self-centered but loving, you

think of this situation as though you’re creating a game experience for me. When you

do a, you make a game f (a ,−) : C→ D for me alone. In the formalism, DC
represents

the set of games for me. So now you’ve transformed a two-player game, valued in D,

into a one-player game, you’re the player, valued in... one player games valued in D.

This transformation is invertible—you can switch your point of view at will—and it’s

called currying. This is the content of Example 3.72.

Exercise 7.11. Let V � (V, ≤, I , ⊗) be a (unital, commutative) quantale—see Defini-

tion 2.90—and suppose it satisfies the following for all v , w , x ∈ V :

• v ≤ I,
• v ⊗ w ≤ v and v ⊗ w ≤ w, and

• if x ≤ v and x ≤ w then x ≤ v ⊗ w.

1. Show that V is a cartesian closed category, in fact a cartesian closed preorder.

2. Can every cartesian closed preorder be obtained in this way? ♦
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Subobject classifier. The concept of a subobject classifier requires more attention,

because its existence has huge consequences for a category C. In particular, it creates

the setting for a rich system of higher order logic to exist inside C; it does so by providing

some things called ‘truth values’. The higher order logic manifests in its fully glory

when C has finite limits and is cartesian closed, because these facts give rise to the

logical operations on truth values.4 In particular, the higher order logic exists in any

topos.

We will explain subobject classifiers in as much detail as we can; in fact, it will be

our subject for the rest of Section 7.2.

7.2.2 The subobject classifier

Before giving the definition of subobject classifiers, recall that monomorphisms in Set
are injections, and any injection X � Y is isomorphic to a subset of Y. This gives

a simple and useful way to conceptualize monomorphisms into Y when reading the

following definition: it will do no harm to think of them as subobjects of Y.

Definition 7.12. Let E be a category with finite limits, i.e. with pullbacks and a ter-

minal object 1. A subobject classifier in E consists of an object Ω ∈ E, together with a

monomorphism true : 1→ Ω, satisfying the following property: for any objects X and

Y andmonomorphism m : X� Y in E, there is a unique morphism pmq : Y → Ω such

that the diagram on the left of Eq. (7.13) is a pullback in E:

X 1

Y Ω

!

m true

pmq

y
{Y | p} 1

Y Ω

!

true

p

y
(7.13)

We refer to pmq as the characteristic map of m, orwe say that pmq classifies m. Conversely,

given any map p : Y → Ω, we denote the pullback of true as on the right of Eq. (7.13).

A predicate on Y is a morphism Y → Ω.

Definition 7.12 is a bit difficult to get one’s mind around, partly because it is hard

to imagine its consequences. It is like a superdense nugget from outer space, and

through scientific explorations in the latter half of the 20th century, we have found that

it brings super powers to whichever categories possess it. We will explain some of the

consequences below, but very quickly, the idea is the following.

Whena categoryhas a subobject classifier, it provides a translator, turning subobjects

of any object Y into maps from that Y to the particular object Ω. Pullback of the

4
Acategory that hasfinite limits, is cartesian closed, andhas a subobject classifier is called an elementary

topos. We will not discuss these further, but they are the most general notion of topos in ordinary category

theory. When someone says topos, you might ask “Grothendieck topos or elementary topos?,” because

there does not seem to be widespread agreement on which is the default.
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monomorphism true : 1→ Ω provides a translator going back, turning maps Y → Ω

into subobjects of Y. We can replace our fantasy of the superdense nugget with a

slightly more refined story: “any object Y understands itself—its parts and the logic of

how they fit together—by asking questions of the oracle Ω, looking for what’s true.”

Or to fully be precise but dry, “subobjects of Y are classified by predicates on Y.”

Let’s move from stories and slogans to concrete facts.

The subobject classifier in Set. Since Set is a topos, it has a subobject classifier. It

will be a set with supposedly wonderful properties; what set is it?

The subobject classifier in Set is the set of booleans,

ΩSet B B � {true, false}. (7.14)

So in Set, the truth values are true and false.

By definition (Def. 7.12), the subobject classifier comes equipped with a morphism,

generically called true : 1 → Ω; in the case of Set it is played by the function 1 →
{true, false} that sends 1 to true. In other words, the morphism true is aptly named

in this case.

For sets, monomorphism just means injection, as we mentioned above. So Defini-

tion 7.12 says that for any injective function m : X� Y between sets, we are supposed

to be able to find a characteristic function pmq : Y → {true, false} with some sort of

pullback property. We propose the following definition of pmq:

pmq(y) B
{
true if m(x) � y for some x ∈ X

false otherwise

In other words, if we think of X as a subobject of Y, then we make pmq(y) equal to
true iff y ∈ X.

In particular, the subobject classifier property turns subsets X ⊆ Y into functions

p : Y → B, and vice versa. How it works is encoded in Definition 7.12, but the basic

idea is that X will be the set of all things in Y that p sends to true:

X � {y ∈ Y | p(y) � true}. (7.15)

This might help explain our abstract notation {Y | p} in Eq. (7.13).

Exercise 7.16. Let X � N � {0, 1, 2, . . .} and Y � Z � {. . . ,−1, 0, 1, 2, . . .}; we have

X ⊆ Y, so consider it as a monomorphism m : X � Y. It has a characteristic function

pmq : Y → B, as in Definition 7.12.

1. What is pmq(−5) ∈ B?
2. What is pmq(0) ∈ B? ♦

Exercise 7.17.
1. Consider the identity function idN : N→ N. It is an injection, so it has a charac-

teristic function pidNq : N→ B. Give a concrete description of pidNq, i.e. its exact

value for each natural number n ∈ N.
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2. Consider the unique function !N : � → N from the empty set. Give a concrete

description of p!Nq : N→ B. ♦

7.2.3 Logic in the topos Set

As we said above, the subobject classifier of any topos E gives the setting in which to

do logic. Before we explain a bit about how topos logic works in general, we continue

to work concretely by focusing on logic in the topos Set.

Obtaining the AND operation. Consider the function 1 → B × B picking out the

element (true, true). This is a monomorphism, so it defines a characteristic function

p(true, true)q : B×B→ B. What function is it? By Eq. (7.15) the only element ofB×B
that can be sent to true is (true, true). Thus p(true, true)q(P,Q) ∈ B must be given

by the following truth table

P Q p(true, true)q(P,Q)
true true true

true false false

false true false

false false false

This is exactly the truth table for the AND of P and Q, i.e. for P ∧ Q. In other words,

p(true, true)q � ∧. Note that this defines ∧ as a function ∧ : B × B→ B, and we use

the usual infix notation x ∧ y B ∧(x , y).

Obtaining the OR operation. Let’s go backwards this time. The truth table for the

OR of P and Q, i.e. that of the function ∨ : B × B→ B defining OR, is:

P Q P ∨Q
true true true

true false true

false true true

false false false

(7.18)

If we wanted to obtain this function as the characteristic function pmq of some subset

m : X ⊆ B × B, what subset would X be? By Eq. (7.15), X should be the set of y ∈ Y
that are sent to true. Thus m is the characteristic map for the three element subset

X � {(true, true), (true, false), (false, true)} ⊆ B × B.

To prepare for later generalization of this idea in any topos, we want a way of thinking

of X only in terms of properties listed at the beginning of Section 7.2.1. In fact, one can

think of X as the union of {true} ×B and B× {true}—a colimit of limits involving the

subobject classifier and terminal object. This description will construct an analogous

subobject of Ω ×Ω, and hence classify a map Ω ×Ω→ Ω, in any topos E.
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Exercise 7.19. Every boolean has a negation, ¬false � true and ¬true � false. The
function ¬ : B→ B is the characteristic function of some thing, (*?*).

1. What sort of thing should (*?*) be? For example, should ¬ be the characteristic

function of an object? A topos? Amorphism? A subobject? A pullback diagram?

2. Now that you know the sort of thing (*?*) is, which thing of that sort is it? ♦

Exercise 7.20. Given two booleans P,Q, define P ⇒ Q to mean P � (P ∧Q).
1. Write down the truth table for the statement P � (P ∧Q):

P Q P ∧Q P � (P ∧Q)
true true ? ?

true false ? ?

false true ? ?

false false ? ?

2. If you already have an idea what P ⇒ Q should mean, does it agree with the last

column of table above?

3. What is the characteristic function m : B × B→ B for P ⇒ Q?

4. What subobject does m classify? ♦

Exercise 7.21. Consider the sets E B {n ∈ N | n is even}, P B {n ∈ N | n is prime},
and T B {n ∈ N | n ≥ 10}. Each is a subset of N, so defines a function N→ B.

1. What is pEq(17)?
2. What is pPq(17)?
3. What is pTq(17)?
4. Name the smallest three elements in the set classified by (pEq ∧ pPq) ∨ pTq. ♦

Review. Let’s take stock of where we are and where we’re going. In Section 7.1, we

set out our goal of proving properties about behavior, and we said that topos theory

is a good mathematical setting for doing that. We are now at the end of Section 7.2,

which was about Set as an examplar topos. What happened?

In Section 7.2.1, we talked about properties of Set that are enjoyed by any topos:

limits and colimits, cartesian closure, epi-mono factorizations, and subobject classifiers.

Then in Section 7.2.2 we launched into thinking about the subobject classifier in general

and in the specific topos Set, where it is the set B of booleans because any subset of

Y is classified by a specific predicate p : Y → B. Finally, in Section 7.2.3 we discussed

how to understand logic in terms of Ω: there are various maps ∧,∨,⇒ : Ω ×Ω → Ω

and ¬ : Ω→ Ω etc., which serve as logical connectives. These are operations on truth

values.

We have talked a lot about toposes, but we’ve only seen one so far: the category of

sets. But we’ve actually seenmore without knowing it: the category C-Inst of instances
on any database schema fromDefinition 3.60 is a topos. Such toposes are called presheaf
toposes and are fundamental, but we will focus on sheaf toposes, because our topos of

behavior types will be a sheaf topos.
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Sheaves are fascinating, but highly abstract mathematical objects. They are not for

the faint of mathematical heart (those who are faint of physical heart are welcome to

proceed).

7.3 Sheaves

Sheaf theory began before category theory, e.g. in the form of something called “local

coefficient systems for homology groups.” However its modern formulation in terms

of functors and sites is due to Grothendieck, who also invented toposes.

The basic idea is that rather than study spaces, we should study what happens on
spaces. A space is merely the ‘site’ at which things happen. For example, if we think

of the plane R2
as a space, we might examine only points and regions in it. But if we

think of R2
as a site where things happen, then we might think of things like weather

systems throughout the plane, or sand dunes, or trajectories and flows of material.

There are many sorts of things that can happen on a space, and these are the sheaves:

a sheaf on a space is roughly “a sort of thing that can happen on the space.” If we want

to think about points or regions from the sheaf perspective, we would consider them

as different points of view on what’s happening. That is, it’s all about what happens

on a space: the parts of the space are just perspectives from which to watch the show.

This is reminiscent of databases. The schema of a database is not the interesting

part; the data is what’s interesting. To be clear, the schema of a database is a site—it’s

acting like the space—and the category of all instances on it is a topos. In general, we

can think of any small category C as a site; the corresponding topos is the category of

functors Cop → Set.5 Such functors are called presheaves on C.

Did you notice that we just introduced a huge class of toposes? For any category C,

we said there is a topos of presheaves on it. So before we go on to sheaves, let’s discuss

this preliminary topic of presheaves. We will begin to develop some terminology and

ways of thinking that will later generalize to sheaves.

7.3.1 Presheaves

Recall the definition of functor and natural transformation from Section 3.3. Presheaves

are just functors, but they have special terminology that leads us to think about them

in a certain geometric way.

Definition 7.22. Let C be a small category. A presheaf P on C is a functor P : Cop → Set.
To each object c ∈ C, we refer to the set P(c) as the set of sections of P over c. To each

morphism f : c′→ c, we refer to the function P( f ) : P(c) → P(c′) as the restriction map
along f . For any section s ∈ P(c), we may denote P( f )(s) ∈ P(c′), i.e. its restriction

along f , by s
��

f .

5
The category of functors C→ Set is also a topos: use Cop as the defining site.
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If P and Q are presheaves, a morphism α : P → Q between them is a natural trans-

formation of functors

Cop Set.
P

Q

α

Example 7.23. Let ArShp be the category shown below:

ArShp B
Vertex• Pure Arrow•

src

tgt

The reason we call our category ArShp is that we can imagine of it as an ‘arrow shape.’

Pure ArrowB

VertexB

src tgt

(7.24)

A presheaf on ArShp is a functor I : ArShpop → Set, which is a database instance on

ArShpop

. Note that ArShpop

is what we called Gr in Section 3.3.5; there we showed

that database instances on Gr—i.e. presheaves on ArShp— are just directed graphs,

e.g.

P B

• • • •

• • • •
: ArShpop → Set

Thinking of presheaves on any category C, it often makes sense to imagine the

objects of C as shapes of some sort, and the morphisms of C as continuous maps

between shapes, just like we did for the arrow shape in Eq. (7.24). In that context, one

can think of a presheaf P as a kind of lego construction: P is built out of the shapes in C,

connected together using the morphisms in C. In the case where C is the arrow shape,

a presheaf is a graph. So this would say that a graph is a sort of lego construction,

built out of vertices and arrows connected together using the inclusion of a vertex as

the source or target of an arrow. Can you see it?

This statement can bemade pretty precise; thoughwe cannot go through it here, the

above lego idea is summarized by the formal statement that “the category of presheaves

on C is the free colimit completion of C.” Ask a friendly neighborhood category theorist

for details.

Howeverone thinksofpresheaves—in termsof legoassemblies ordatabase instances—

they’re relatively straightforward. The difference between presheaves and sheaves is
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that sheaves take into account some sort of ‘covering information.’ The trivial notion

of covering is to say that every object covers itself and nothing more; if one uses this

trivial covering, presheaves and sheaves are the same thing. In our behavioral context

wewill need a non-trivial notion of covering, so sheaves and presheaves will be slightly

different. Our next goal is to understand sheaves on a topological space.

7.3.2 Topological spaces

We said in Section 7.3 that, rather than study spaces, we consider spaces as mere ‘sites’

on which things happen. We also said the things that can happen on a space are called

sheaves, and always form a type of category called a topos. To define a topos of sheaves,

we must start with the site on which they exist.

Sites are very abstract mathematical objects, and we will not make them precise in

this book. However, one of the easiest sorts of sites to think about are those coming

from topological spaces: every topological space naturally has the structure of a site.

We’ve talked about spaces for a while without making them precise; let’s do so now.

Definition 7.25. Let X be a set, and let P(X) � {U ⊆ X} denote its set of subsets. A

topology on X is a subset Op ⊆ P(X), elements of which we call open sets,6 satisfying the

following conditions:

(a) Whole set: the subset X ⊆ X is open, i.e. X ∈ Op.
(b) Binary intersections: if U,V ∈ Op then (U ∩ V) ∈ Op.
(c) Arbitrary unions: if I is a set and if we are given an open set Ui ∈ Op for each i,

then their union is also open,

( ⋃
i∈I Ui

)
∈ Op. We interpret the particular case

where I � � to mean that the empty set is open: � ∈ Op.
If U �

⋃
i∈I Ui , we say that (Ui)i∈I covers U.

A pair (X,Op), where X is a set and Op is a topology on X, is called a topological
space.

A continuous function between topological spaces (X,OpX) and (Y,OpY) is a function
f : X → Y such that for every U ∈ OpY , the preimage f −1(U) is in OpX .

At the very end of Section 7.3.1 we mentioned how sheaves differ from presheaves

in that they take into account ‘covering information.’ The notion of covering an open

set by a union of other open sets was defined in Definition 7.25, and it will come into

play when we define sheaves in Definition 7.35.

Example 7.26. The usual topology Op on R2
is based on ‘ε-balls.’ For any ε ∈ R with

ε > 0, and any point p � (x , y) ∈ R2
, define the ε-ball centered at p to be:

B(p; ε) B {p′ ∈ R2 | d(p , p′) < ε}7

6
In other words, we refer to a subset U ⊆ X as open if U ∈ Op.
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In other words, B(x , y; ε) is the set of all points within ε of (x , y).
For an arbitrary subsetU ⊆ R2

, we call it open andput it inOp if, for every (x , y) ∈ U
there exists a (small enough) ε > 0 such that B(x , y; ε) ⊆ U.

x

y
(x , y)

ε

an ε-ball centered at p � (x , y)

U

an open set U ⊆ R2
, a point p � (x , y) ∈ U,

and an ε-ball B(x , y; ε) ⊆ U.

The same ideaworks ifwe replaceR2
with any othermetric space X (Definition 2.51):

it can be considered as a topological space where the open sets are subsets U such that

for any p ∈ U there is an ε-ball centered at p and contained in U. So every metric space

can be considered as a topological space.

Exercise 7.27. Consider the set R. It is a metric space with d(x1 , x2) B |x1 − x2 |.
1. What is the 1-dimensional analogue of ε-balls as found in Example 7.26? That is,

for each x ∈ R, define B(x , ε).
2. When is an arbitrary subset U ⊆ R called open, in analogy with Example 7.26?

3. Find three open sets U1, U2, and U in R, such that (Ui)i∈{1,2} covers U.

4. Find an open set U and a collection (Ui)i∈I of opens sets where I is infinite, such
that (Ui)i∈I covers U. ♦

Example 7.28. For any set X, there is a ‘coarsest’ topology, having as few open sets as

possible: Op
crse

� (�,X). There is also a ‘finest’ topology, having as many open sets as

possible: Op
fine

� P(X). The latter, (X,P(X)) is called the discrete space on the set X.

Exercise 7.29.
1. Verify that for any setX, whatwe calledOp

crse
in Example 7.28 really is a topology,

i.e. satisfies the conditions of Definition 7.25.

2. Verify also that Op
fine

really is a topology.

3. Show that if (X,P(X)) is discrete and (Y,OpY) is any topological space, then every

function X → Y is continuous. ♦

Example 7.30. There are four topologies possible on X � {1, 2}. Two are Op
crse

and

7
Here, d((x , y), (x′, y′)) B

√
(x − x′)2 + (y − y′)2 is the usual ‘Euclidean distance’ between two points.

One can generalize d to any metric.
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Op
fine

from Example 7.28. The other two are:

Op
1
B {�, {1},X} and Op

2
B {�, {2},X}

The two topological spaces ({1, 2},Op
1
) and ({1, 2},Op

2
) are isomorphic; either one

can be called the Sierpinski space.

The open sets of a topological space form a preorder. Given a topological space

(X,Op), the set Op has the structure of a preorder using the subset relation, (Op, ⊆).
It is reflexive because U ⊆ U for any U ∈ Op, and it is transitive because if U ⊆ V and

V ⊆ W then U ⊆ W .

Recall from Section 3.2.3 that we can regard any preorder, and hence Op, as a

category: its objects are the open setsU and for anyU,V the set ofmorphismsOp(U,V)
is empty if U 6⊆ V and it has one element if U ⊆ V .

Exercise 7.31. Recall the Sierpinski space, say (X,Op
1
) from Example 7.30.

1. Write down the Hasse diagram for its preorder of opens.

2. Write down all the covers. ♦

Exercise 7.32. Given any topological space (X,Op), any subset Y ⊆ X can be given the

subspace topology, call itOp
?∩Y . This topology defines any A ⊆ Y to be open, A ∈ Op

?∩Y ,

if there is an open set B ∈ Op such that A � B ∩ Y.

1. Find a B ∈ Op that shows that the whole set Y is open, i.e. Y ∈ Op
?∩Y .

2. Show that Op
?∩Y is a topology in the sense of Definition 7.25.8

3. Show that the inclusion function Y ↪→ X is a continuous function. ♦

Remark 7.33. Suppose (X,Op) is a topological space, and consider the preorder (Op, ⊆)
of open sets. It turns out that (Op, ⊆,X,∩) is always a quantale in the sense of

Definition 2.79. We will not need this fact, but we invite the reader to think about

it a bit in Exercise 7.34.

Exercise 7.34. In Sections 2.3.2 and 2.3.3 we discussed how Bool-categories are pre-

orders andCost-categories are Lawveremetric spaces, and in Section 2.3.4we imagined

interpretations of V-categories for other quantales V.

If (X,Op) is a topological space andV the corresponding quantale as in Remark 7.33,

how might we imagine a V-category? ♦

7.3.3 Sheaves on topological spaces

To summarizewherewe are, a topological space (X,Op) is a setX togetherwith a bunch

of subsets we call ‘open’; these open subsets form a preorder—and hence category—

denoted Op. Sheaves on X will be presheaves on Op with a special property, aptly

named the ‘sheaf condition.’

8
Hint 1: for any set I, collection of sets (Ui)i∈I with Ui ⊆ X, and set V ⊆ X, one has (⋃i∈I Ui) ∩ V �⋃

i∈I (Ui ∩ V). Hint 2: for any U,V,W ⊆ X, one has (U ∩W) ∩ (V ∩W) � (U ∩ V) ∩W .
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Recall the terminology and notation for presheaves: a presheaf on Op is a functor

P : Opop → Set. Thus to every open set U ∈ Op we have a set P(U), called the set

of sections over U, and to every inclusion of open sets V ⊆ U we have a function

P(U) → P(V) called the restriction. If s ∈ P(U) is a section over U, we may denote its

restriction to V by s
��
V . Recall that we say a collection of open sets (Ui)i∈I covers an open

set U if U �
⋃

i∈I Ui .

We are now ready to give the following definition, which comes in several waves:

we first define matching families, then gluing, then sheaf condition, then sheaf, and

finally the category of sheaves.

Definition 7.35. Let (X,Op) be a topological space, and let P : Opop → Set be a

presheaf on Op.
Let (Ui)i∈I be a collection of open sets Ui ∈ Op covering U. A matching family (si)i∈I

of P-sections over (Ui)i∈I consists of a section si ∈ P(Ui) for each i ∈ I, such that for every

i , j ∈ I we have

si
��
Ui∩U j

� s j
��
Ui∩U j

.

Given a matching family (si)i∈I for the cover U �
⋃

i∈I Ui , we say that s ∈ P(U) is a
gluing, or glued section, of the matching family if s

��
Ui

� si holds for all i ∈ I.
If there exists a unique gluing s ∈ P(U) for everymatching family (si)i∈I , we say that

P satisfies the sheaf condition for the cover U �
⋃

i∈I Ui . If P satisfies the sheaf condition

for every cover, we say that P is a sheaf on (X,Op).
Thus a sheaf is just a presheaf satisfying the sheaf condition for every open cover.

If P and Q are sheaves, then a morphism f : P → Q between these sheaves is just a

morphism—that is, a natural transformation—between their underlying presheaves.

We denote by Shv(X,Op) the category of sheaves on X.

The category of sheaves on X is a topos, but we’ll get to that.

Example 7.36. Here is a funny—but very important—special case to which the notion

of matching family applies. We do not give this example for intuition, but because (to

emphasize) it’s an important and easy-to-miss case. Just like the sum of no numbers

is 0 and the product of no numbers is 1, the union of no sets is the empty set. Thus if

we take U � � ⊆ X and I � �, then the empty collection of subsets (one for each i ∈ I,
of which there are none) covers U. In this case the empty tuple () counts a matching

family of sections, and it is the only matching family for the empty cover of the empty

set.

In other words, in order for a presheaf P : Opop → Set to be a sheaf, a necessary (but

rarely sufficient) condition is that P(�) � {()}, i.e. P(�)must be a set with one element.

Extended example: sections of a function. This example is for intuition, and gives a

case where the ‘section’ and ‘restriction’ terminology are easy to visualize.
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Consider the function f : X → Y shown below, where each element of X is sent to

the element of Y immediately below it. For example, f (a1) � f (a2) � a, f (b1) � b, and
so on.

•a •b •c •d •eY B

•
a1

•
a2

•
b1

•
b2

•
b3

•
c1 •

e1

•
e2X B

f (7.37)

For each point y ∈ Y, the preimage set f −1(y) ⊆ X above it is often called the fiber over
y. Note that different f ’s would arrange the eight elements of X differently over Y:

elements of Y would have different fibers.

Exercise 7.38. Consider the function f : X → Y shown in Eq. (7.37).

1. What is the fiber of f over a?
2. What is the fiber of f over c?
3. What is the fiber of f over d?
4. Gave an example of a function f ′ : X → Y for which every fiber has either one or

two elements. ♦

Let’s consider X and Y as discrete topological spaces, so every subset is open, and

f is automatically continuous (see Exercise 7.29). We will think of f as an arrangement

of X over Y, in terms of fibers as above, and use it to build a sheaf on Y. To do this,

we begin by building a presheaf—i.e. a functor Sec f : Op(Y)op → Set—and then we’ll

prove it’s a sheaf.

Define the presheaf Sec f on an arbitrary subset U ⊆ Y by:

Sec f (U) B {s : U → X | (s # f )(u) � u for all u ∈ U}.

One might describe Sec f (U) as the set of all ways to pick a ‘cross-section’ of the f
arrangement over U. That is, an element s ∈ Sec f (U) is a choice of one element per

fiber over U.

As an example, let’s say U � {a , b}. How many such s’s are there in Sec f (U)? To
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answer this, let’s clip the picture (7.37) and look only at the relevant part:

•
a
•
b

•
•
•
•
•

s1

•
a
•
b

•
•
•
•
•

s2

•
a
•
b

•
•
•
•
•

s3

•
a
•
b

•
•
•
•
•

s4

•
a
•
b

•
•
•
•
•

s5

•
a
•
b

•
•
•
•
•

s6

(7.39)

Looking at the picture (7.39), do you see how we get all cross-sections of f over U?

Exercise 7.40. Refer to Eq. (7.37).

1. Let V1 � {a , b , c}. Draw all the sections over it, i.e. all elements of Sec f (V1), as
we did in Eq. (7.39).

2. Let V2 � {a , b , c , d}. Again draw all the sections, Sec f (V2).
3. Let V3 � {a , b , d , e}. How many sections (elements of Sec f (V3)) are there? ♦

By now you should understand the sections of Sec f (U) for various U ⊆ X. This is

Sec f on objects, so you are half way to understanding Sec f as a presheaf. That is, as

a presheaf, Sec f also includes a restriction maps for every subset V ⊆ U. Luckily, the

restriction maps are easy: if V ⊆ U, say V � {a} and U � {a , b}, then given a section s
as in Eq. (7.39), we get a section over V by ‘restricting’ our attention to what s does on

{a}.

•
a

•
•

•
a

•
•

s1

��
V � s2

��
V � s3

��
V s4

��
V � s5

��
V � s6

��
V

(7.41)

Exercise 7.42.
1. Write out the sets of sections Sec f ({a , b , c}) and Sec f ({a , c}).
2. Draw lines from the first to the second to indicate the restriction map. ♦

Now we have understood Sec f as a presheaf; we next explain how to see that it

is a sheaf, i.e. that it satisfies the sheaf condition for every cover. To understand the

sheaf condition, consider the set U1 � {a , b} and U2 � {b , e}. These cover the set

U � {a , b , e} � U1 ∪U2. By Definition 7.35, a matching family for this cover consists of

a section over U1 and a section over U2 that agree on the overlap set, U1 ∩U2 � {b}.
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So consider s1 ∈ Sec f (U1) and s2 ∈ Sec f (U2) shown below.

•a •b

•
a1

•
a2

•
b1

•
b2

•
b3

11

•b •e

•
b1

•
b2

•
b3

•
e1

•
e2

12

(7.43)

Since sections 11 and 12 agree on the overlap—they both send b to b2—the two sections

shown in Eq. (7.43) can be glued to form a single section over U � {a , b , e}:

•a •b •e

•
a1

•
a2

•
b1

•
b2

•
b3

•
e1

•
e2

glued section

Exercise 7.44. Again let U1 � {a , b} and U2 � {b , e}, so the overlap is U1 ∩U2 � {b}.
1. Find a section s1 ∈ Sec f (U1) and a section s2 ∈ Sec f (U2) that do not agree on the

overlap.

2. For your answer (s1 , s2) in part 1, can you find a section s ∈ Sec f (U1 ∪ U2) such
that s

��
U1

� s1 and s
��
U2

� s2?

3. Find a section h1 ∈ Sec f (U1) and a section h2 ∈ Sec f (U2) that do agree on the

overlap, but which are different than our choice in Eq. (7.43).

4. Can you find a section h ∈ Sec f (U1 ∪U2) such that h
��
U1

� h1 and h
��
U2

� h2? ♦

Other examples of sheaves. The extended example above generalizes to any contin-

uous function f : X → Y between topological spaces.

Example 7.45. Let f : (X,OpX) → (Y,OpY) be a continuous function. Consider the

functor Sec f : Opop

Y → Set given by

Sec f (U) B {1 : U → X | 1 is continuous and (1 # f )(u) � u for all u ∈ U},
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The morphisms of OpY are inclusions V ⊆ U. Given 1 : U → X and V ⊆ U, what we

call the restriction of 1 to V is the usual thing we mean by restriction, the same as it

was in Eq. (7.41). One can again check that Sec f is a sheaf.

Example 7.46. A nice example of a sheaf on a space M is that of vector fields on M. If

you calculate the wind velocity at every point on Earth, you will have what’s called a

vector field on Earth. If you know the wind velocity at every point in Afghanistan and

I know the wind velocity at every point in Pakistan, and our calculations agree around

the border, then we can glue our information together to get the wind velocity over the

union of the two countries. All possible wind velocity fields over all possible open sets

of the Earth’s surface together form the sheaf of vector fields.

Let’s say this a bit more formally. A manifold M—you can just imagine a sphere

such as the Earth’s surface—always has something called a tangent bundle. It is a

space TM whose points are pairs (m , v), where m ∈ M is a point in the manifold and

v is a tangent vector emanating from it. Here’s a picture of one tangent plane—all the

tangent vectors emanating from some fixed point—on a sphere:

m
v

M B

⊆ TM

The tangent bundle TM includes the whole tangent plane shown above—including

the three vectors drawn on it—as well as the tangent plane at every other point on the

sphere.

The tangent bundle TM on a manifold M comes with a continuous map π : TM →
M back down to the manifold, sending (m , v) 7→ m. One might say that π “forgets the

tangent vector and just remembers the point it emanated from.” By Example 7.45, π

defines a sheaf Secπ. It could be called the sheaf of ‘tangent vector sections on M’, but

its usual name is the sheaf of vector fields on M. This is what we were describing when

we spoke of the sheaf of wind velocities on Earth, above. Given an open subset U ⊆ M,

an element v ∈ Secπ(U) is called a vector field over U because it continuously assigns

a tangent vector v(u) to each point u ∈ U. The tangent vector at u tells us the velocity

of the wind at that point.

Here’s a fun digression: in the case of a spherical manifold M like the Earth, it’s

possible to prove that for every open set U, as long as U , M, there is a vector field
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v ∈ Secπ(U) that is never 0: the wind could be blowing throughout U. However, a

theorem of Poincaré says that if you look at the whole sphere, there is guaranteed to be

a point m ∈ M at which the wind is not blowing at all. It’s like the eye of a hurricane or

perhaps a cowlick. A cowlick in someone’s hair occurs when the hair has no direction

to go, so it sticks up! Hair sticking up would not count as a tangent vector: tangent

vectors must start out lying flat along the head. Poincaré proved that if your head

was covered completely with inch-long hair, there would be at least one cowlick. This

difference between local sections (over arbitrary U ⊆ X) and global sections (over X)—

namely that hair can bewell combedwheneverU , X but cannot bewell combedwhen

U � X—can be thought of as a generative effect, and can be measured by cohomology

(see Section 1.5).

Exercise 7.47. If M is a sphere as in Example 7.46, we know from Definition 7.35

that we can consider the category Shv(M) of sheaves on M; in fact, such categories are

toposes and these are what we’re getting to.

But are the sheaves on M the vector fields? That is, is there a one-to-one corre-

spondence between sheaves on M and vector fields on M? If so, why? If not, how are

sheaves on M and vector fields on M related? ♦

Example 7.48. For every topological space (X,Op), we have the topos of sheaves on it.

The topos of sets, which one can regard as the story of set theory, is the category of

sheaves on the one-point space {∗}. In topos theory, we see the category of sets—an

huge, amazing, and rich category—as corresponding to a single point. Imagine how

much more complex arbitrary toposes are, when they can take place on much more

interesting topological spaces (and in fact even more general ‘sites’).

Exercise 7.49. Consider the Sierpinski space ({1, 2},Op
1
) from Example 7.30.

1. What is the category Op for this space? (You may have already figured this out

in Exercise 7.31; if not, do so now.)

2. What does a presheaf on Op consist of?

3. What is the sheaf condition for Op?
4. How do we identify a sheaf on Op with a function? ♦

7.4 Toposes

A topos is defined to be a category of sheaves.9 So for any topological space (X,Op),
the category Shv(X,Op) defined in Definition 7.35 is a topos. In particular, taking the

one-point space X � 1with its unique topology, we find that the category Set is a topos,
as we’ve been saying all along and saw again explicitly in Example 7.48. And for any

9
This is sometimes called a sheaf topos or a Grothendieck topos. There is a more general sort of topos

called an elementary topos due to Lawvere.
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database schema—i.e. finitely presented category—C, the category C-Inst of database
instances on C is also a topos.10 Toposes encompass both of these sources of examples,

and many more.

Toposes are incredibly nice structures, for a variety of seemingly disparate reasons.

In this sketch, the reason in focus is that every topos has many of the same structural

properties that the category Set has. Indeed, we discussed in Section 7.2.1 that every

topos has limits and colimits, is cartesian closed, has epi-mono factorizations, and has

a subobject classifier (see Section 7.2.2). Using these properties, one can do logic with

semantics in the topos E. We explained this for sets, but now imagine it for sheaves on a

topological space. There, the same logical symbols ∧,∨,¬,⇒, ∃, ∀ become operations

that mean something about sub-sheaves—e.g. vector fields, sections of continuous

functions, etc.—not just subsets.

Tounderstand thismoredeeply,we should saywhat the subobject classifiertrue : 1→
Ω is in more generality. We said that, in the topos Set, the subobject classifier is the set
of booleans Ω � B. In a sheaf topos E � Shv(X,Op), the object Ω ∈ E is a sheaf, not

just a set. What sheaf is it?

7.4.1 The subobject classifier Ω in a sheaf topos

In this subsection we aim to understand the subobject classifier Ω, i.e. the object of

truth values, in the sheaf topos Shv(X,Op). Since Ω is a sheaf, let’s understand it

by going through the definition of sheaf (Definition 7.35) slowly in this case. A sheaf

Ω is a presheaf that satisfies the sheaf condition. As a presheaf it is just a functor

Ω : Opop → Set; it assigns a setΩ(U) to each open U ⊆ X and comes with a restriction

mapΩ(U) → Ω(V)whenever V ⊆ U. So in our quest to understandΩ, we first ask the

question: what presheaf is it?

The answer to our question is that Ω is the presheaf that assigns to U ∈ Op the set

of open subsets of U:

Ω(U) B {U′ ∈ Op | U′ ⊆ U}. (7.50)

That was easy, right? And given the restriction map for V ⊆ U is given by

Ω(U) → Ω(V) (7.51)

U′ 7→ U′ ∩ V.

One can check that this is functorial—see Exercise 7.53—and after doing so wewill still

need to see that it satisfies the sheaf condition. But at least we don’t have to struggle to

understand Ω: it’s a lot like Op itself.

10
We said that a topos is a category of sheaves, yet database instances are presheaves; so how is C-Inst

a topos? Well, presheaves in fact count as sheaves. We apologize that this couldn’t be clearer. All of this

could be made formal if we were to introduce sites. Unfortunately, that concept is simply too abstract for

the scope of this chapter.



244 CHAPTER 7. LOGIC OF BEHAVIOR: SHEAVES, TOPOSES, LANGUAGES

Exercise 7.52. Let X � {1} be the one point space. We said above that its subobject

classifier is the setB of booleans, but how does that align with the definition ofΩ given

in Eq. (7.50)? ♦

Exercise 7.53.
1. Show that the definition ofΩ given above in Eqs. (7.50) and (7.51) is functorial, i.e.,

that whenever W ⊆ V ⊆ U, the restriction map Ω(U) → Ω(V) followed by the

restriction mapΩ(V) → Ω(W) is the same as the restriction mapΩ(U) → Ω(W).
2. Is that all that’s necessary to conclude that Ω is a presheaf? ♦

To see thatΩ as defined inEq. (7.50) satisfies the sheaf condition (seeDefinition 7.35),

suppose that we have a cover U �
⋃

i∈I Ui , and suppose given an element Vi ∈ Ω(Ui),
i.e. an open set Vi ⊆ Ui , for each i ∈ I. Suppose further that for all i , j ∈ I, it is the

case that Vi ∩ U j � Vj ∩ Ui , i.e. that the elements form a matching family. Define

V B
⋃

i∈I Vi ; it is an open subset of U, so we can consider V as an element of Ω(U).
The following verifies that V is indeed a gluing for the (Vi)i∈I :

V ∩U j �

(⋃
i∈I

Vi

)
∩U j �

⋃
i∈I

(Vi ∩U j) �
⋃
i∈I

(Vj ∩Ui) �
(⋃

i∈I

Ui

)
∩ Vj � Vj

In other words V ∩U j � Vj for any j ∈ I. So our Ω has been upgraded from presheaf

to sheaf!

The eagle-eyed reader will have noticed that we haven’t yet given all the data

needed to define a subobject classifier. To turn the object Ω into a subobject classifier

in good standing, we also need to give a sheaf morphism true : {1} → Ω. Here

{1} : Opop → Set is the terminal sheaf; it maps every open set to the terminal, one

element set {1}. The correct morphism true : {1} → Ω for the subobject classifier is

the sheaf morphism that assigns, for every U ∈ Op the function {1} � {1}(U) → Ω(U)
sending 1 7→ U, the largest open set U ⊆ U. From now on we denote {1} simply as 1.

Upshot: Truth values are open sets. The point is that the truth values in the topos

of sheaves on a space (X,Op) are the open sets of that space. When someone says “is

property P true?,” the answer is not yes or no, but “it is true on the open subset U.”

If this U is everything, U � X, then P is really true; if U is nothing, U � �, then P is

really false. But in general, it’s just true some places and not others.

Example 7.54. The category Grph of graphs is a presheaf topos, and one can also think

of it as the category of instances for a database schema, as we saw in Example 7.23. The

subobject classifierΩ in the topos Gr is thus a graph, so we can draw it. Here’s what it
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looks like:

ΩGrph � 0 V(0,0; 0)
(0,V ; 0)

(V,V ; 0)

(V,V ; A)
(V,0; 0)

Finding Ω for oneself is easiest using something called the Yoneda Lemma, but we

have not introduced it. For a nice, easy introduction to the topos of graphs, see [Vig03].

The terminal graph is a single vertex with a single loop, and the graph homomorphism

true : 1→ Ω sends that loop to (V,V ; A).
Given any graph G and subgraph i : H ⊆ G, we need to construct a graph homo-

morphism pHq : G → Ω classifying H. The idea is that for each part of G, we decide

“how much of it is in H. A vertex in v in G is either in H or not; if so we send it to V
and if not we send it to 0. But arrows a are more complicated. If a is in H, we send

it (V,V ; A). But if it is not in H, the mathematics requires us to ask more questions:

is its source in H? is its target in G”? both? neither? Based on the answers to these

questions we send a to (V, 0; 0), (0,V ; 0), (V,V ; 0), or (0, 0; 0), respectively.

Exercise 7.55. Consider the subgraph H ⊆ G shown here:

A• B• C• ⊆ A• B• C• D•
f

1

h i

Find the graph homomorphism pHq : G→ Ω classifying it. See Example 7.54. ♦

7.4.2 Logic in a sheaf topos

Let’s consider the logical connectives, AND, OR, IMPLIES, and NOT. Suppose we

have a topological space X ∈ Op. Given two open sets U,V , considered as truth

values U,V ∈ Ω(X), then their conjunction ‘U AND V’ is their intersection, and their

disjunction ‘U OR V’ is their union;

(U ∧ V) B U ∩ V and (U ∨ V) B U ∪ V. (7.56)

These formulas are easy to remember, because ∧ looks like ∩ and ∨ looks like ∪. The
implication U ⇒ V is the largest open set R such that R ∩U ⊆ V , i.e.

(U ⇒ V) B
⋃

{R∈Op|R∩U⊆V}
R. (7.57)

In general, it is not easy to reduce Eq. (7.57) further, so implication is the hardest logical

connective to think about topologically.

Finally, the negation of U is given by ¬U B (U ⇒ false), and this turns out

to be relatively simple. By the formula in Eq. (7.57), it is the union of all R such that

R∩U � �, i.e. the union of all open sets in the complement of U. If you know topology,

you might recognize that ¬U is the ‘interior of the complement of U.’
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Example 7.58. Consider the real line X � R as a topological space (see Exercise 7.27).

Let U,V ∈ Ω(X) be the open sets U � {x ∈ R | x < 3} and V � {x ∈ R | −4 < x < 4}.
Using interval notation, U � (−∞, 3) and V � (−4, 4). Then

• U ∧ V � (−4, 3).
• U ∨ V � (−∞, 4).
• ¬U � (3,∞).
• ¬V � (−∞,−4) ∪ (4,∞).
• (U ⇒ V) � (−4,∞)
• (V ⇒ U) � U

Exercise 7.59. Consider the real line R as a topological space, and consider the open

subset U � R − {0}.
1. What open subset is ¬U?

2. What open subset is ¬¬U?

3. Is it true that U ⊆ ¬¬U?

4. Is it true that ¬¬U ⊆ U? ♦

Above we explained operations on open sets, one corresponding to each logical

connective; there are also open sets corresponding to the the symbols true and false.

We explore this in an exercise.

Exercise 7.60. Let (X,Op) be a topological space.
1. Suppose the symbol true corresponds to an open set such that for any open set

U ∈ Op, we have (true ∧U) � U. Which open set is it?

2. Other things we should expect from true include (true ∨ U) � true and (U ⇒
true) � true and (true⇒ U) � U. Do these hold for your answer to 1?

3. The symbol false corresponds to an open set U ∈ Op such that for any open set

U ∈ Op, we have (false ∨U) � U. Which open set is it?

4. Other things we should expect from false include (false ∧ U) � false and

(false⇒ U) � true. Do these hold for your answer to 1? ♦

Example 7.61. For a vector bundle π : E → X over a space X, the corresponding sheaf

is Secπ corresponding to its sections: to each open set iU : U ⊆ X, we associate the set

of functions s : U → E for which s # π � iU . For example, in the case of the tangent

bundle π : TM → M (see Example 7.46), the corresponding sheaf, call it VF, associates

to each U the set VF(U) of vector fields on U.

The internal logic of the topos can then be used to consider properties of vector

fields. For example, one could have a predicate Grad : VF→ Ω that asks for the largest

subspace Grad(v) on which a given vector field v comes from the gradient of some

scalar function. One could also have a predicate that asks for the largest open set on

which a vector field is non-zero. Logical operations like ∧ and ∨ could then be applied

to hone in on precise submanifolds throughout which various desired properties hold,
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and to reason logically about what other properties are forced to hold there.

7.4.3 Predicates

In English, a predicate is the part of the sentence that comes after the subject. For

example “. . . is even” or “. . . likes the weather” are predicates. Not every subject

makes sense for a given predicate; e.g. the sentence “7 is even” may be false, but it

makes sense. In contrast, the sentence “2.7 is even” does not really make sense, and

“2.7 likes the weather” certainly doesn’t. In computer science, they might say “The

expression ‘2.7 likes the weather’ does not type check.”

The point is that each predicate is associated to a type, namely the type of subject

that makes sense for that predicate. When we apply a predicate to a subject of the

appropriate type, the result has a truth value: “7 is even” is either true or false.

Perhaps “Bob likes the weather” is true some days and false on others. In fact, this

truth value might change by the year (bad weather this year), by the season, by the

hour, etc. In English, we expect truth values of sentences to change over time, which

is exactly the motivation for this chapter. We’re working toward a logic where truth

values change over time.

In a topos E � Shv(X,Op), a predicate is a sheafmorphism p : S→ Ωwhere S ∈ E is

a sheaf andΩ ∈ E is the subobject classifier, the sheaf of truth values. ByDefinition 7.35

we get a function p(U) : S(U) → Ω(U) for any open set U ⊆ X. In the above example—

which we will discuss more carefully in Section 7.5—if S is the sheaf of people (people

come and go over time), and Bob ∈ S(U) is a person existing over a time U, and p is the

predicate “likes the weather,” then p(Bob) is the set of times during which Bob likes

the weather. So the answer to “Bob likes the weather” is something like “in summers

yes, and also in April 2018 and May 2019 yes, but in all other times no.” That’s p(Bob),
the temporal truth value obtained by applying the predicate p to the subject Bob.

Exercise 7.62. Just now we described how a predicate p : S→ Ω, such as “. . . likes the

weather,” acts on sections s ∈ S(U), say s � Bob. But by Definition 7.12, any predicate

p : S→ Ω also defines a subobject of {S | p} ⊆ S. Describe the sections of this subsheaf.

♦

The poset of subobjects. For a topos E � Shv(X,Op) and object (sheaf) S ∈ E, the

set of S-predicates |ΩE | � E(S,Ω) is naturally given the structure of a poset, which we

denote

(|ΩS |, ≤S) (7.63)

Given two predicates p , q : S → Ω, we say that p ≤S q if the first implies the second.

More precisely, for any U ∈ Op and section s ∈ S(U) we obtain two open subsets

p(s) ⊆ U and q(s) ⊆ U. We say that p ≤S q if p(s) ⊆ q(s) for all U ∈ Op and s ∈ S(U).
We often drop the superscript from ≤S

and simply write ≤. In formal logic notation,
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one might write p ≤S q using the ` symbol, e.g. in one of the following ways:

s : S | p(s) ` q(s) or p(s) `s:S q(s).

In particular, if S � 1 is the terminal object, we denote |ΩS | by |Ω|, and refer to elements

p ∈ |Ω| as propositions. They are just morphisms p : 1→ Ω.

This preorder is partially ordered—a poset—meaning that if p ≤ q and q ≤ p then

p � q. The reason is that for any subsets U,V ⊆ X, if U ⊆ V and V ⊆ U then U � V .

Exercise 7.64. Give an example of a space X, a sheaf S ∈ Shv(X), and two predicates

p , q : S→ Ω for which p(s) `s:S q(s) holds. You do not have to be formal. ♦

All of the logical symbols (true, false,∧,∨,⇒,¬) from Section 7.4.2 make sense

in any such poset |ΩS |. For any two predicates p , q : S→ Ω, we define (p ∧ q) : S→ Ω

by (p ∧ q)(s) B p(s) ∧ q(s), and similarly for ∨. Thus one says that these operations

are computed pointwise on S. With these definitions, the ∧ symbol is the meet and the ∨
symbol is the join—in the sense of Definition 1.81—for the poset |ΩS |.

With all of the logical structurewe’ve defined so far, the poset |ΩS | of predicates on S
formswhat’s called aHeyting algebra. Wewill not define it here, but more information

can be found in Section 7.6. We now move on to quantification.

7.4.4 Quantification

Quantification comes in two flavors: universal and existential, or ‘for all’ and ‘there

exists.’ Each takes in a predicate of n+1 variables and returns a predicate of n variables.

Example 7.65. Suppose we have two sheaves S, T ∈ Shv(X,Op) and a predicate p : S ×
T → Ω. Let’s say T represents what’s considered newsworthy and S is again the set

of people. So for a subset of time U, a section t ∈ T(U) is something that’s considered

newsworthy throughout the whole of U, and a section s ∈ S(U) is a person that lasts

throughout the whole of U. Let’s imagine the predicate p as “s is worried about t.”
Now recall from Section 7.4.3 that a predicate p does not simply return true or false;

given a person s and a news-item t, it returns a truth value corresponding to the subset

of times on which p(s , t) is true.
“For all t in T, . . . is worried about t” is itself a predicate on just one variable, S,

which we denote

∀(t : T). p(s , t).

Applying this predicate to a person s returns the times when that person is worried

about everything in the news. Similarly, “there exists t in T such that s is worried about

t” is also a predicate on S, which we denote ∃(t : T). p(s , t). If we apply this predicate

to a person s, we get the times when person s is worried about at least one thing in the

news.



7.4. TOPOSES 249

Exercise 7.66. In the topos Set, where Ω � B, consider the predicate p : N × Z → B

given by

p(n , z) �
{
true if n ≤ |z |
false if n > |z |.

1. What is the set of n ∈ N for which the predicate ∀(z : Z). p(n , z) holds?
2. What is the set of n ∈ N for which the predicate ∃(z : Z). p(n , z) holds?
3. What is the set of z ∈ Z for which the predicate ∀(n : N). p(n , z) holds?
4. What is the set of z ∈ Z for which the predicate ∃(n : N). p(n , z) holds? ♦

So given p, we have a universally- and an existentially-quantified predicate ∀(t :

T). p(s , t) and ∃(t : T). p(s , t) on S. How do we formally understand them as sheaf

morphisms S→ Ω or, equivalently, as subsheaves of S?

Universal quantification. Given a predicate p : S×T → Ω, the universally-quantified

predicate ∀(t : T). p(s , t) takes a section s ∈ S(U), for any open set U, and returns a

certain open set V ∈ Ω(U). Namely, it returns the largest open set V ⊆ U for which

p(s
��
V , t) � V holds for all t ∈ T(V).

Exercise 7.67. Suppose s is a person alive throughout the interval U. Apply the

above definition to the example p(s , t) � “person s is worried about news t” from

Example 7.65. Here, T(V) is the set of items that are in the news throughout the

interval V .

1. What open subset of U is ∀(t : T). p(s , t) for a person s?
2. Does it have the semanticmeaning you’d expect, given the less formal description

in Section 7.4.4? ♦

Abstractly speaking, the universally-quantified predicate corresponds to the sub-

sheaf given by the following pullback:

∀t p 1

S ΩT

trueT

p′

y

where p′ : S → ΩT
is the currying of S × T → Ω and trueT

is the currying of the

composite 1 × T
!−→ 1

true−−−→ Ω. See Eq. (7.10).

Existential quantification. Given a predicate p : S × T → Ω, the existentially quanti-

fied predicate ∃(t : T). p(s , t) takes a section s ∈ S(U), for any open set U, and returns

a certain open set V ∈ Ω(U), namely the union V �
⋃

i Vi of all the open sets Vi for

which there exists some ti ∈ T(Vi) satisfying p(s
��
Vi
, ti) � Vi . If the result is U itself, you

might be tempted to think “ah, so there exists some t ∈ T(U) satisfying p(t),” but that

is not necessarily so. There is just a cover of U �
⋃

Ui and local sections ti ∈ T(Ui),
each satisfying p, as explained above. Thus the existential quantifier is doing a lot of
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work “under the hood,” taking coverings into account without displaying that fact in

the notation.

Exercise 7.68. Apply the above definition to the “person s is worried about news t”
predicate from Example 7.65.

1. What open set is ∃(t : T). p(s , t) for a person s?
2. Does it have the semantic meaning you’d expect? ♦

Abstractly speaking, the existentially-quantified predicate is given as follows. Start

with the subobject classified by p, namely {(s , t) ∈ S × T | p(s , t)} ⊆ S × T, compose

with the projection πS : S × T → S as on the upper right; then take the epi-mono

factorization of the composite as on the lower left:

{S × T | p} S × T

∃t p S

πS

Then the bottom map is the desired subsheaf of S.

7.4.5 Modalities

Back in Example 1.123 we discussed modal operators—also known as modalities—

saying they are closure operators on preorders which arise in logic. The preorders we

were referring to are the ones discussed in Eq. (7.63): for any object S ∈ E there is the

poset (|ΩS |, ≤S) of predicates on S, where |ΩS | � E(S,Ω) is just the set of morphisms

S→ Ω in the category E.

Definition 7.69. A modality in Shv(X) is a sheaf morphism j : Ω→ Ω satisfying three

properties for all U ⊆ X and p , q ∈ Ω(U):
(a) p ≤ j(p);
(b) ( j # j)(p) ≤ j(p); and
(c) j(p ∧ q) � j(p) ∧ j(q).

Exercise 7.70. Suppose j : Ω→ Ω is a morphism of sheaves on X, such that p ≤ j(p)
holds for all U ⊆ X and p ∈ Ω(U). Show that for all q ∈ Ω(U)we have j( j(q)) ≤ j(q) iff
j( j(q)) � j(q). ♦

In Example 1.123 we informally said that for any proposition p, e.g. “Bob is in San

Diego,” there is a modal operator “assuming p, ....” Now we are in a position to make

that formal.

Proposition 7.71. Fix a proposition p ∈ |Ω|. Then
(a) the sheaf morphism Ω→ Ω given by sending q to p ⇒ q is a modality.

(b) the sheaf morphism Ω→ Ω given by sending q to p ∨ q is a modality.

(c) the sheaf morphism Ω→ Ω given by sending q to (q ⇒ p) ⇒ p is a modality.



7.4. TOPOSES 251

We cannot prove Proposition 7.71 here, but we give references in Section 7.6.

Exercise 7.72. Let S be the sheaf of people as in Section 7.4.3, and let j : Ω → Ω be

“assuming Bob is in San Diego...”

1. Name any predicate p : S→ Ω, such as “likes the weather.”

2. Choose a time interval U. For an arbitrary person s ∈ S(U), what sort of thing is

p(s), and what does it mean?

3. What sort of thing is j(p(s)) and what does it mean?

4. Is it true that p(s) ≤ j(p(s))? Explain briefly.

5. Is it true that j( j(p(s))) � j(p(s))? Explain briefly.

6. Choose another predicate q : S→ Ω. Is it true that j(p ∧ q) � j(p) ∧ j(q)? Explain

briefly. ♦

7.4.6 Type theories and semantics

Wehave been talking about the logic of a topos in terms of open sets, but this is actually

a conflation of two ideas that are really better left unconflated. The first is logic, or

formal language, and the second is semantics, or meaning. The formal language looks

like this:

∀(t : T).∃(s : S). f (s) � t (7.73)

and semantic statements are like “the sheaf morphism f : S→ T is an epimorphism.”

In the former, logical world, all statements are linguistic expressions formed according

to strict rules and all proofs are deductions that also follow strict rules. In the latter,

semantic world, statements and proofs are about the sheaves themselves, as mathe-

matical objects. We admit these are rough statements; again, our aim here is only to

give a taste, an invitation to further reading.

To provide semantics for a logical system means to provide a compiler that converts

each logical statement in the formal language into a mathematical statement about

particular sheaves and their relationships. A computer can carry out logical deductions

without knowing what any of them “mean” about sheaves. We say that semantics is

sound if every formal proof is converted into a true fact about the relevant sheaves.

Every topos can be assigned a formal language, often called its internal language,
in which to carry out constructions and formal proofs. This language has a sound

semantics—a sort of logic-to-sheaf compiler—which goes under the name categorical
semantics or Kripke-Joyal semantics. We gave the basic ideas in Section 7.4; we give

references to the literature in Section 7.6.

Example 7.74. In every topos E, and for every f : S → T in E, the morphism f is

an epimorphism if and only if Eq. (7.73) holds. For example, consider the case of

database instances on a schema C, say with 100 tables (one of which might be denoted

c ∈ Ob(C)) and 500 foreign key columns (one of which might be denoted f : c → c′ in
C); see Eq. (3.2).
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If S and T are two instances and f is a natural transformation between them, then

we can ask the question of whether or not Eq. (7.73) holds. This simple formula is

compiled by the Kripke-Joyal semantics into asking:

Is it true that for every table c ∈ Ob(C) and every row s ∈ S(c) there exists

a row t ∈ T(c) such that f (s) � t?

This is exactly what it means for f to be surjective. Maybe this is not too impressive,

but whether one is talking about databases or topological spaces, or complex ideas

from algebraic geometry, Eq. (7.73) always compiles into the question of surjectivity.

For topological spaces it would say something like:

Is it true that for every open set U ⊆ X and every section s ∈ S(U) of the
bundle S, there exists an open covering of (Ui ⊆ U)i∈I of U and a section

ti ∈ T(Ui) of the bundle T for each i ∈ I, such that f (ti) � s
��
Ui

is the

restriction of s to Ui?

7.5 A topos of behavior types

Now thatwehavediscussed logic in a sheaf topos, we return to ourmotivating example,

a topos of behavior types. We begin by discussing the topological space on which

behavior types will be sheaves, a space called the interval domain.

Remark 7.75. Note that above, we were thinking very intuitively about time, e.g. when

we discussed people being worried about the news. Now we will be thinking about

time in a different way, but there is no need to change your answers or reconsider the

intuitive thinking done above.

7.5.1 The interval domain

The interval domain IR is a specific topological space, which we will use to model

intervals of time. In other words, we will be interested in the category Shv(IR) of
sheaves on the interval domain.

To give a topological space, one must give a pair (X,Op), where X is a set of ‘points’

and Op is a topology on X; see Definition 7.25. The set of points for IR is that of all

finite closed intervals

IR B {[d , u] ⊆ R | d ≤ u}.

For a < b in R, let o[a ,b] denote the set o[a ,b] B {[d , u] ∈ IR | a < d ≤ u < b}; these are
called basic open sets. The topology Op is determined by these basic open sets in that a

subset U is open if it is the union of some collection of basic open sets.

Thus for example, o[0,5] is an open set: it contains every [d , u] contained in the

open interval {x ∈ R | 0 < x < 5}. Similarly o[4,8] is an open set, but note that

o[0,5] ∪ o[4,8] , o[0,8]. Indeed, the interval [2, 6] is in the right-hand side but not the left.

Exercise 7.76.
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1. Explain why [2, 6] ∈ o[0,8].
2. Explain why [2, 6] < o[0,5] ∪ o[4,8]. ♦

Let Op denote the open sets of IR, as described above, and let BT B Shv(IR,Op)
denote the topos of sheaves on this space. We call it the topos of behavior types.

There is an important subspace of IR, namely the usual space of real numbers R.

We see R as a subspace of IR via the isomorphism

R � {[d , u] ∈ IR | d � u}.

We discussed the usual topology on R in Example 7.26, but we also get a topology

on R because it is a subset of IR; i.e. we have the subspace topology as described in

Exercise 7.32. These agree, as the reader can check.

Exercise 7.77. Show that a subset U ⊆ R is open in the subspace topology of R ⊆ IR
iff U ∩ R is open in the usual topology on R defined in Example 7.26. ♦

7.5.2 Sheaves on IR

We cannot go into much depth about the sheaf topos BT � Shv(IR,Op), for reasons
of space; we refer the interested reader to Section 7.6. In this section we will briefly

discuss what it means to be a sheaf on IR, giving a few examples including that of the

subobject classifier.

What is a sheaf on IR? A sheaf S on the interval domain (IR,Op) is a functor

S : Opop → Set: it assigns to each open set U a set S(U); how should we interpret this?

An element s ∈ S(U) is something that says is an “event that takes place throughout

the interval U.” Given this U-event s together with an open subset of V ⊆ U, there is

a V-event s
��
V that tells us what s is if we regard it as an event taking place throughout

V . If U �
⋃

i∈I Ui and we can find matching Ui-events (si) for each i ∈ I, then the sheaf

condition (Definition 7.35) says that they have a unique gluing, i.e. a U-event s ∈ S(U)
that encompasses all of them: s

��
Ui

� si for each i ∈ I.
We said in Section 7.5.1 that every open set U ⊆ IR can be written as the union of

basic open sets o[a ,b]. This implies that any sheaf S is determined by its values S(o[a ,b])
on these basic open sets. The sheaf condition furthermore implies that these vary

continuously in a certain sense, which we can express formally as

S(o[a ,b]) � lim

ε>0

S(o[a−ε,b+ε]).

However, rather than get into the details, we describe a few sorts of sheaves that may

be of interest.

Example 7.78. For any set A there is a sheaf A ∈ Shv(IR) that assigns to each open set U
the set A(U) B A. This allows us to refer to integers, or real numbers, or letters of an

alphabet, as though they were behaviors. What sort of behavior is 7 ∈ N? It is the sort
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of behavior that never changes: it’s always seven. Thus A is called the constant sheaf on
A.

Example 7.79. Fix any topological space (X,OpX). Then there is a sheaf FX of local
functions from IR to X. That is, for any open set U ∈ OpIR, we assign the set FX(U) B
{ f : U → X | f is continuous}. There is also the sheaf GX of local functions on the

subspace R ⊆ IR. That is, for any open set U ∈ OpIR, we assign the set GX(U) B
{ f : U ∩ R→ X | f is continuous}.

Exercise 7.80. Let’s check that Example 7.78 makes sense. Fix any topological space

(X,OpX) and any subset R ⊆ IR of the interval domain. Define HX(U) B { f : U∩R→
X | f is continuous}.

1. Is HX a presheaf? If not, why not; if so, what are the restriction maps?

2. Is HX a sheaf? Why or why not? ♦

Example 7.81. Another source of examples comes from the world of open hybrid dy-

namical systems. These are machines whose behavior is a mixture of continuous

movements—generally imagined as trajectories through a vector field—and discrete

jumps. These jumps are imagined as being caused by signals that spontaneously arrive.

Over any interval of time, a hybrid system has certain things that it can do and certain

things that it cannot. Although we will not make this precise here, there is a construc-

tion for converting any hybrid system into a sheaf on IR; we will give references in

Section 7.6.

We refer to sheaves on IR as behavior types because almost any sort of behavior one

can imagine is a behavior type. Of course, a complex behavior type—such as the way

someone acts when they are in love—would be extremely hard to write down. But the

idea is straightforward: for any interval of time, say a three-day interval (d , d + 3), let
L(d , d+3) denote the set of all possible behaviors a personwho is in love could possibly

do. Obviously it’s a big, unwieldy set, and no one would want to make precise. But to

the extent that one can imagine that sort of behavior as occurring through time, they

could imagine the corresponding sheaf.

The subobject classifier as a sheaf on IR. In any sheaf topos, the subobject classifier

Ω is itself a sheaf. It is responsible for the truth values in the topos. As we said in

Section 7.4.1, when it comes to sheaves on a topological space (X,Op), truth values are

open subsets U ∈ Op.
BT is the topos of sheaves on the space (IR,Op), as defined in Section 7.5.1. As

always, the subobject classifierΩ assigns to any U ∈ Op the set of open subsets of U, so

these are the truth values. But what do they mean? The idea is that every proposition,
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such as “Bob likes the weather” returns an open set U, as if to respond that Bob likes

the weather “...throughout time period U.” Let’s explore this just a bit more.

Suppose Bob likes the weather throughout the interval (0, 5) and throughout the

interval (4, 8). We would probably conclude that Bob likes the weather throughout the

interval (0, 8). But what about the more ominous statement “a single pair of eyes has

remained watching position p.” Then just because it’s true on (0, 5) and on (4, 8), does
not imply that it’s been true on (0, 8): there may have been a change of shift, where

one watcher was relieved from their post by another watcher. As another example,

consider the statement “the stock market did not go down by more than 10 points.”

This might be true on (0, 5) and true on (4, 8) but not on (0, 8). In order to capture the

semantics of statements like these—statements that take time to evaluate—we must

use the space IR rather than the space R.

7.5.3 Safety proofs in temporal logic

Wenowhave at least a basic idea ofwhat goes into a proof of safety, say for autonomous

vehicles, or airplanes in the national airspace system. In fact, the underlying ideas of

this chapter came out of a project between MIT, Honeywell Inc., and NASA [SSV18].

The background for the project was that the National Airspace System consists of

many different systems interacting: interactions between airplanes, each of which is

an interaction between physics, humans, sensors, and actuators, each of which is an

interaction between still more basic parts. The same sort of story would hold for a fleet

of autonomous vehicles, as in the introduction to this chapter.

Suppose that each of the systems—at any level—is guaranteed to satisfy some

property. For example, perhaps we can assume that an engine is either out of gas, has

a broken fuel line, or is following the orders of a human driver or pilot. If there is

a rupture in the fuel line, the sensors will alert the human within three seconds, etc.

Each of the components interact with a number of different variables. In the case of

airplanes, a pilot interacts with the radio, the positions of the dials, the position of

the thruster, and the visual data in front of her. The component—here the pilot—is

guaranteed to keep these variables in some relation: “if I see something, I will say

something” or “if the dials are in position bad_pos, I will engage the thruster within 1

second.” We call these guarantees behavior contracts.
All of the above can be captured in the topos BT of behavior types. The variables

are behavior types: the altimeter is a variable whose value θ ∈ R≥0 is changing

continuouslywith respect to time. The thruster is also a continuously-changingvariable

whose value is in the range [0, 1], etc.
The guaranteed relationships—behavior contracts—are given by predicates on vari-

ables. For example, if the pilot will always engage the thruster within one second

of the display dials being in position bad_pos, this can be captured by a predicate

p : dials × thrusters → Ω. While we have not written out a formal language for p,



256 CHAPTER 7. LOGIC OF BEHAVIOR: SHEAVES, TOPOSES, LANGUAGES

one could imagine the predicate p(D , T) for D : dials and T : thrusters as

∀(t : R).@t
(
bad_pos(D)

)
⇒

∃(r : R). (0 < r < 1) ∧ ∀(r′ : R). 0 ≤ r′ ≤ 5⇒ @t+r+r′
(
engaged(T)

)
. (7.82)

Here @t is a modality, as we discussed in Definition 7.69; in fact it turns out to be one

of type 3. from Proposition 7.71, but we cannot go into that. For a proposition q, the
statement @t(q) says that q is true in some small enough neighborhood around t. So
(7.82) says “starting within one second of whenever the dials say that we are in a bad

position, I’ll engage the thrusters for five seconds.”

Given an actual playing-out-of-events over a time period U, i.e. actual section D ∈
dials(U) and section T ∈ thrusters(U), the predicate Eq. (7.82) will hold on certain

parts of U and not others, and this is the truth value of p. Hopefully the pilot upholds

her behavior contract at all times she is flying, inwhich case the truth valuewill be true

throughout that interval U. But if the pilot breaks her contract over certain intervals,

then this fact is recorded in Ω.

The logic allows us to record axioms like that shown in Eq. (7.82) and then reason

from them: e.g. if the pilot and the airplane, and at least one of the three radars upholds

its contract then safe separationwill bemaintained. We cannot give further details here,

but these matters have been worked out in detail in [SS18]; see Section 7.6.

7.6 Summary and further reading

This chapter was about modeling various sorts of behavior using sheaves on a space of

time-intervals. Behavior may seem like it’s something that occurs now in the present,

but in fact our memory of past behavior informs what the current behavior means.

In order to commit to anything, to plan or complete any sort of process, one needs to

be able to reason over time-intervals. The nice thing about temporal sheaves—indeed

sheaves on any site—is that they fit into a categorical structure called a topos, which has

many useful formal properties. In particular, it comes equipped with a higher-order

logic with which we can formally reason about how temporal sheaves work together

when combined in larger systems. A much more detailed version of this story was

presented in [SS18]. But it would have been impossible without the extensive edifice

of topos theory and domain theory that has been developed over the past six decades.

Sheaf toposes were invented by Grothendieck and his school in the 1960s [AGV71]

as an approach to proving conjectures at the intersection of algebraic geometry and

number theory, called theWeil conjectures. Soonafter, Lawvere andTierney recognized

that toposes had all the structure necessary to do logic, and with a whole host of

other category theorists, the subject was developed to an impressive extent in many

directions. For a much more complete history, see [McL90].

There are many sorts of references on topos theory. One that starts by introducing

categories and then moves to toposes, focusing on logic, is [McL92]. Our favorite
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treatment is perhaps [MM92], where the geometric aspects play a central role. Finally,

Johnstone has done the field a huge favor by collecting large amounts of the theory

into a single two-volume set [Joh02]; it is very dense, but an essential reference for the

serious student or researcher. For just categorical (Kripke-Joyal) semantics of logic in a

topos, one should see either [MM92], [Jac99], or [LS88].

We did not mention domain theory much in this chapter, aside from referring to

the interval domain. But domains, in the sense of Dana Scott, play an important role

in the deeper aspects of temporal type theory. A good reference is [Gie+03], but for an

introduction we suggest [AJ94].

In some sense our application area has been a very general sort of dynamical system.

Other categorical approaches to this subject include [JNW96], [HTP03], [AS05], and

[Law86], though there are many others.

We hope you have enjoyed the seven sketches in this book. As a next step, consider

running a reading course on applied category theory with some friends or colleagues.

Simultaneously, we hope you begin to search out categorical ways of thinking about

familiar subjects. Perhaps you’ll find something youwant to contribute to this growing

field of applied category theory, or aswe sometimes call it, the field of compositionality.





Appendix A

Exercise solutions

A.1 Solutions for Chapter 1.

Solution to Exercise 1.1.
For each of the following properties, we need to find a function f : R→ R that preserves it, and another

function—call it 1—that does not.

order-preserving: Take f (x) � x + 5; if x ≤ y then x + 5 ≤ y + 5, so f is order-preserving. Take

1(x) B −x; even though 1 ≤ 2, the required inequality −1 ≤? −2 does not hold, so 1 is not

order-preserving.

metric-preserving: Take f (x) B x + 5; for any x , y we have |x − y | � |(x + 5) − (y + 5)| by the rules of

arithmetic, so |x − y | � | f (x) − f (y)|, meaning f preserves metric. Take 1(x) B 2 ∗ x; then with

x � 1 and y � 2 we have |x − y | � 1 but |2x − 2y | � 2, so 1 does not preserve the metric.

addition-preserving: Take f (x) B 3 ∗ x; for any x , y we have 3 ∗ (x + y) � (3 ∗ x)+ (3 ∗ y), so f preserves
addition. Take 1(x) B x + 1; then with x � 0 and y � 0, we have 1(x + y) � 1, but 1(x)+ 1(y) � 2,

so 1 does not preserve addition.

Solution to Exercise 1.4.
Here is the join of the two systems:

11• 12• 13•

21• 22• 23•

11• 12• 13•

21• 22• 23•

∨

11• 12• 13•

21• 22• 23•

�

Solution to Exercise 1.6.
1. Here is the Hasse diagram for partitions of the two element set {•, ∗}:

• ∗(12) �

• ∗(1)(2) �

259



260 APPENDIX A. EXERCISE SOLUTIONS

2. Here is a picture (using text, rather than circles) for partitions of the set 1, 2, 3, 4:

(1)(2)(3)(4)

(12)(3)(4) (1)(2)(34) (13)(2)(4) (1)(24)(3) (14)(2)(3) (1)(23)(4)

(12)(34) (13)(24) (14)(23)(123)(4) (124)(3) (134)(2) (1)(234)

(1234)

For the remaining parts, we choose A � (12)(3)(4) and B � (13)(2)(4).
3. A ∨ B � (123)(4).
4. Yes, it is true that A ≤ (A ∨ B) and that B ≤ (A ∨ B).
5. The systems C with A ≤ C and B ≤ C are: (123)(4) and (1234).
6. Yes, it is true that in each case (A ∨ B) ≤ C.

Solution to Exercise 1.7.
1. true ∨ false � true.
2. false ∨ true � true.
3. true ∨ true � true.
4. false ∨ false � false.

Solution to Exercise 1.11.
1. The eight subsets of B B {1, 2, 3} are

�, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

2. The union of {1, 2, 3} and {1} is {1, 2, 3} ∪ {1} � {1, 2, 3}.
3. The six elements of {h , 1} × {1, 2, 3} are

(h , 1), (h , 2), (h , 3), (1, 1), (1, 2), (1, 3).

4. The five elements of {h , 1} t{1, 2, 3} are

(h , 1), (1, 1), (1, 2), (2, 2), (3, 2).

5. The four elements of {h , 1} ∪ {1, 2, 3} are

h , 1, 2, 3.

Solution to Exercise 1.10.
1. This is true: a natural number is exactly an integer that is at least 0.

2. This is false: 0 ∈ N but 0 < {n ∈ Z | n ≥ 1}.
3. This is true: no elements of Z are strictly between 1 and 2.

Solution to Exercise 1.16.
Suppose that A is a set and {Ap}p∈P and {A′p′}p′∈P′ are two partitions of A such that for each p ∈ P
there exists a p′ ∈ P′ with Ap � A′p′ .
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1. Given p ∈ P, suppose we had p′
1
, p′

2
∈ P′ such that Ap � A′p′

1

and Ap � A′p′
2

. Well then Ap′
1

� Ap′
2

,

so in particular Ap′
1

∩ Ap′
2

� Ap′
1

. By the definition of partition (1.14), Ap′
1

, �, and yet if p
1
, p

2

then Ap′
1

∩ Ap′
2

� �. This can’t be, so we must have p′
1
� p′

2
, as desired.

2. Suppose given p′ ∈ P′; we want to show that there is a p ∈ P such that Ap � A′p′ . Since A′p′ , �
is nonempty by definition, we can pick some a ∈ A′p′ ; since A′p′ ⊆ A, we have a ∈ A. Finally,

since A �
⋃

p∈P Ap , there is some p with a ∈ Ap . This is our candidate p; now we show that

Ap � A′p′ . By assumption there is some p′′ ∈ P′ with Ap � A′p′′ , so now a ∈ A′p′′ and a ∈ A′p′ ,
so a ∈ A′p′ ∩ A′p′′ . Again by definition, having a nonempty intersection means p′ � p′′. So we

conclude that Ap � Ap′ .

Solution to Exercise 1.17.
The pairs (a , b) such that a ∼ b are:

(11, 11) (11, 12) (12, 11) (12, 12) (13, 13)
(21, 21) (22, 22) (12, 23) (23, 22) (23, 23)

Solution to Exercise 1.20.
1. One aspect in the definition of the parts is that they are connected, and one aspect of that is that

they are nonempty. So each part Ap is nonempty.

2. Suppose p , q, i.e. Ap and Aq are not exactly the same set. To prove Ap ∩ Aq � �, we suppose

otherwise and derive a contradiction. So suppose there exists a ∈ Ap ∩ Aq ; we will show that

Ap � Aq , which contradicts an earlier hypothesis. To show that these two subsets are equal, it

suffices to show that a′ ∈ Ap iff a′ ∈ Aq for all a′ ∈ A. Suppose a′ ∈ Ap ; then because Ap is

connected, we have a ∼ a′. And because Aq is closed, a′ ∈ Aq . In just the way, if a′ ∈ Aq then

because Aq is connected and Ap is closed, a′ ∈ Ap , and we are done.

3. To show that A �
⋃

p∈P Ap , it suffices to show that for each a ∈ A, there is some p ∈ P such that

a ∈ Ap . We said that P was the set of closed and connected subsets of A, so it suffices to show that

there is some closed and connected subset containing a. Let X B {a′ ∈ A | a′ ∼ a}; we claim it is

closed and connected and contains a. To see X is closed, suppose a′ ∈ X and b ∼ a′; then b ∼ a
by transitivity and symmetry of ∼, so b ∈ X. To see that X is connected, suppose b , c ∈ X; then

b ∼ a and c ∼ a so b ∼ c by the transitivity and symmetry of ∼. Finally, a ∈ X by the reflexivity

of ∼.

Solution to Exercise 1.24.
1. The unique function � → {1} is injective but not surjective.
2. The unique function {a , b} → {1} is surjective but not injective.
3. The second and third are not functions; the first and fourth are functions.

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

X

?

?

X

4. Neither the second nor third is ‘total’. Moreover, the second one is not deterministic. The first

one is a function which is not injective and not surjective. The fourth one is a function which is

both injective and surjective.

Solution to Exercise 1.25.
By Definition 1.22, a function f : A → � is a subset F ⊆ A × � such that for all a ∈ A, there exists a

unique b ∈ � with (a , b) ∈ F. But there are no elements b ∈? �, so if F is to have the above property,

there can be no a ∈ A either; i.e. A must be empty.
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Solution to Exercise 1.27.
Below each partition, we draw a corresponding surjection out of {•, ∗, ◦}:

• ∗

◦

• ∗

◦

• ∗

◦

• ∗

◦

• ∗

◦

•
∗
◦

p
1

p
2

p
3

•
∗
◦

p
1

p
2

•
∗
◦

p
1

p
2

•
∗
◦

p
1

p
2

•
∗
◦

p
1

Solution to Exercise 1.38.

G �

1• 2•

3• 4•

a

b
c

e

d

arrow a source s(a) ∈ V target t(a) ∈ V
a 1 2

b 1 3

c 1 3

d 2 2

e 2 3

Solution to Exercise 1.40.
The graph G from Exercise 1.38 is a strange Hasse diagram because it has two arrows 1→ 3 and a loop,

both of which are “useless” from a preorder point-of-view. But that does not prevent our formula from

working. The preorder (P, ≤) is given by taking P B V � {1, 2, 3, 4} and writing p ≤ q whenever there

exists a path from p to q. So:

1 ≤ 1, 1 ≤ 2, 1 ≤ 3, 2 ≤ 2, 2 ≤ 3, 3 ≤ 3, 4 ≤ 4

Solution to Exercise 1.41.
A collection of points, e.g. • • • is a Hasse diagram, namely for the discrete order, i.e. for the order

where x ≤ y iff x � y.

Solution to Exercise 1.42.
Let’s write the five elements of X as

(•)(◦)(∗), (•◦)(∗), (•∗)(◦), (•)(◦∗), (• ◦ ∗)

Our job is to write down all 12 pairs of x
1
, x

2
∈ X with x

1
≤ x

2
. Here they are:

(•)(◦)(∗) ≤ (•)(◦)(∗) (•)(◦)(∗) ≤ (•◦)(∗) (•)(◦)(∗) ≤ (•∗)(◦)
(•)(◦)(∗) ≤ (•)(◦∗) (•)(◦)(∗) ≤ (• ◦ ∗) (•◦)(∗) ≤ (•◦)(∗)
(•◦)(∗) ≤ (• ◦ ∗) (•∗)(◦) ≤ (•∗)(◦) (•∗)(◦) ≤ (• ◦ ∗)
(•)(◦∗) ≤ (•)(◦∗) (•)(◦∗) ≤ (• ◦ ∗) (• ◦ ∗) ≤ (• ◦ ∗)

Solution to Exercise 1.44.
The statement in the text is almost correct. It is correct to say that a discrete preorder is one where x
and y are comparable if and only if x � y.



A.1. SOLUTIONS FOR CHAPTER 1 263

Solution to Exercise 1.46.

8•

9• 6• 4• 10•

3• 2• 5• 7•

1•

No, it is not a total order; for example 4 � 6 and 6 � 4.

Solution to Exercise 1.48.
Yes, the usual ≤ ordering is a total order on R: for every a , b ∈ R either a ≤ b or b ≤ a.

Solution to Exercise 1.51.
The Hasse diagrams for P(�), P{1}, and P{1, 2} are

�
�

{1}

�

{1} {2}

{1, 2}

Solution to Exercise 1.53.
The coarsest partition on S corresponds to the unique function ! : S → {1}. The finest partition on S
corresponds to the identity function idS : S→ S.

Solution to Exercise 1.55.
If X has the discrete preorder, then every subset U of X is an upper set: indeed, if p ∈ U, the only q
such that p ≤ q is p itself, so q is definitely in U! This means that U(X) contains all subsets of X, so it’s

exactly the power set, U(X) � P(X).

Solution to Exercise 1.57.
The product preorder and its upper set preorder are:

(a , 1)

(c , 1) (a , 2) (b , 1)

(c , 2) (b , 2)

{(c , 2)} {(b , 2)}

{(c , 1), (c , 2)} {(b , 2), (c , 2)} {(b , 1), (b , 2)}

{(b , 2), (c , 1), (c , 2)} {(a , 2), (b , 2), (c , 2)} {(b , 1), (b , 2), (c , 2)}

{(a , 2), (b , 2), (c , 1), (c , 2)} {(a , 2), (b , 1), (b , 2), (c , 2)}

{(a , 2), (b , 1), (b , 2), (c , 1), (c , 2)}

{(a , 1), (a , 2), (b , 1), (b , 2), (c , 1), (c , 2)}
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Solution to Exercise 1.63.
With X � {0, 1, 2}, the Hasse diagram for P(X), the preorder 0 ≤ · · · ≤ 3, and the cardinality map

between them are shown below:

X

{0, 1} {0, 2} {1, 2}

{0} {1} {2}

�

3

2

1

0

Solution to Exercise 1.65.

�

{true}

{true, false}

{true} {false}

�

{true, false}

Solution to Exercise 1.66.
1. Let q ∈ ↑ p, and suppose q ≤ q′. Since q ∈ ↑ p, we have p ≤ q. Thus by transitivity p ≤ q′, so

q′ ∈ ↑ p. Thus ↑ p is an upper set.

2. Suppose p ≤ q in P; this means that q ≤op p in Pop
. We must show that ↑ q ⊆ ↑ p. Take any

q′ ∈ ↑ q. Then q ≤ q′, so by transitivitiy p ≤ q′, and hence q′ ∈ ↑ p. Thus ↑ q ⊆ ↑ p.
3. Monotonicity of ↑ says that p ≤ p′ implies ↑(p′) ⊆ ↑(p). We must prove the other direction, that

if p � p′ then ↑(p′) * ↑(p). This is straightforward, since by reflexivity we always have p′ ∈ ↑(p′),
but if p � p′, then p′ < ↑(p), so ↑(p′) * ↑(p).

4. The map ↑ : Pop → U(P) can be depicted:

c b

a

{c} {b}

{b , c}

{a , b , c}

Solution to Exercise 1.67.
Suppose (P, ≤P) is a discrete preorder and that (Q , ≤Q) is any preorder. We want to show that every

function f : P → Q is monotone, i.e. that if p
1
≤P p

2
then f (p

1
) ≤Q f (p

2
). But in P we have p

1
≤P p

2

iff p
1
� p

2
; that’s what discrete means. If p

1
≤P p

2
then p

1
� p

2
, so f (p

1
) � f (p

2
), so f (p

1
) ≤ f (p

2
).

Solution to Exercise 1.69.
Let X � Z � {. . . ,−2,−1, 0, 1, . . .} be the set of all integers, and let Y � {n , z , p}; let f : X → Y send

negative numbers to n, zero to z, and positive integers to p. This is surjective because all three elements

of Y are hit.

We consider two partitions of Y, namely P B (nz)(p) and Q B (np)(z). Technically, these are notation
for {{n , z}, {p}} and {{n , p}, {z}} as sets of disjoint subsets whose union is Y. Their pulled back

partitions are f ∗P � (. . . ,−2,−1, 0)(1, 2, . . .) and f ∗Q � (0)(. . . ,−2,−1, 1, 2, . . .), or technically

f ∗(P) � {{x ∈ Z | x ≤ 0}, {x ∈ Z | x ≥ 1}} and f ∗(Q) � {{0}, {x ∈ Z | x , 0}}.
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Solution to Exercise 1.71.
Wehavepreorders (P, ≤P), (Q , ≤Q), and (R, ≤R), andwehavemonotonemaps f : P → Q and 1 : Q → R.

1. To see that idP is monotone, we need to show that if p
1
≤P p

2
then idP(p1

) ≤ idP(p2
). But

idP(p) � p for all p ∈ P, so this is clear.

2. We have that p
1
≤P p

2
implies f (p

1
) ≤Q f (p

2
) and that q

1
≤Q q

2
implies 1(q

1
) ≤R 1(q

2
). By

substitution, p
1
≤P p

2
implies 1( f (p

1
)) ≤R 1( f (p

2
)) which is exactly what is required for ( f # 1)

to be monotone.

Solution to Exercise 1.73.
We need to show that if (P, ≤P) is both skeletal and dagger, then it is discrete. So suppose it is skeletal,

i.e. p
1
≤ p

2
and p

2
≤ p

1
implies p

1
� p

2
. And suppose it is dagger, i.e. p

1
≤ p

2
implies p

2
≤ p

1
. Well

then p
1
≤ p

2
implies p

1
� p

2
, and this is exactly the definition of P being discrete.

Solution to Exercise 1.77.
The mapΦ from Section 1.1.1 took partitions of {•, ∗, ◦} and returned true or false based on whether or

not •was in the same partition as ∗. We need to see that it’s actually amonotonemapΦ : Prt({•, ∗, ◦}) →
B. So suppose P,Q are partitions with P ≤ Q; we need to show that if Φ(P) � true then Φ(Q) � true.
By definition P ≤ Q means that P is finer than Q: i.e. P differentiates more stuff, and Q lumps more

stuff together. Technically, x ∼P y implies x ∼Q y for all x , y ∈ {•, ∗, ◦}. Applying this to •, ∗ gives the
result.

Solution to Exercise 1.79.
Given a function f : P → Q, we have f ∗ : U(Q) → U(P) given by U 7→ f −1(U). But upper sets in Q are

classified by monotone maps u : Q → B, and similarly for P; our job is to show that f ∗(U) is given by

composing the classifier u with f .
Given an upper set U ⊆ Q, let u : Q → B be the corresponding monotone map, which sends q 7→ true
iff q ∈ U. Then ( f # u) : P → B sends p 7→ true iff f (p) ∈ U; it corresponds to the upper set

{p ∈ P | f (p) ∈ U} which is exactly f −1(U).

Solution to Exercise 1.80.
1. 0 is a lower bound for S � { 1

n+1
| n ∈ N} because 0 ≤ 1

n+1
for any n ∈ N.

2. Suppose that b is a lower bound for S; we want to see that b ≤ 0. If one believes to the contrary

that 0 < b, then consider 1/b; it is a real number so we can find a natural number n that’s bigger

1/b < n < n + 1. This implies 1 < b(n + 1) and hence
1

n+1
< b, but that is a contradiction of b

being a lower bound for S. The false believer is defeated!

Solution to Exercise 1.85.
We have a preorder (P, ≤), an element p ∈ P, and a subset A � {p} with one element.

1. To see that

∧
A � p, we need to show that p ≤ a for all a ∈ A and that if q ≤ a for all a ∈ A then

q ≤ p. But the only a ∈ A is a � p, so both are obvious.

2. We know p is a meet of A, so if q is also a meet of A then q ≤ a for all a ∈ A so q ≤ p; similarly

p ≤ a for all a ∈ A, so p ≤ q. Then by definition we have p � q, and since (P, ≤) is a partial order,
p � q.

3. The analogous facts are true when

∧
is replaced by

∨
; the only change in the argument is to

replace ≤ by ≥ and ‘meet’ by ‘join’ everywhere.

Solution to Exercise 1.90.
The meet of 4 and 6 is the highest number in the order that divides both of them; the numbers dividing

both are 1 and 2, and 2 is higher, so 4 ∧ 6 � 2. Similar reasoning shows that 4 ∨ 6 � 12. The meet is the

‘greatest common divisor’ and the join is the ‘least common multiple,’ and this holds up for all pairs

m , n ∈ N not just 4, 6.
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Solution to Exercise 1.94.
Since f is monotone, the facts that a ≤ a∨ b and b ≤ a∨ b imply that f (a) ≤ f (a∨ b) and f (b) ≤ f (a∨ b).
But by definition of join, f (a) ∨ f (b) is the largest element with that property, so f (a) ∨ f (b) ≤ f (a ∨ b),
as desired.

Solution to Exercise 1.98.
By analogy with Example 1.97, the right adjoint for (3×−) should be b−/3c. But to prove this is correct,

we must show that for any any r ∈ R and z ∈ Zwe have z ≤ br/3c iff 3 ∗ z ≤ r.
Suppose the largest integer below r/3 is z′ B br/3c. Then z ≤ z′ implies 3∗z ≤ 3∗z′ ≤ 3∗r/3 � r, giving
one direction. For the other, suppose 3 ∗ z ≤ r. Then dividing both sides by 3, we have z � 3 ∗ z/3 ≤ r/3.
Since z is an integer below r/3 it is below br/3c because br/3c is the greatest integer below r/3, and we

are done.

Solution to Exercise 1.99.
1. We need to check that for all nine pairs {(p , q) | 1 ≤ p ≤ 3 and 1 ≤ q ≤ 3} we have f (p) ≤ q iff

p ≤ 1(q), where f and 1 are the functions shown here:

P
1• 2• 3• P

Q •
1

•
2

•
3

Q

f 1

When p � q � 1 we have f (p) � 1 and 1(q) � 2, so both f (p) � 1 ≤ 1 � q and p � 1 ≤ 1(q);
it works! Same sort of story happens when (p , q) is (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), and (3, 3). A
different story happens for p � 3, q � 1 and p � 3, q � 2. In those cases f (p) � 3 and 1(q) � 2,

and neither inequality holds: f (p) � q and p � 1(q). But that’s fine, we still have f (p) ≤ q iff

p ≤ 1(q) in all nine cases, as desired.

2.

P
1• 2• 3• P

Q •
1

•
2

•
3

Q

f 1

Here f is not left adjoint to 1 because f (2) � 1 but 2 ≤ 1(1).

Solution to Exercise 1.101.
1. Let’s suppose we have a monotone map L : Z → R that’s left adjoint to d−/3e and see what

happens. Writing C(r) B dr/3e, then for all z ∈ Z and r ∈ R we have L(z) ≤ r iff z ≤ C(r)
by definition of adjunction. So take z � 1 and r � .01; then dr/3e � 1 so z ≤ C(r), and hence

L(z) ≤ r, i.e. L(1) ≤ 0.01. In the same way L(1) ≤ r for all r > 0, so L(1) ≤ 0. By definition of

adjunction 1 ≤ C(0) � d0/3e � 0, a contradiction.

2. There’s no left adjoint, because starting with an arbitrary one, we derived a contradiction.

Solution to Exercise 1.103.
We have S � {1, 2, 3, 4}, T � {12, 3, 4}, and 1 : S → T the “obvious” function between them; see

Example 1.102. Take c
1
, c

2
, c

3
, c

4
to be the following partitions:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

• • • • • • • •
c

1
� c

2
� c

3
� c

4
�
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Then the induced partitions 1
!
(c

1
), 1

!
(c

2
), 1

!
(c

3
), and 1

!
(c

4
) on T are:

12 3 4 12 3 4 12 3 4 12 3 4

• • • • • • •
1

!
(c

1
) � 1

!
(c

2
) � 1

!
(c

3
) � 1

!
(c

4
) �

Solution to Exercise 1.105.
Here are the partitions on S � {1, 2, 3, 4} induced via 1∗ by the five partitions on T � {12, 3, 4}:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

• • • • • • • • • •

Solution to Exercise 1.106.
1. We choose the following partition c on S and compute its pushforward 1

!
(c):

1 2 3 4

• •
c �

12 3 4

• •
1

!
(c) �

2. Let d be the partition as shown, which was chosen to be coarser than 1
!
(c).

12 3 4

•
d �

3. Let e be the partition as shown, which was chosen to not be coarser than 1
!
(c).

12 3 4

• •
e �

4. Here are 1∗(d) and 1∗(e):

1 2 3 4 1 2 3 4

• • •
1∗(d) � 1∗(e) �

5. Comparing c, the left-hand partition in part 1., with 1∗(d) and 1∗(e), we indeed have c ≤ 1∗(d)
but c � 1∗(e), as desired.

Solution to Exercise 1.109.
Suppose P and Q are preorders, and that f : P � Q :1 are monotone maps.

1. Suppose f is left adjoint to 1. By definition this means f (p) ≤ q iff p ≤ 1(q), for all p ∈ P and

q ∈ Q. Then starting with the reflexivity fact 1(q) ≤ 1(q), the definition with p B 1(q) gives
f (1(q)) ≤ q for all q.

2. Suppose that p ≤ 1( f (p)) and f (1(q)) ≤ q for all p ∈ P and q ∈ Q. We first want to show that

p ≤ 1(q) implies f (p) ≤ q, so assume p ≤ 1(q). Then applying the monotone map f to both

sides, we have f (p) ≤ f (1(q)), and then by transitivity f (1(q)) ≤ q implies f (p) ≤ q, as desired.
The other direction is similar.
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Solution to Exercise 1.110.
1. Suppose that f : P → Q has two right adjoints, 1 , 1′ : Q → P. We want to show that 1(q) � 1′(q)

for all q ∈ Q. We will prove 1(q) ≤ 1′(q); the inequality 1′(q) ≤ 1(q) is similar. To do this, we use

the fact that p ≤ 1′( f (p)) and f (1(q)) ≤ q for all p , q by Eq. (1.108). Then the trick is to reason as

follows:

1(q) ≤ 1′( f (1(q))) ≤ 1′(q).
2. It is the same for left adjoints.

Solution to Exercise 1.112.
Suppose f : P → Q is left adjoint to 1 : Q → P. Let A ⊆ P be any subset and let j B

∨
A be its join.

Then since f is monotone f (a) ≤ f ( j) for all a ∈ A, so f ( j) is an upper bound for the set f (A). We

want to show it is the least upper bound, so take any other upper bound b for f (A), meaning we have

f (a) ≤ b for all a ∈ A. Then by definition of adjunction, we also have a ≤ 1(b) for all a ∈ A. By

definition of join, we have j ≤ 1(b). Again by definition of adjunction f ( j) ≤ b, as desired.

Solution to Exercise 1.114.
We want to show that in the following picture, 1 is really right adjoint to f :

1• 2•

3.9•

4•

P B

1• 2•

4•

�: Q
1

f

Here 1 preserves labels and f rounds 3.9 to 4.

There are twelve tiny things to check: for each p ∈ P and q ∈ Q, we need to see that f (p) ≤ q iff p ≤ 1(q).

p q f (p) 1(q) f (p) ≤? q p ≤? 1(q) same?
1 1 1 1 yes yes yes!

1 2 1 2 no no yes!

1 4 1 4 yes yes yes!

2 1 2 1 no no yes!

2 2 2 2 yes yes yes!

2 4 2 4 yes yes yes!

3.9 1 4 1 no no yes!

3.9 2 4 2 no no yes!

3.9 4 4 4 yes yes yes!

4 1 4 1 no no yes!

4 2 4 2 no no yes!

4 4 4 4 yes yes yes!

Solution to Exercise 1.118.
Consider the function shown below, which “projects straight down”:

•a •b •cY B

•
a1 •

c1

•
c2

X B

f
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1. Let B
1
B {a , b} and B

2
B {c}. Then f ∗(B

1
) � {a

1
} and f ∗(B

2
) � {c

1
, c

2
}.

2. Let A
1
B � and A

2
B {a

1
, c

1
}. Then f

!
(A

1
) � � and f

!
(A

2
) � {a , c}.

3. With the same A
1
and A

2
, we compute f∗(A1

) � {b} and f∗(A2
) � {a , b}.

Solution to Exercise 1.119.
Assume f : P → Q is left adjoint to 1 : Q → P.

1. It is part of the definition of adjunction (Proposition 1.107) that p ≤ 1( f (p)), and of course 1( f (p))
and ( f # 1)(p)mean the same thing.

2. We want to show that 1( f (1( f (p)))) ≤ 1( f (p)) and 1( f (p)) ≤ 1( f (1( f (p)))) for all p. The latter

is just the fact that p′ ≤ 1( f (p′)) for any p′, applied with 1( f (p)) in place of p′. The former uses

that f (1(q)) ≤ q, with f (p) substituted for q: this gives f (1( f (p))) ≤ f (p), and then we apply 1

to both sides.

Solution to Exercise 1.124.
We denote tuples (a , b) by ab for space reasons. So the relation {(1, 1), (1, 2), (2, 1)} will be denoted

{11, 12, 21}.

{11, 12, 21, 22}

{11, 12, 21} {11, 12, 22} {11, 21, 22} {12, 21, 22}

{11, 12} {11, 21} {11, 22} {12, 21} {12, 22} {21, 22}

{11} {12} {21} {22}

�

Solution to Exercise 1.125.
Let S B {1, 2, 3}.

1. Let ≤ be the preorder with 1 ≤ 2, and of course 1 ≤ 1, 2 ≤ 2, and 3 ≤ 3. Then U(≤) �
{(1, 1), (1, 2), (2, 2), (3, 3)}.

2. Let Q B {(1, 1)} and Q′ B {(2, 1)}.
3. The closureCl(Q)ofQ is the smallest preorder containing (1, 1), which isCl(Q) � {(1, 1), (2, 2), (3, 3)}.

Similarly, Cl(Q′) � {(1, 1), (2, 1), (2, 2), (3, 3)}. It is easy to see that Cl(Q) v ≤ because every or-

dered pair in Cl(Q) is also in ≤.
4. It is easy to see that Cl(Q′) @ ≤ because the ordered pair (2, 1) is in Cl(Q′) but is not in ≤.
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A.2 Solutions for Chapter 2.
Solution to Exercise 2.5.

The expert is right! The proposal violates property (a) when x
1
� −1, x

2
� 0, y

1
� −1, and y

2
� 1.

Indeed −1 ≤ −1 and 0 ≤ 1, but −1 ∗ 0 � 0 � −1 � −1 ∗ 1.

Solution to Exercise 2.8.
To check that (Disc(M),�, ∗, e) is a symmetric monoidal preorder, we need to check our proposed data

obeys conditions (a)-(d) of Definition 2.2. Condition (a) just states the tautology that x
1
⊗ x

2
� x

1
⊗ x

2
,

conditions (b) and (c) are precisely the equations Eq. (2.7), and (d) is the commutativity condition. So

we’re done. We leave it to you to decide whether we were telling the truth when we said it was easy.

Solution to Exercise 2.20.
1. Here is a line by line proof, where we write the reason for each step in parentheses on the right.

Recall we call the properties (a) and (c) in Definition 2.2monotonicity and associativity respectively.

t + u ≤ (v + w) + u (monotonicity, t ≤ v + w, u ≤ u)

� v + (w + u) (associativity)

≤ v + (x + z) (monotonicity, v ≤ v, w + u ≤ x + v)

� (v + x) + z (associativitiy)

≤ y + z. (monotonicity, v + x ≤ y, z ≤ z)

2. We use reflexivity when we assert that u ≤ u, v ≤ v and z ≤ z, and use transitivity to assert that

the above sequence of inequalities implies the single inequality t + u ≤ y + z.
3. We know that the symmetry axiom is not necessary because no pair of wires cross.

Solution to Exercise 2.21.
Condition (a), monotonicity, says that if x → y and z → w are reactions, then x + z → y + w is a

reaction. Condition (b), unitality, holds as 0 represents having no material, and adding no material to

some other material does not change it. Condition (c), associativity, says that when combining three

collections x, y, and z of molecules it doesn’t matter whether you combine x and y and then z, or
combine x with y already combined with z. Condition (d), symmetry, says that combining x with y is

the same as combining y with x. All these are true in our model of chemistry, so (Mat,→, 0,+) forms

a symmetric monoidal preorder.

Solution to Exercise 2.29.
The monoidal unit must be false. The symmetric monoidal preorder does satisfy the rest of the

conditions; this can be verified just by checking all cases.

Solution to Exercise 2.31.
The monoidal unit is the natural number 1. Since we know that (N, ≤) is a preorder, we just need to

check that ∗ is monotonic, associative, unital with 1, and symmetric. These are all familiar facts from

arithmetic.

Solution to Exercise 2.33.
This proposal is not monotonic: we have 1|1 and 1|2, but (1 + 1) - (1 + 2).

Solution to Exercise 2.34.
1.

min no maybe yes

no no no no

maybe no maybe maybe

yes no maybe yes
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2. We need to show that (a) if x ≤ y and z ≤ w, then min(x , z) ≤ min(y , w), (b) min(x , yes) � x �

min(yes, x), (c) min(min(x , y), z) � min(x ,min(y , z)), and (d) min(x , y) � min(y , z). The most

straightforward way is to just check all cases.

Solution to Exercise 2.35.
Yes, (P(S), ≤, S,∩) is a symmetric monoidal preorder.

Solution to Exercise 2.36.
Depending on your mood, you might come up with either of the following. First, we could take the

monoidal unit to be some statement true that is true for all natural numbers, such as “n is a natural

number.” We can pair this unit with the monoidal product ∧, which takes statements P and Q and

makes the statement P ∧ Q, where (P ∧ Q)(n) is true if P(n) and Q(n) are true, and false otherwise.

Then (PropN , ≤, true,∧) forms a symmetric monoidal preorder.

Another option is to take define false to be some statement that is false for all natural numbers, such

as “n + 10 ≤ 1” or “n is made of cheese.” We can also define ∨ such that (P ∨Q)(n) is true if and only if

at least one of P(n) and Q(n) is true. Then (PropN , ≤, false,∨) forms a symmetric monoidal preorder.

Solution to Exercise 2.39.
Unitality and associativity have nothing to do with the order in Xop

: they simply state that I ⊗ x �

x � x ⊗ I, and (x ⊗ y) ⊗ z � x ⊗ (y ⊗ z). Since these are true in X, they are true in Xop
. Symmetry is

slightly trickier, since in only asks that x ⊗ y is equivalent to y ⊗ x. Nonetheless, this is still true in Xop

because it is true in X. Indeed the fact that (x ⊗ y) � (y ⊗ x) in X means that (x ⊗ y) ≤ (y ⊗ x) and
(y ⊗ x) ≤ (x ⊗ y) in X, which respectively imply that (y ⊗ x) ≤ (x ⊗ y) and (x ⊗ y) ≤ (y ⊗ x) in Xop

, and

hence that (x ⊗ y) � (y ⊗ x) in Xop
too.

Solution to Exercise 2.40.
1. The preorder Costop has underlying set [0,∞], and the usual increasing order on real numbers

≤ as its order.

2. Its monoidal unit is 0.

3. Its monoidal product is +.

Solution to Exercise 2.43.
1. The map 1 is monotonic as 1(false) � ∞ ≥ 0 � 1(true), satisfies condition (a) since 0 ≥ 0 �

1(true), and satisfies condition (b) since

1(false) + 1(false) � ∞ +∞ ≥ ∞ � 1(false ∧ false)
1(false) + 1(true) � ∞ + 0 ≥ ∞ � 1(false ∧ true)
1(true) + 1(false) � 0 +∞ ≥ ∞ � 1(true ∧ false)
1(true) + 1(true) � 0 + 0 ≥ 0 � 1(true ∧ true).

2. Since all the inequalities regarding (a) and (b) above are in fact equalities, 1 is a strict monoidal

monotone.

Solution to Exercise 2.44.
The answer to all these questions is yes: d and u are both strict monoidal monotones. Here is one way

to interpret this. The function d asks ‘is x � 0?’. This is monotonic, 0 is 0, and the sum of two elements

of [0,∞] is 0 if and only if they are both 0. The function u asks ‘is x finite?’. Similarly, this is monotonic,

0 is finite, and the sum of x and y is finite if and only if x and y are both finite.

Solution to Exercise 2.45.
1. Yes, multiplication is monotonic in ≤, unital with respect to 1, associative, and symmetric, so

(N, ≤, 1, ∗) is a monoidal preorder. We also met this preorder in Exercise 2.31.
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2. The map f (n) � 1 for all n ∈ N defines a monoidal monotone f : (N, ≤, 0,+) → (N, ≤, 1, ∗). (In
fact, it is unique! Why?)

3. (Z, ≤, ∗, 1) is not a monoidal preorder because ∗ is not monotone. Indeed −1 ≤ 0 but (−1 ∗ −1) �
(0 ∗ 0).

Solution to Exercise 2.50.
1. Let (P, ≤) be a preorder. How is this a Bool-category? Following Example 2.47, we can construct

a Bool-categoryXP with P as its set of objects, andwithXP(p , q) B true if p ≤ q, andXP(p , q) B
false otherwise. Howdowe turn this back into a preorder? Following the proof of Theorem2.49,

we construct a preorder with underlying set Ob(XP) � P, and with p ≤ q if and only ifXP(p , q) �
true. This is precisely the preorder (P, ≤)!

2. Let X be a Bool-category. By the proof of Theorem 2.49, we construct a preorder (Ob(X), ≤),
where x ≤ y if and only if X(x , y) � true. Then, following our generalization of Example 2.47 in

1., we construct a Bool-category X′ whose set of objects is Ob(X), and such that X′(x , y) � true
if and only if x ≤ y in (Ob(X), ≤). But by construction, this means X′(x , y) � X(x , y). So we get

back the Bool-category we started with.

Solution to Exercise 2.52.
The distance d(US, Spain) is bigger: the distance from, for example, San Diego to anywhere is Spain is

bigger than the distance from anywhere in Spain to New York City.

Solution to Exercise 2.55.
The difference between a Lawvere metric space—that is, a category enriched over ([0,∞], ≥, 0,+)—and

a category enriched over (R≥0
, ≥, 0,+) is that in the latter, infinite distances are not allowed between

points. You might thus call the latter a finite-distance Lawvere metric space.

Solution to Exercise 2.58.
The table of distances for X is

d(↗) A B C D
A 0 6 3 11

B 2 0 5 5

C 5 3 0 8

D 11 9 6 0

Solution to Exercise 2.60.
The matrix of edge weights of X is

MX �

↗ A B C D
A 0 ∞ 3 ∞
B 2 0 ∞ 5

C ∞ 3 0 ∞
D ∞ ∞ 6 0

Solution to Exercise 2.61.
A NMY-category X is a set X together with, for all pairs of elements x , y in X, a value X(x , y) equal
to no, maybe, or yes. Moreover, we must have X(x , x) � yes and min(X(x , y),X(y , z)) ≤ X(x , z) for all
x , y , z. So a NMY-category can be thought of as set of points together with an statement—no, maybe,

or yes—of whether it is possible to get from one point to another. In particular, it’s always possible to

get to a point if you’re already there, and it’s as least as possible to get from x to z as it is to get from x
to y and then y to z.

Solution to Exercise 2.62.
Here is one way to do this task.
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1.

A• B•

•
C

•
D

{boat}

{boat}{foot, boat}
{foot, car}

{foot, car}

2. The corresponding M-category, call it X, has hom-objects:

X(↗) A B C D
A M {boat} � {boat}
B � M � {boat}
C {foot, boat} {boat} M M
D {foot} � {foot, car} M

For example, to compute the hom-object X(C,D), we notice that there are two paths: C → A→
B→ D and C→ D. For the first path, the intersection is the set {boat}. For the second path, the

intersection in the set {foot, car}. Their union, and thus the hom-object X(C,D), is the entire set
M.

This computation contains the key for why X is aM-category: by taking the union over all paths,

we ensure that X(x , y) ∩ X(y , z) ⊆ X(x , z) for all x , y , z.
3. The person’s interpretation looks right to us.

Solution to Exercise 2.63.
1.

A•

•
B

•
C

5 10

10

6

10

2. The matrix M with (x , y)th entry equal to the maximum, taken over all paths p from x to y, of
the minimum edge label in p is

M(↗) A B C
A ∞ 6 10

B 10 ∞ 10

C 10 6 ∞
3. This is a matrix of hom-objects for a W-category since the diagonal values are all equal to the

monoidal unit∞, and because min(M(x , y),M(y , z)) ≤ M(x , y) for all x , y , z ∈ {A, B, C}.
4. One interpretation is as a weight limit (not to be confusedwith ‘weighted limit,’ a more advanced

categorical notion), for example for trucking cargo between cities. The hom-object indexed by

a pair of points (x , y) describes the maximum cargo weight allowed on that route. There is no

weight limit on cargo that remains at some point x, so the hom-object from x to x is always

infinite. The maximumweight that can be trucked from x to z is always at least the minimum of

that that can be trucked from x to y and then y to z. (It is ‘at least’ this much because there may

be some other, better route that does not pass through y.)

Solution to Exercise 2.67.

•Boston •US •Spain
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This preorder describes the ‘is a part of’ relation. That is, x ≤ y when d(x , y) � 0, which happens when

x is a part of y. So Boston is a part of the US, and Spain is a part of Spain, but the US is not a part of

Boston.

Solution to Exercise 2.68.
1. Recall the monoidal monotones d and u from Exercise 2.44. The function f is equal to d; let 1 be

equal to u.
2. Let X be the Lawvere metric space with two objects A and B, such that d(A, B) � d(B,A) � 5.

Then we have X f �
A• B• while X1 �

A• B• .

Solution to Exercise 2.73.
1. An extended metric space is a Lawvere metric space that obeys in addition the properties (b) if

d(x , y) � 0 then x � y, and (c) d(x , y) � d(y , x) of Definition 2.51. Let’s consider the dagger

condition first. It says that the identity function to the opposite Cost-category is a functor, and

so for all x , y we must have d(x , y) ≤ d(y , x). But this means also that d(y , x) ≤ d(x , y), and so

d(x , y) � d(y , x). This is exactly property (c).

Now let’s consider the skeletality condition. This says that if d(x , y) � 0 and d(y , x) � 0, then

x � y. Thus when we have property (c), d(x , y) � d(y , x), this is equivalent to property (b). Thus

skeletal dagger Cost-categories are the same as extended metric spaces!

2. Recall from Exercise 1.73 that skeletal dagger preorders are sets. The analogy “preorders are

to sets as Lawvere metric spaces are to extended metric spaces” is thus the observation that

just as extended metric spaces are skeletal dagger Cost-categories, sets are skeletal dagger Bool-
categories.

.

Solution to Exercise 2.75.
1. Let (x , y) ∈ X × Y. Since X and Y are V-categories, we have I ≤ X(x , x) and I ≤ Y(y , y). Thus

I � I ⊗ I ≤ X(x , x) ⊗ Y(y , y) � (X × Y)
(
(x , y), (x , y)

)
.

2. Using the definition of product hom-objects, and the symmetry and monotonicity of ⊗ we have

(X × Y)
(
(x

1
, y

1
), (x

2
, y

2
)
)
⊗ (X × Y)

(
(x

2
, y

2
), (x

3
, y

3
)
)

� X(x
1
, x

2
) ⊗ Y(y

1
, y

2
) ⊗ X(x

2
, x

3
) ⊗ Y(y

2
, y

3
)

� X(x
1
, x

2
) ⊗ X(x

2
, x

3
) ⊗ Y(y

1
, y

2
) ⊗ Y(y

2
, y

3
)

≤ X(x
1
, x

3
) ⊗ Y(y

1
, y

3
)

� (X × Y)
(
(x

1
, y

1
), (x

3
, y

3
)
)
.

3. In particular, we use the symmetry, to conclude that Y(y
1
, y

2
) ⊗X(x

2
, x

3
) � X(x

2
, x

3
) ⊗ Y(y

1
, y

2
).

Solution to Exercise 2.78.
We just apply Definition 2.74(ii): (R × R)

(
(5, 6), (−1, 4)

)
� R(5,−1) + R(6, 4) � 6 + 2 � 8.

Solution to Exercise 2.82.
1. The function−⊗v : V → V ismonotone, because if u ≤ u′ then u⊗v ≤ u′⊗v by themonotonicity

condition (a) in Definition 2.2.

2. Let a B (v ( w) in Eq. (2.80). The right hand side is thus (v ( w) ≤ (v ( w), which is true by

reflexivity. Thus the left hand side is true too. This gives ((v ( w) ⊗ v) ≤ w.

3. Let u ≤ u′. Then, using 2., (v ( u) ⊗ v ≤ u ≤ u′. Applying Eq. (2.80), we thus have

(v ( u) ≤ (v ( u′). This shows that the map (v ( −) : V → V is monotone.

4. Eq. (2.80) is exactly the adjointness condition from Definition 1.95, except for the fact that we do

not know (− ⊗ v) and (v ( −) are monotone maps. We proved this, however, in items 1 and 3

above.
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Solution to Exercise 2.84.
We need to find the hom-element. This is given by implication. That is, define the function x ⇒ y by

the table

⇒ false true

false true true

true false true

Then (a ∧ v) ≤ w if and only if a ≤ (v ⇒ w). Indeed, if v � false then a ∧ false � false, and so the

left hand side is always true. But (false ⇒ w) � true, so the right hand side is always true too. If

v � true, then a ∧ true � a so the left hand side says a ≤ w. But (true⇒ w) � w, so the right hand

side is the same. Thus⇒ defines a hom-element as per Eq. (2.80).

Solution to Exercise 2.93.
We showed in Exercise 2.84 that Bool is symmetric monoidal closed, and in Exercise 1.7 and Exam-

ple 1.88 that the join is given by the OR operation ∨. Thus Bool is a quantale.

Solution to Exercise 2.94.
Yes, the powerset monoidal preorder (P(S), ⊆, S,∩) is a quantale. The hom-object B ( C is given by

B ∪ C, where B is the complement of B: it contains all elements of S not contained in B. To see that this

satisfies Eq. (2.80), note that if (A ∩ B) ⊆ C, then

A � (A ∩ B) ∪ (A ∩ B) ⊆ B ∪ C.

On the other hand, if A ⊆ (B ∪ C), then

A ∩ B ⊆ (B ∪ C) ∩ B � (B ∩ B) ∪ (C ∩ B) � C ∩ B ⊆ C.

So (P(S), ⊆, S,∩) is monoidal closed. Furthermore, joins are given by union of subobjects, so it is a

quantale.

Solution to Exercise 2.92.
1a. In Bool, (∨�) � false, the least element.

1b. In Cost, (∨�) � ∞. This is because we use the opposite order ≥ on [0,∞], so ∨� is the greatest

element of [0,∞]. Note that in this case our convention from Definition 2.90, where we denote

(∨�) � 0, is a bit confusing! Beware!

2a. In Bool, x ∨ y is the usual join, OR.

2b. In Cost, x ∨ y is the minimum min(x , y). Again because we use the opposite order on [0,∞], the
join is the greatest number less than or equal to x and y.

Solution to Exercise 2.103.
The 2 × 2-identity matrices for (N, ≤, 1, ∗), Bool, and Cost are respectively(

1 0

0 1

)
,

(
true false

false true

)
, and

(
0 ∞
∞ 0

)
.

Solution to Exercise 2.104.
1. We first use Proposition 2.87 (2) and symmetry to show that for all v ∈ V , 0 ⊗ v � 0.

0 ⊗ v � v ⊗ 0 �

(
v ⊗

∨
a∈�

a
)
�

∨
a∈�
(v ⊗ a) � 0.
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Then we may just follow the definition in Eq. (2.101):

IX ∗M(x , y) �
∨

x′∈X

IX(x , x′) ⊗M(x′, y)

�
(
IX(x , x) ⊗M(x , y)

)
∨ ©«

∨
x′∈X,x′,x

IX(x , x′) ⊗M(x′, y)ª®¬
�

(
I ⊗M(x , y)

)
∨ ©«

∨
x′∈X,x′,x

0 ⊗M(x′, y)ª®¬
� M(x , y) ∨ 0 � M(x , y).

2. This again follows from Proposition 2.87 (2) and symmetry, making use also of the associativity

of ⊗:

((M ∗ N) ∗ P)(w , z) �
∨
y∈Y

( ∨
x∈X

M(w , x) ⊗ N(x , y)
)
⊗ P(y , z)

�
∨

y∈Y,x∈X

M(w , x) ⊗ N(x , y) ⊗ P(y , z)

�
∨
x∈X

M(w , x) ⊗
( ∨

y∈Y

N(x , y) ⊗ P(y , z)
)

� (M ∗ (N ∗ P))(w , z).

Solution to Exercise 2.105.
We have the matrices

MX �

©«
0 ∞ 3 ∞
2 0 ∞ 5

∞ 3 0 ∞
∞ ∞ 6 0

ª®®®®¬
M2

X �

©«
0 6 3 ∞
2 0 5 5

5 3 0 8

∞ 9 6 0

ª®®®®¬
M3

X � M4

X �

©«
0 6 3 11

2 0 5 5

5 3 0 8

11 9 6 0

ª®®®®¬
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A.3 Solutions for Chapter 3.
Solution to Exercise 3.3.

There are five non-ID columns in Eq. (3.1)and five arrows in Eq. (3.2). This is not a coincidence: there

is always one arrow for every non-ID column.

Solution to Exercise 3.9.
To do this precisely, we should define concatenation technically. If G � (V,A, s , t) is a graph, define a

path in G to be a tuple of the form (v , a
1
, . . . , an)where v ∈ V is a vertex, s(a

1
) � v, and t(ai) � s(ai+1

)
for all i ∈ {1, . . . , n − 1}; the length of this path is n, and this definition makes sense for any n ∈ N. We

say that the source of p is s(p) B v and the target of p is defined to be

t(p) B
{

v if n � 0

t(an) if n ≥ 1

Two paths p � (v , a
1
, . . . , am) and q � (w , b

1
, . . . , bn) can be concatenated if t(p) � s(q), in which case

the concatenated path p # q is defined to be

(p # q) B (v , a
1
, . . . , am , b1

, . . . , bn).

We are now ready to check unitality and associativity. A path p is an identity in Free(G) iff p � (v)
for some v ∈ V . It is easy to see from the above that (v) and (w , b

1
, . . . , bn) can be concatenated iff

v � w, in which case the result is (w , b
1
, . . . , bn). Similarly (v , a

1
, . . . , am) and (w) can be concatenated

iff w � t(am), in which case the result is (v , a
1
, . . . , am). Finally, for associativity with p and q as above

and r � (x , c
1
, . . . , co), the formula readily reads that whichever way they are concatenated, (p # q) # r

or p # (q # r), the result is
(v , a

1
, . . . , am , b1

, . . . , bn , c1
, . . . , co).

Solution to Exercise 3.10.
We often like to name identity morphisms by the objects they’re on, and we do that here: v

2
means

idv2
. We write � when the composite does not make sense (i.e. when the target of the first morphism

does not agree with the source of the second).

↗ v
1

f
1

f
1

# f
2

v
2

f
2

v
3

v
1

v
1

f
1

f
1

# f
2
� � �

f
1

� � � f
1

f
1

# f
2

�

f
1

# f
2
� � � � � f

1
# f

2

v
2

� � � v
2

f
2

�

f
2

� � � � � f
2

v
3

� � � � � v
3

Solution to Exercise 3.12.
1. The category 1 has one object v

1
and one morphism, the identity idv1

.

2. The category 0 is empty; it has no objects and no morphisms.

3. The pattern for number of morphisms in 0, 1, 2, 3 is 0, 1, 3, 6; does this pattern look familiar?

These are the first few ‘triangle numbers,’ so we could guess that the number of morphisms in n,
the free category on the following graph

v1• v2• · · · vn•
f1 f2 fn−1

is 1 + 2 + · · · + n. This makes sense because (and the proof strategy would be to verify that) the

above graph has n paths of length 0, it has n − 1 paths of length 1, and so on: it has n − i paths
of length i for every 0 ≤ i ≤ n.
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Solution to Exercise 3.15.
The correspondence was given by sending a path to its length. Concatenating a path of length m with

a path of length n results in a path of length m + n.

Solution to Exercise 3.16.

Free_square B

A• B•

•
C

•
D

f

1 h

i

no equations

1. The ten paths are as follows

A, A # f , A # 1 , A # f # h , A # 1 # i , B, B # h , C, C # i , D

2. A # f # h is parallel to A # 1 # i, in that they both have the same domain and both have the same

codomain.

3. A is not parallel to any of the other nine paths.

Solution to Exercise 3.17.
The morphisms in the given diagram are as follows:

A, A # f , A # 1 , A # j, B, B # h , C, C # i , D

Note that A # f # h � j � A # 1 # i.

Solution to Exercise 3.19.
There are four morphisms in D, shown below, namely z, s, s # s, and s # s # s:

D B •
z

s

s # s # s # s � s # s

Solution to Exercise 3.21.
The equations that make the graphs into preorders are shown below

G
1
�
• •

f

1

f � 1

G
2
� •

a

f

f � a

G
3
�

• •

• •

f

1 h

i

f # h � 1 # i

G
4
�

• •

• •

f

1 h

no equations

Solution to Exercise 3.22.
The preorder reflection of a category C has the same objects and either one morphism or none between

two objects, depending on whether or not a morphism between them exists in C. So the preorder

reflection of N has one object and one morphism from it to itself, which must be the identity. In other

words, the preorder reflection of N is 1.
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Solution to Exercise 3.25.
A function f : 2 → 3 can be described as an ordered pair ( f (1), f (2)). The nine such functions are

given by the following ordered pairs, which we arrange into a 2-dimensional grid with 3 entries in each

dimension, just for “funzies”:1

(1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)
(3, 1) (3, 2) (3, 3)

Solution to Exercise 3.30.
1. The inverse to f (a) � 2, f (b) � 1, f (c) � 3 is given by

f −1(1) � b , f −1(2) � a , f −1(3) � c.

2. There are 6 distinct isomorphisms. In general, if A and B are sets, each with n elements, then the

number of isomorphisms between them is n-factorial, often denoted n!. So for example there are

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 � 120 isomorphisms between {1, 2, 3, 4, 5} and {a , b , c , d , e}.

Solution to Exercise 3.31.
We have to show that for any object c ∈ C, the identity idc has an inverse, i.e. a morphism f : c → c
such that f # idc � idc and idc # f � idc . Take f � idc ; this works.

Solution to Exercise 3.32.
1. The monoid in Example 3.13 is not a group, because the morphism s has no inverse. Indeed each

morphism is of the form sn
for some n ∈ N and composing it with s gives sn+1

, which is never

s0
.p

2. C from Example 3.18 is a group: the identity is always an isomorphism, and the other morphism

s has inverse s.

Solution to Exercise 3.33.
You may have found a person whose mathematical claims you can trust! Whenever you compose two

morphisms in Free(G), their lengths add, and the identities are exactly those morphisms whose length

is 0. In order for p to be an isomorphism, there must be some q such that p # q � id and q # p � id, in

which case the length of p (or q) must be 0.

Solution to Exercise 3.37.
The other three functors 2→ 3 are shown here:

m0•

•
m1

f1

n0•

n1•

n2•

11

12

m0•

•
m1

f1

n0•

n1•

n2•

11

12

m0•

•
m1

f1

n0•

n1•

n2•

11

12

Solution to Exercise 3.39.
There are ninemorphisms inF; as usualwe denote identities by the object they’re on. Thesemorphisms

are sent to the following morphisms in C:

A′ 7→ A, f ′ 7→ f , 1′ 7→ 1 , f ′ # h′ 7→ f # h , 1′ # i′ 7→ f # h ,

B′ 7→ B, h′ 7→ h , C′ 7→ C, i′ 7→ i , D′ 7→ D.

1
Of course, this is not mere funzies; this is category theory!
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If one of these seems different from the rest, it’s probably 1′ # i′ 7→ f # h. But note that in fact also

1′ # i′ 7→ 1 # i because 1 # i � f # h, so it’s not an outlier after all.

Solution to Exercise 3.40.
We need to give two functors F,G from

a•
f
−→ b• to

a′•
f1

f2

b′• whose on-objects parts are the same and

whose on-morphisms parts are different. There are only two ways to do this, and we choose one of

them:

F(a) B a′, G(a) B a′, F(b) B b′, G(b) B b′, F( f ) B f
1
, and G( f ) B f

2
.

The other way reverses f
1
and f

2
.

Solution to Exercise 3.43.
1. Let C be a category. Then defining idC : C→ C by idC(x) � x for every object and morphism in

C is a functor because it preserves identities idC(idc) � idc � id
idC(c) for each object c ∈ Ob(C),

and it preserves composition idC( f # 1) � f # 1 � idC( f ) # idC(1) for each pair of composable

morphisms f , 1 in C.

2. Given functors F : C → D and G : D → E, we need to show that F # G is a functor, i.e. that

it preserves preserves identities and compositions. If c ∈ C is an object then (F # G)(idc) �
G(F(idc)) � G(idF(c)) � idG(F(c)) because F and G preserve identities. If f , 1 are composable

morphisms in C then

(F # G)( f # 1) � G(F( f ) # F(1)) � G(F( f )) # G(F(1))

because F and G preserve composition.

3. We have proposed objects, morphisms, identities, and a composition formula for a category Cat:
they are categories, functors, and the identities and compositions given above. We need to check

that the two properties, unitality and associativity, hold. So suppose F : C → D is a functor

and we pre-compose it as above with idC; it is easy to see that the result will again be F, and
similarly if we post-compose F with idD. This gives unitality, and associativity is just as easy,

though more wordy. Given F as above and G : D → E and H : E → F, we need to show that

(F # G) # H � F # (G # H). It’s a simple application of the definition: for any x ∈ C, be it an object

or morphism, we have

((F # G) # H)(c) � H((F # G)(c)) � H(G(F(c))) � (G # H)(F(c)) � (F # (G # H))(c).

Solution to Exercise 3.45.
Let S ∈ Set be a set. Define FS : 1 → Set by FS(1) � S and FS(id1

) � idS . With this definition, FS
preserves identities and compositions (the only compositions in 1 is the composite of the identity with

itself), so FS is a functor with FS(1) � S as desired.

Solution to Exercise 3.48.
We are asked what sort of data “makes sense” for the schemas below?

1.
•
z

s

s # s � z

2.

a• b• c•
f 1

h

f # 1 � f # h

This is a subjective question, so we propose an answer for your consideration.

1. Data on this schema, i.e. a set-valued functor, assigns a setD(z) anda functionD(s) : D(z) → D(z),
such that applying that function twice is the identity. This sort of function is called an involution
of the set Dz : • • • • •

• • • • •
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It’s a do-si-do, a “partner move,” where everyone picks a partner (possibly themselves) and

exchanges with them. One example one could take D to be the set of pixels in a photograph, and

take s to be the function sending each pixel to its mirror image across the vertical center line of

the photograph.

2. We could make D(c) the set of people at a “secret Santa” Christmas party, where everyone gives

a gift to someone, possibly themselves. Take D(b) to be the set of gifts, 1 the giver function (each

gift is given by a person), and h the receiver function (each gift is received by a person), D(a) is
the set of people who give a gift to themselves, and d( f ) : D(a) → D(b) is the inclusion.

Solution to Exercise 3.55.
1. The expert packs somuch information in so little space! Suppose given three objects F,G,H ∈ DC

;

these are functors F,G,H : C → D. Morphisms α : F → G and β : G → H are natural transfor-

mations. Most beginners seem to think about a natural transformation in terms of its naturality

squares, but the main thing to keep in mind is its components; the naturality squares constitute

a check that comes later.

So for each c ∈ C, α has a component αc : F(c) → G(c) and β has a component βc : G(c) → H(c)
in D. The expert has told us to define (α # β)c B (αc # βc), and indeed that is a morphism

F(c) → H(c).
Now we do the check. For any f : c → c′ in C, the inner squares of the following diagram

commute because α and β are natural; hence the outer rectangle does too:

F(c) G(c) H(c)

F(c′) G(c′) H(c′)

αc

F( f )

βc

G( f ) H( f )

αc βc

2. We propose that the identity natural transformation idF on a functor F : C → D has as its

c-component the morphism (idF)c B idF(c) in D, for any c. The naturality square

F(c) F(c)

F(c′) F(c′)

idF(c)

F( f ) F( f )

idF(c′)

obviously commutes for any f : c → c′. And it is unital: post-composing idF with any β : F→ G
(and similarly for precomposing with any α : E → F) results in a natural transformation idF # β
with components (idF)c # βc � (idF(c) # βc) � βc , and this is just β as desired.

Solution to Exercise 3.58.
We have a category C and a preorder P, considered as a category.

1. Suppose that F,G : C→ P are functors and α, β : F → G are natural transformations; we need to

show that α � β. It suffices to check that αc � βc for each object c ∈ Ob(C). But αc and βc are

morphisms F(c) → G(c) in P, which is a preorder, and the definition of a preorder—considered

as a category—is that it has at most one morphism between any two objects. Thus αc � βc , as

desired.

2. This is false. Let P B 1, let C B a•
f1

f2

b• , let F(1) B a, let G(1) B b, let α
1
B f

1
, and let β

1
B 1

2
.
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Solution to Exercise 3.62.
We need to write down the following

Employee

•
Department

•

string

◦

WorksIn

FName

Mngr

Secr

DName

as a Gr-instance, as in Eq. (3.61). The answer is as follows:

Arrow source target
Mngr Employee Employee

WorksIn Employee Department

Secr Department Employee

FName Employee string

DName Department string

Vertex
Department

Employee

string

Solution to Exercise 3.64.
Let G,H be the following graphs:

G B 1• 2• 3•a b H B 4• 5•
c

d
e

and let’s believe the authors that there is a unique graph homomorphism α : G → H for which

α
Arrow

(a) � d.
1. We have α

Arrow
(b) � e and α

Vertex
(1) � 4, α

Vertex
(2) � 5, and α

Vertex
(3) � 5.

2. We roughly copy the tables and then draw the lines (shown in black; ignore the dashed lines for

now):

a 1 2 1

b 2 3 2

3

c 4 5 4

d 4 5 5

e 5 5

t

t

3. It works! One example of the naturality is shown with the help of dashed blue lines above. See

how both paths starting at a end at 5?

Solution to Exercise 3.67.
We just need to write out the composite of the following functors

Arrow•

Vertex•

source target

Gr

State•

next

DDS

G
Set

State next
1 4

2 4

3 5

4 5

5 5

6 7

7 6
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in the form of a database, and then draw the graph. The results are given below.

Arrow source target
1 4 1

2 4 2

3 5 3

4 5 4

5 5 5

6 7 6

7 6 7

Vertex
1

2

3

4

5

6

7

1• 2•

3• 4• 6• 7•
•
5

1 2

3 4

6

7

5

Solution to Exercise 3.73.
We are interested in how the functors − × B and (−)B should act on morphisms for a given set B.
We didn’t specify this in the text—we only specified − × B and (−)B on objects—so in some sense

this exercise is open: you can make up anything you want, under the condition that it is functorial.

However, the authors cannot think of any such answers except the one we give below.

1. Given an arbitrary function f : X → Y, we need a function X × B → Y × B. We suggest the

function which might be denoted f × B; it sends (x , b) to ( f (x), b). This assignment is functorial:

applied to idX it returns idX×B and it preserves composition.

2. Given a function f : X → Y, we need a function XB → YB
. The canonical function would

be denoted f B
; it sends a function 1 : B → X to the composite (1 # f ) : B → X → Y. This is

functorial: applied to idX it sends 1 to 1, i.e. f B(idX) � idXB , and applied to the composite

( f
1

# f
2
) : X → Y → Z, we have

( f
1

# f
2
)B(1) � 1 # ( f

1
# f

2
) � (1 # f

1
) # f

2
� ( f B

1

# f B
2
)(1)

for any 1 ∈ XB
.

3. If p : N→ NN is the result of currying + : N ×N→ N, then p(3) is an element of NN, i.e. we have

p(3) : N→ N; what function is it? It is the function that adds three. That is p(3)(n) B n + 3.

Solution to Exercise 3.76.
The functor ! : C→ 1 from Eq. (3.75) sends each object c ∈ C to the unique object 1 ∈ 1 and sends each

morphism f : c → d in C to the unique morphism id
1

: 1→ 1 in 1.

Solution to Exercise 3.78.
We want to draw the graph corresponding to the instance I : G→ Set shown below:

Email sent_by received_by
Em_1 Bob Grace

Em_2 Grace Pat

Em_3 Bob Emory

Em_4 Sue Doug

Em_5 Doug Sue

Em_6 Bob Bob

Address
Bob

Doug

Emory

Grace

Pat

Sue

Here it is, with names and emails shortened (e.g. B=Bob, 3=Em_3):

E B G P S D13

6

2

4

5

Solution to Exercise 3.81.
An object z is terminal in some category C if, for every c ∈ C there exists a unique morphism c → z.
When C is the category underlying a preorder, there is at most one morphism between any two objects,
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so the condition simplifies: an object z is terminal iff, for every c ∈ C there exists a morphism c → z.
The morphisms in a preorder are written with ≤ signs, so z is terminal iff, for every c ∈ P we have

c ≤ z, and this is the definition of top element.

Solution to Exercise 3.82.
The terminal object in Cat is 1 because by Exercise 3.76 there is a unique morphism (functor) C→ 1 for

any object (category) C ∈ Cat.

Solution to Exercise 3.83.
Consider the graph 2V B • • with two vertices and no arrows, and let C � Free(2V); it has two

objects and two morphisms (the identities). This category does not have a terminal object because it

does not have any morphisms from one object to the other.

Solution to Exercise 3.88.
A product of x and y in P is an object z ∈ P equipped with maps z → x and z → y such that for any

other object z′ and maps z′ → x and z′ → y, there is a unique morphism z′ → z making the evident

triangles commute. But in a preorder, the maps are denoted ≤, they are unique if they exist, and all

diagrams commute. Thus the above becomes: a product of x and y in P is an object z with z ≤ x and

z ≤ y such that for any other z′, if z′ ≤ x and z′ ≤ y then z′ ≤ z. This is exactly the definition of meet,

z � x ∧ y.

Solution to Exercise 3.90.
1. The identity morphism on the object (c , d) in the product category C ×D is (idc , idd).
2. Suppose given three composable morphisms in C ×D

(c
1
, d

1
)
( f1 ,11)−−−−−→ (c

2
, d

2
)
( f2 ,12)−−−−−→ (c

3
, d

3
)
( f3 ,13)−−−−−→ (c

4
, d

4
).

Wewant to check that (( f
1
, 1

1
) # ( f

2
, 1

2
)) # ( f

3
, 1

3
) � ( f

1
, 1

1
) # (( f

2
, 1

2
) # ( f

3
, 1

3
)). But composition in

a product category is given component-wise. That means the left-hand side is (( f
1

# f
2
) # f

3
, (1

1
#

1
2
) # 1

3
), whereas the right-hand side is ( f

1
# ( f

2
# f

3
), 1

1
# (1

2
# 1

3
)), and these are equal because

both C and D individually have associative composition.

3. The product category 1 × 2 has two objects (1, 1) and (1, 2) and one non-identity morphism

(1, 1) → (1, 2). It is not hard to see that it looks the same as 2. In fact, for any C there is an

isomorphism of categories 1 × C � C.

4. Let P and Q be preorders, let X � P × Q be their product preorder as defined in Example 1.56,

and let P, Q, and X be the corresponding categories. Then X � P × Q.

Solution to Exercise 3.91.
A product of X and Y is an object Z equipped with morphisms X

pX←−− Z
pY−−→ Y such that for any other

object Z′ equipped with morphisms X
p′X←−− Z′

p′Y−−→ Y, there is a unique morphism f : Z′ → Z making

the triangles commute, f # pX � p′X and f # pY � p′Y . But “an object equipped with morphisms to X
and Y” is exactly the definition of an object in Cone(X,Y), and a morphism f making the triangles

commute is exactly the definition of a morphism in Cone(X,Y). So the definition above becomes: a

product of X and Y is an object Z ∈ Cone(X,Y) such that for any other object Z′ there is a unique

morphism Z′→ Z in Cone(X,Y). This is exactly the definition of Z being terminal in Cone(X,Y).

Solution to Exercise 3.97.
Suppose J is the graph

v1• v2• and D : J→ Set is given by two sets, D(v
1
) � A and D(v

2
) � B for sets

A, B. The product of these two sets is A × B. Let’s check that the limit formula in Theorem 3.95 gives

the same answer. It says

lim

J
D B

{
(d

1
, . . . , dn) | di ∈ D(vi) for all 1 ≤ i ≤ n and

for all a : vi → v j ∈ A, we have D(a)(di) � d j
}
.
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But in our case n � 2, there are no arrows in the graph, and D(v
1
) � A and D(v

2
) � B. So the formula

reduces to

lim

J
D B

{
(d

1
, d

2
) | d

1
∈ A and d

2
∈ B

}
.

which is exactly the definition of A × B.

Solution to Exercise 3.101.
Given a functor F : C → D, we define its opposite Fop

: Cop → Dop
as follows. For each object c ∈

Ob(Cop) � Ob(C), put Fop(c) B F(c). For each morphism f : c
1
→ c

2
in Cop, we have a corresponding

morphism f ′ : c
2
→ c

1
in C and thus a morphism F( f ′) : F(c

2
) → F(c

1
) in D, and thus a morphism

F( f ′)′ : Fop(c
1
) → Fop(c

2
). Hence we can define Fop( f ) B F( f ′)′. Note that the primes (−′) are pretty

meaningless, we only put them there to differentiate between things that are very closely related.

It is easy to check that our definition of Fop
is functorial: it sends identities to identities and composites

to composites.



286 APPENDIX A. EXERCISE SOLUTIONS

A.4 Solutions for Chapter 4.
Solution to Exercise 4.4.

1. The Hasse diagram for Xop × Y is shown here (ignore the colors):

(category, nothing)

(monoid, nothing) (preorder, nothing)

(category, this book)

(monoid, this book) (preorder, nothing)

2. There is a profunctor Λ : X Y, i.e. a functor Xop × Y→ B, such that, in the picture above, blue

is sent to true and black is sent to false, i.e.

Λ(monoid, nothing) � Λ(monoid, this book)
� Λ(preorder, this book) � Λ(category, this book) � true

Λ(preorder, nothing) � Λ(category, nothing) � false.
The preorder Xop × Y describes tasks in decreasing difficulty. For example, (we hope) it is easier for

my aunt to explain a monoid given this book than for her to explain a monoid without this book. The

profunctor Λ describes possible states of knowledge for my aunt: she can describe monoids without

help, categories with help from the book, etc. It is an upper set because we assume that if she can do a

task, she can also do any easier task.

Solution to Exercise 4.7.
We’ve done this one before! We hope you remembered how to do it. If not, see Exercise 2.84.

Solution to Exercise 4.9.
Recall from Definition 2.41 that a V-functor Φ : Xop × Y → V is a function Φ : Ob(Xop × Y) → Ob(V)
such that for all (x , y) and (x′, y′) in Xop × Y we have

(Xop × Y)
(
(x , y), (x′, y′)

)
≤ V

(
Φ(x , y),Φ(x′, y′)

)
.

Using the definitions of product V-category (Definition 2.74) and opposite V-category (Exercise 2.73)

on the left hand side, and using Remark 2.89, which describes how we are viewing the quantale V as

enriched over itself, on the right hand side, this unpacks to

X(x′, x) ⊗ Y(y , y′) ≤ Φ(x , y) ( Φ(x′, y′)
Using symmetry of ⊗ and the definition of hom-element, Eq. (2.80), we see thatΦ is a profunctor if and

only if

X(x′, x) ⊗ Φ(x , y) ⊗ Y(y , y′) ≤ Φ(x′, y′).

Solution to Exercise 4.10.
Yes, since a Bool-functor is exactly the same as a monotone map, the definition of Bool-profunctor and
that of feasibility relation line up perfectly!

Solution to Exercise 4.12.
The feasibility matrix for Φ is

Φ a b c d e
N true false true false true

E true true true true true

W true false true false true

S true true true true true
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Solution to Exercise 4.15.

The Cost-matrix for Φ is

Φ x y z
A 17 20 20

B 11 14 14

C 14 17 17

D 12 9 15

Solution to Exercise 4.17.

Φ � M3

X ∗MΦ ∗M2

Y �

©«
0 6 3 11

2 0 5 5

5 3 0 8

11 9 6 0

ª®®®®¬
©«
∞ ∞ ∞
11 ∞ ∞
∞ ∞ ∞
∞ 9 ∞

ª®®®®¬
©«
0 4 3

3 0 6

7 4 0

ª®®¬
�

©«
17 20 ∞
11 14 ∞
14 17 ∞
20 9 ∞

ª®®®®¬
©«
0 4 3

3 0 6

7 4 0

ª®®¬
�

©«
17 20 20

11 14 14

14 17 17

12 9 15

ª®®®®¬

Solution to Exercise 4.18.

Yes, this is valid: it just means that the profunctor Φ : (T × E) $ does not relate (good-natured,

funny) to any element of $. More formally, it means that Φ((good-natured, funny), p) � false for

all p ∈ $ � {$100K, $500K, $1M}. We can interpret this to mean that it is not feasible to produce a

good-natured, funny movie for any of the cost options presented—so at least not for less than a million

dollars.

Solution to Exercise 4.22.

There are a number of methods that can be used to get the correct answer. One way that works well for

this example is to search for the shortest paths on the diagram: it so happens that all the shortest paths

go through the bridges from D to y and y to r, so in this case (Φ #Ψ)(−,−) � X(−,D)+ 9+Z(r,−). This
gives:

Φ #Ψ p q r s
A 22 24 20 21

B 16 18 14 15

C 19 21 17 18

D 11 13 9 10
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Amoremethodicalway is to usematrixmultiplication. Here’s onewayyoumight do themultiplication,

using a few tricks.

Φ #Ψ � (M3

X ∗MΦ ∗M2

Y) ∗ (M
2

Y ∗MΨ ∗M3

Z)
� M3

X ∗MΦ ∗M4

Y ∗MΨ ∗M3

Z

� (M3

X ∗MΦ ∗M2

Y) ∗MΨ ∗M3

Z

� Φ ∗MΨ ∗M3

Z

�

©«
17 20 20

11 14 14

14 17 17

12 9 15

ª®®®®¬
©«
∞ ∞ ∞ ∞
∞ ∞ 0 ∞
4 ∞ ∞ 4

ª®®¬
©«
0 2 4 5

4 0 2 3

2 4 0 1

1 3 5 0

ª®®®®¬
�

©«
17 20 20

11 14 14

14 17 17

12 9 15

ª®®®®¬
©«
∞ ∞ ∞ ∞
2 4 0 1

4 6 8 4

ª®®¬
�

©«
22 24 20 21

16 18 14 15

19 21 17 18

11 13 9 10

ª®®®®¬
Solution to Exercise 4.26.

We choose the Cost-categoryX from Eq. (2.56). The unit profunctor UX onX is described by the bridge

diagram

•A •B

•
C

•
D

3

3

4

2

5

•A •B

•
C

•
D

3

3

4

2

5

0 0

0 0

Solution to Exercise 4.30.
1. The first equality is the unitality of V (Definition 2.2(b)). The second step uses the monotonicity

of ⊗ (Definition 2.2(a)) applied to the inequalities I ≤ P(p , p) (the identity law for P at p,
Definition 2.46(a)) and Φ(p , q) ≤ Φ(p , q) (reflexivity of preorder V, Definition 1.30(a)). The third

step uses the definition of join: for all x and y, since any x ≤ x, we have x ≤ x ∨ y. The final

equality is just the definition of profunctor composition, Definition 4.21.

2. Note that in Bool, I � true. Since the identity law at p says true ≤ P(p , p), and true is the

largest element of the preorder Bool, we thus have P(p , p) � true for all p. This shows that the

first inequality in Eq. (4.28) is an equality.

The second inequality is more involved. Note that by the above, we can assume the left hand

side of the inequality is equal to Φ(p , q). We split into two cases. Suppose Φ(p , q) � true. Then,
again since true is the largest element of B, we must have equality.

Next, suppose Φ(p , q) � false. Note that since Φ is a monotone map Pop × Q→ Bool, if p ≤ p
1

in P, then Φ(p
1
, q) ≤ Φ(p , q) in Bool. Thus if P(p , p

1
) � true then Φ(p

1
, q) � Φ(p , q) � false.

This implies that for all p
1
∈ P, we have either P(p , p

1
) � false or Φ(p

1
, q) � false, and hence∨

p1∈P P(p , p
1
) ∧Φ(p

1
, q) � ∨

p1∈P false � false.
Thus, in either case, we see that Φ(p , q) � ∨

p1∈P P(p , p
1
) ∧Φ(p

1
, q), as required.
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3. The first equation is unitality in monoidal categories, v ⊗ I � v for any v ∈ V . The second is that

I ≤ Q(q , q) by unitality of enriched categories, see Definition 2.46, together with monotonicity of

monoidal product: v
1
≤ v

2
implies v ⊗ v

1
≤ v ⊗ v

2
. The third was shown in Exercise 4.9.

Solution to Exercise 4.32.
This is very similar to Exercise 2.104: we exploit the associativity of ⊗. Note, however, we also require

V to be symmetric monoidal closed, since this implies the distributivity of ⊗ over ∨ (Proposition 2.87

2), and V to be skeletal, so we can turn equivalences into equalities.

((Φ #Ψ) # Υ)(p , s) �
∨
r∈R

( ∨
q∈Q

Φ(p , q) ⊗Ψ(q , r)
)
⊗ Υ(r, s)

�

∨
r∈R,q∈Q

Φ(p , q) ⊗Ψ(q , r) ⊗ Υ(r, s)

�

∨
q∈Q

Φ(p , q) ⊗
∨
r∈R

(
Ψ(q , r) ⊗ Υ(r, s)

)
� (Φ # (Ψ # Υ))(p , s)

Solution to Exercise 4.36.
This is very straightforward. We wish to check îd : P P has the formula îd(p , q) � P(p , q). By

Definition 4.34, îd(p , q) B P(id(p), q) � P(p , q). So they’re the same.

Solution to Exercise 4.38.
The conjoint q+ : R R × R × R sends (a , b , c , d) to R(a , b + c + d), which is true if a ≤ b + c + d, and
false otherwise.

Solution to Exercise 4.41.
1. By Definition 4.34, F̂(p , q) � Q(F(p), q) and qG(p , q) � Q(p ,G(q)). Since V is skeletal, F and G are

V adjoints if and only if Q(F(p), q) � Q(p ,G(q)). Thus F and G are adjoints if and only if F̂ � qG.

2. Note that id : P→ P is V-adjoint to itself, since both sides of Eq. (4.40) then equal P(p , q). Thus
îd � q

id.

Solution to Exercise 4.44.
The Hasse diagram for the collage of the given profunctor is quite simply this:

•A •B

•
C

•
D

3

3

4

2

5

•x

•
y

•z3 4

3

4

11

9

Solution to Exercise 4.48.
Since we only have a rough definition, we can only roughly check this: we won’t bother with the notion

of well-behaved. Nonetheless, we can still compare Definition 2.2 with Definition 4.45.

First, recall from Section 3.2.3 that a preorder is a category P such that for every p , q ∈ P, the set P(p , q)
has at most one element.

On the surface, all looks promising: both definitions have two constituents and four properties. In

constituent (i), both Definition 2.2 and Definition 4.45 call for the same: an element, or object, of the

preorder P. So far so good. Constituent (ii), however, is where it gets interesting: Definition 2.2 calls

for merely a function ⊗ : P × P→ P, while Definition 4.45 calls for a functor.
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Recall from Example 3.42 that functors between preorders are exactly monotone maps. So we need for

the function ⊗ in Definition 2.2 to be a monotone map. This is exactly property (a) of Definition 2.2: it

says that if (x
1
, x

2
) ≤ (y

1
, y

2
) in P ⊗ P, then we must have x

1
⊗ x

2
≤ y

1
⊗ y

2
in P. So it is also the case

that in Definition 2.2 that ⊗ is a functor.

The remaining properties compare easily, taking the natural isomorphisms to be equality or equivalence

in P. Indeed, property (b) of Definition 2.2 corresponds to both properties (a) and (b) of Definition 4.45,

and then the respective properties (c) and (d) similarly correspond.

Solution to Exercise 4.50.

1. 1E(5, 3) � false, 1F(5, 3) � 2.

2. 1E(3, 5) � true, 1F(3, 5) � −2.

3. h(5, true) � 5.

4. h(−5, true) � −5.

5. h(−5, false) � 6.

6. qG(−2, 3) � 2, qF(−2, 3) � −13.

7. qG(2, 3) � −1, qF(2, 3) � 7.

Solution to Exercise 4.52.

Yes, the rough definition roughly agrees: plain old categories are Set-categories! In detail, we need to

compare Definition 4.51whenV � (Set, {1},×)withDefinition 3.6. In both cases, we see that (i) asks for

a collection of objects and (ii) asks for, for all pairs of objects x , y, a set C(x , y) of morphisms. Moreover,

recall that the monoidal unit I is the one element set {1}. This means a morphism idx : I → C(x , x) is a
function idx : {1} → C(x , x). This is the same data as simply an element idx � idx(1) ∈ C(x , x); we call

this data the identity morphism on x. Finally, a morphism # : C(x , y) ⊗ C(y , z) → C(x , z) is a function

# : C(x , y) × C(y , z) → C(x , z); this is exactly the composite required in Definition 3.6 (iv).

So in both cases the data agrees. In Definition 3.6 we also require this data to satify two conditions,

unitality and associativity. This is what is meant by the last sentence of Definition 4.51.

Solution to Exercise 4.54.

An identity element in a Cost-category X is a morphism I → X(x , x) in Cost � ([0,∞], ≥, 0,+), and
hence the condition that 0 ≥ X(x , x). This implies that X(x , x) � 0. In terms of distances, we interpret

this to mean that the distance from any point to itself is equal to 0. We think this is a pretty sensible

condition for a notion of distance to obey.

Solution to Exercise 4.62.

1. Here is a picture of the unit corelation � → 3 t 3, where we have drawn the empty set with an

empty dotted rectangle on the left:

� 3 t 3
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2. Here is a picture of the counit corelation 3 t 3→ �:

�3 t 3

3. Here is a picture of the snake equation on the left of Eq. (4.59).

�

Solution to Exercise 4.64.
Given two resource preorders X and Y, the preorder X × Y represents the set of all pairs of resources,

x ∈ X and y ∈ Y, with (x , y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′. That is, if x is available given x′ and y is

available given y′, then (x , y) is available given (x′, y′).
Given twoprofunctorsΦ : X

1
X

2
andΨ : Y

1
Y

2
, the profunctorΦ×Ψ represents their conjunction,

i.e. AND. In other words, if y
1
can be obtained given x

1
AND y

2
can be obtained given x

2
, then (y

1
, y

2
)

can be obtained given (x
1
, x

2
).

Solution to Exercise 4.65.
The profunctorX×1 X defined by the functor α : (X×1)op×X→ V that maps α((x , 1), y) B X(x , y)
is an isomorphism. It has inverse α−1

: X X × 1 defined by α−1(x , (y , 1)) B X(x , y). To see that

α−1 # α � UX, note first that the unit law for X at z and the definition of join imply

X(x , z) � X(x , z) ⊗ I ≤ X(x , z) ⊗ X(z , z) ≤
∨
y∈X

X(x , y) ⊗ X(y , z),

while composition says X(x , y) ⊗ X(y , z) ≤ X(x , z) and hence∨
y∈X

X(x , y) ⊗ X(y , z) ≤
∨
y∈X

X(x , z) � X(x , z).

Thus, unpacking the definition of composition of profunctor, we have

(α−1 # α)(x , z) �
∨

(y ,1)∈X×1
α(x , (y , 1)) ⊗ α−1((y , 1), z) �

∨
y∈X

X(x , y) ⊗ X(y , z) � X(x , z).

Similarly we can show α # α−1 � UX×1, and hence that α is an isomorphism X × 1 X.

Moreover, we can similarly show that β((1, x), y) B X(x , y) defines an isomorphism β : 1 × X X.

Solution to Exercise 4.66.
We check the first snake equation, the one on the left hand side of Eq. (4.59). The proof of the one on

the right hand side is analogous.
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We must show that the composite Φ of profunctors

X
α−1

−−−→ X × 1
UX×ηX−−−−−−−→ X × Xop × X

εX×UX−−−−−−→ 1 × X α−→ X

is itself the identity (ie. the unit profunctor on X), where α and α−1
are the isomorphisms defined in

the solution to Exercise 4.65 above.

Freely using the distributivity of ⊗ over ∨, the value Φ(x , y) of this composite at (x , y) ∈ Xop × X is

given by ∨
a ,b ,c ,d ,e∈X

α−1(x , (a , 1)) ⊗ (UX × ηX)((a , 1), (b , c , d))
⊗ (εX ×UX)((b , c , d), (1, e)) ⊗ α((1, e), y)

�

∨
a ,b ,c ,d ,e∈X

α−1(x , (a , 1)) ⊗ UX(a , b) ⊗ ηX(1, c , d)
⊗ εX(b , c , 1) ⊗ UX(d , e) ⊗ α((1, e), y)

�

∨
a ,b ,c ,d ,e∈X

X(x , a) ⊗ X(a , b) ⊗ X(c , d) ⊗ X(b , c) ⊗ X(d , e) ⊗ X(e , y)

� X(x , y)

where in the final step we repeatedly use the argument the Lemma 4.27 that shows that composing

with the unit profunctor UX(a , b) � X(a , b) is the identity.
This shows that Φ(x , y) is the identity profunctor, and hence shows the first snake equation holds.

Again, checking the other snake equation is analogous.
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A.5 Solutions for Chapter 5.
Solution to Exercise 5.5.

1. Below we draw a morphism f : 3→ 2 and a morphism 1 : 2→ 4 in FinSet:

• • •3

• •2 • • • • 4

• • 2

f 1

2. Here is a picture of f + 1
• • • • •3+2

• • • • • •2+4

f + 1

3. The composite of morphisms f : m → n and 1 : n → p in FinSet is the function ( f # 1) : m → p
given by ( f # 1)(i) � 1( f (i)) for all 1 ≤ i ≤ m.

4. The identity idm : m → m is given by idm(i) � i for all 1 ≤ i ≤ m. Here is a picture of id
2
and id

8
:

• •2

• •2

• • • • • • • • 8

• • • • • • • • 8

id
2

id
8

5. Here is a picture of the symmetry σ
3,5 : 8→ 8:

• • • • • • • • 8

• • • • • • • • 8

σ
3,5

Solution to Exercise 5.9.
We need to give examples posetal props, i.e. eachwill be a posetwhose set of objects isN, whose order is

denoted m � n, andwith the property thatwhenever m
1
� n

1
and m

2
� n

2
hold then m

1
+m

2
� n

1
+n

2

does too.

The question only asks for three, but we will additionally give a quasi-example and a non-example.

1. Take � to be the discrete order: m � n iff m � n.
2. Take � to be the usual order, m � n iff there exists d ∈ Nwith d + m � n.
3. Take � to be the reverse of the usual order, m � n iff there exists d ∈ Nwith m � n + d.
4. Take � to be the co-discrete order m � n for all m , n. Some may object that this is a preorder, not

a poset, so we call it a quasi-example.

5. (Non-example.) Take � to be the division order, m � n iff there exists q ∈ Nwith m ∗ q � d. This
is a perfectly good poset, but it does not satisfy the monotonicity property: we have 2 � 4 and

3 � 3 but not 5 �?
7.

Solution to Exercise 5.10.
Example 5.6: The prop Bij has

1. Bij(m , n) B { f : m → n | f is a bĳection}. Note that Bij(m , n) � � if m , n and it has n!

elements if m � n.
2. The identity map n → n is the bĳection n → n sending i 7→ i.
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3. The symmetry map m + n → n + m is the bĳection σm ,n : m + n → n + m given by

σm ,n(i) B
{

i + n if i ≤ m

i − m if m + 1 ≤ i

4. Composition of bĳections m → n and n → p is just their composition as functions, which

is again a bĳection.

5. Given bĳections f : m → m′ and 1 : n → n′, their monoidal product ( f + 1) : (m + n) →
(m′ + n′) is given by

( f + 1)(i) B
{

f (i) if i ≤ m

1(i − m) if m + 1 ≤ i

Example 5.7: The prop Corel has
1. Corel(m , n) is the set of equivalence relations on m + n.
2. The identity map n → n is the smallest equivalence relation, which is the smallest reflexive

relation, i.e. where i ∼ j iff i � j.
3. The symmetry map σm ,n , as an equivalence relation on m + n + n + m is “the obvious

thing,” namely “equating corresponding m’s together and also equating corresponding n’s
together.” To be pedantic, i ∼ j iff either

• |i − j | � m + n + n, or
• m + 1 ≤ i ≤ m + n + n and m + 1 ≤ j ≤ m + n + n and |i − j | � n.

4. Composition of an equivalence relation ∼ on m + n and an equivalence relation Û∼ on n + p
is the equivalence relation ' on m + p given by i ' k iff there exists j ∈ n with i ∼ j and j Û∼k.

5. Given equivalence relations ∼ on m + n and ∼′ on m′ + n′, we need an equivalence relation

(∼ + ∼′) on m + n + m′ + n′. We take it to be “the obvious thing,” namely “using ∼ on the

unprimed stuff and using ∼′ on the primed stuff, with no other interaction.” To be pedantic,

i ∼ j iff either

• i ≤ m + n and j ≤ m + n and i ∼ j, or
• m + n + 1 ≤ i and m + n + 1 ≤ j and i ∼′ j.

Example 5.8: The prop Rel has
1. Rel(m , n) is the set of relations on the set m × n, i.e. the set of subsets of m × n, i.e. its

powerset.

2. The identity map n → n is the subset {(i , j) ∈ n × n | i � j}.
3. The symmetry map m + n → n + m is the subset of pairs (i , j) ∈ (m + n) × (n + m) such that

either

• i ≤ m and m + 1 ≤ j and i + m � j, or
• m + 1 ≤ i and j ≤ m and j + m � i.

4. Composition of relations is as in Example 5.8.

5. Given a relation R ⊆ m × n and a relation R′ ⊆ m′ × n′, we need a relation (R + R′) ⊆
m + m′ × n + n′. As stated in the example (footnote), this can be given by a universal

property: The monoidal product R
1
+ R

2
of relations R

1
⊆ m

1
× n

1
and R

2
⊆ m

2
× n

2
is

given by R
1
t R

2
⊆ (m

1
× n

1
) t (m

2
× n

2
) ⊆ (m

1
t m

2
) × (n

1
t n

2
).

Solution to Exercise 5.16.
Composition of an (m , n)-port graph G and an (n , p)-port graph H looks visually like sticking them

end to end, connecting the wires in order, removing the two outer boxes, and adding a new outer box.

For example, suppose we want to compose the following in the order shown:

a

b
c d

e#
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The result is:

a

b
c d e

Solution to Exercise 5.18.
The monoidal product of twomorphisms is drawn by stacking the corresponding port graphs. For this

problem, we just stack the left-hand picture on top of itself to obtain the righthand picture:

a

b

c

a

b

c′

a

b′
c′

Solution to Exercise 5.20.
We have a relation R ⊆ P × P which generates a preorder ≤P on P, we have an arbitrary preorder

(Q , ≤Q) and a function f : P → Q, not necessarily monotonic.

1. Assume that for every x , y ∈ P, if R(x , y) then f (x) ≤ f (y); we want to show that f is monotone,

i.e. that for every x ≤P y we have f (x) ≤Q f (y). By definition of P being the reflexive, transitive

closure of R, we have x ≤P y iff there exists n ∈ N and x
0
, . . . , xn in P with x

0
� x and xn � y and

R(xi , xi+1
) for each 0 ≤ i ≤ n − 1. (The case n � 0 handles reflexivity.) But then by assumption,

R(xi , xi+1
) implies f (xi) ≤Q f (xi+1

) for each i. By induction on i we show that f (x
0
) ≤Q f (xi)

for all 0 ≤ i ≤ n, at which point we are done.

2. Suppose now that f is monotone, and take x , y ∈ P for which R(x , y) holds. Then x ≤P y
because ≤P is the smallest preorder relation containing R. (Another way to see this based on the

above description is with n � 1, x
0
� x, and xn � y, which we said implies x ≤P y.) Since f is

monotone, we indeed have f (x) ≤Q f (y).

Solution to Exercise 5.21.
Suppose that P, Q, and R are as in Exercise 5.20 and we have a function 1 : Q → P.

1. If R(1(a), 1(b)) holds for all a ≤Q b then 1 is monotone, because R(x , y) implies x ≤P y.
2. It is possible for 1 : (Q , ≤Q) → (P, ≤P) to be monotone and yet have some a , b ∈ Q with a ≤Q b

and (1(a), 1(b)) < R. Indeed, take Q B {1} to be the free preorder on one element, and take

P B {1} with R � �. Then the unique function 1 : Q → P is monotone (because ≤P is reflexive

even though R is empty), and yet (1(1), 1(1)) < R.

Solution to Exercise 5.23.
Let G � (V,A, s , t) be a graph, let G be the free category on G, and let C be another category, whose set

of morphisms is denoted Mor(C).
1. To give a function Mor(C) → Ob(C)means that for every element Mor(C)we need to give exactly

one element of Ob(C). So for dom we take any q ∈ Mor(C), view it as a morphism q : y → z, and
send it to its domain y. Similarly for cod: we put cod(q) B z.

2. Suppose first thatwe are given a functor F : G→ C. On objectswehave a functionOb(G) → Ob(C),
and this defines f since Ob(G) � V . On morphisms, first note that the arrows of graph G are ex-

actly the length=1 paths in G, whereas Mor(G) is the set of all paths in G, so we have an inclusion

A ⊆ Mor(G). The functor F provides a function Mor(G) → Mor(C), which we can restrict to A
to obtain 1 : A→ Mor(C). All functors satisfy dom(F(r)) � F(dom(r)) and cod(F(r)) � F(cod(r))
for any r : w → x. In particular when r ∈ A is an arrow we have dom(r) � s(r) and cod(r) � t(r).



296 APPENDIX A. EXERCISE SOLUTIONS

Thus we have found ( f , 1)with the required properties.

Suppose second that we are given a pair of functions ( f , 1) where f : V → Ob(C) and 1 : A →
Mor(C) such that dom(1(a)) � f (s(a)) and cod(1(a)) � f (t(a)) for all a ∈ A. Define F : G→ C on

objects by f . An arbitrary morphism in G is a path p B (v
0
, a

1
, a

2
, . . . , an) in G, where v

0
∈ V ,

ai ∈ A, v
0
� s(a

1
), and t(ai) � s(ai+1

) for all 1 ≤ i ≤ n − 1. Then 1(ai) is a morphism in C whose

domain is f (v
0
) and the morphisms 1(ai) and 1(ai+1

) are composable for every 1 ≤ i ≤ n − 1.

We then take F(p) B id f (v0) # 1(a1
) # · · · # 1(an) to be the composite. It is easy to check that this is

indeed a functor (preserves identities and compositions).

Third, we want to see that the two operations we just gave are mutually inverse. On objects this

is straightforward, and on morphisms it is straightforward to see that, given ( f , 1), if we turn

them into a functor F : G→ C and then extract the new pair of functions ( f ′, 1′), then f � f ′ and
1 � 1′. Finally, given a functor F : G → C, we extract the pair of functions ( f , 1) as above and

then turn them into a new functor F′ : G → C. It is clear that F and F′ act the same on objects,

so what about on morphisms. The formula says that F′ acts the same on morphisms of length 1

in G (i.e. on the elements of A). But an arbitrary morphism in G is just a path, i.e. a sequence of

composable arrows, and so by functoriality, both F and F′ must act the same on arbitrary paths.

3. (Mor(C),Ob(C), dom, cod) is a graph; let’s denote itU(C) ∈ Grph. Wehave functorsFree : Grph�
Cat :U, and Free is left adjoint to U.

Solution to Exercise 5.24.
1. The elements of the free monoid on the set {a} are:

a0 , a1 , a2 , a3 , . . . , a2019 , . . .

with monoid multiplication ∗ given by the usual natural number addition on the exponents,

a i ∗ a j � a i+ j
.

2. This is isomorphic to N, by sending a i 7→ i.
3. The elements of the free monoid on the set {a , b} are ‘words in a and b,’ each of which we will

represent as a list whose entries are either a or b. Here are some:

[ ], [a], [b], [a , a], [a , b], . . . , [b , a , b , b , a , b , a , a , a , a], . . .

Solution to Exercise 5.28.
We have two props: the prop of port graphs and the free prop Free(G, s , t)where

G B {ρm ,n : m → n | m , n ∈ N}, s(ρm ,n) B m , t(ρm ,n) B n;

we want to show they are the same prop. As categories they have the same set of objects (in both cases,

N), so we need to show that for every m , n ∈ N, they have the same set of morphisms (and that their

composition formulas and monoidal product formulas agree).

By Definition 5.25, a morphism m → n in Free(G) is a G-labeled port graph, i.e. a pair (Γ, `), where

Γ � (V, in, out, ι) is an (m , n)-port graph and ` : V → G is a function, such that the ‘arities agree.’ What

does this mean? Recall that every vertex v ∈ V is drawn as a box with some left-hand ports and some

right-hand ports—an arity—and `(v) ∈ G is supposed to have the correct arity; precisely, s(`(v)) � in(v)
and t(`(v)) � out(v). But G was chosen so that it has exactly one element with any given arity, so the

function ` has only one choice, and thus contributes nothing: it neither increases nor decreases the

freedom. In other words, a morphism in our particular Free(G) can be identified with an (m , n) port
graph Γ, as desired.

Again by definition Definition 5.25, the ‘composition and the monoidal structure are just those for port

graphs PG (see Eq. (5.17)); the labelings (the `’s) are just carried along.’ So we are done.
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Solution to Exercise 5.32.
Here is a picture of ( f + id

1
+ id

1
) # (σ+ id

1
) # (id

1
+ h) # σ # 1, in the free prop on generators G � { f : 1→

1, 1 : 2→ 2, h : 2→ 1}:

f

h

1

Solution to Exercise 5.35.
The free prop on generators (G, s , t), defined in Definition 5.25, is—for all intents and purposes—

the same thing as the prop presented by (G, s , t ,�), having no relations. The only possible “subtle

difference” we might have to admit is if someone said that a set S is “subtly different” than its quotient

by the trivial equivalence relation. In the latter, the elements are the singleton subsets of S. So for

example the quotient of S � {1, 2, 3} by the trivial equivalence relation is the set {{1}, {2}, {3}}. It is

subtly different than S, but the two are naturally isomorphic, and category-theoretically, the difference

will never make a difference.

Solution to Exercise 5.41.
1. If (R, 0,+, 1, ∗) is a rig, then the multiplicative identity 1 ∈ Matn(R) is the usual n-by-n identity

matrix: 1’s on the diagonal and 0’s everywhere else (where by ‘1’ and ‘0’, wemean those elements

of R). So for n � 4 it is: ©«
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®®¬
.

2. We choose n � 2 and hence need to find two elements A, B ∈ Mat
2
(N) such that A ∗ B , B ∗ A.

A ∗ B �

(
0 1

0 0

)
∗
(

0 1

1 0

)
,

(
0 1

1 0

)
∗
(

0 1

0 0

)
� B ∗ A

One can calculate from the multiplication formula (recalled in Example 5.40) says (A ∗ B)(1, 1) �
0 ∗ 0 + 1 ∗ 1 � 1 and (B ∗ A)(1, 1) � 0 ∗ 0 + 0 ∗ 0 � 0, which are not equal.

Solution to Exercise 5.43.
Semantically, if we apply the flow graph below to the input signal (x , y)

3

5 3

the resulting output signal is (16x + 4y , x + 4y).

Solution to Exercise 5.51.

The monoidal product of A �

(
3 3 1

2 0 4

)
and B �

(
2 5 6 1

)
is

A + B �
©«

3 3 1 0 0 0 0

2 0 4 0 0 0 0

0 0 0 2 5 6 1

ª®®¬



298 APPENDIX A. EXERCISE SOLUTIONS

Solution to Exercise 5.55.
1. The signal flow graph on the left represents the matrix on the right:(

1 1 1

)
2. The signal flow graph on the left represents the matrix on the right:(

1 1 1

)
3. They are equal.

Solution to Exercise 5.58.
1. ©«

0

1

2

ª®®¬ ∼
2

2. (
0 0

0 0

)
∼

3.

(
1 2 3

4 5 6

)
∼

2

3

4

5

6

Solution to Exercise 5.59.
• For the first layer 1

1
, take the monoidal product of m copies of cn ,

1
1
B cn + · · · + cn : m → (m × n),

where cn is the signal flow diagram that makes n copies of a single input:

cn B # (1 + ) # (1 + 1 + ) # · · · # (1 + · · · + 1 + ) : 1→ n

• Next, define

1
2
B sM(1,1) + · · · + sM(1,n)

+ sM(2,1) + · · · + sM(2,n)
+ · · ·
+ sM(m ,1) + · · · + sM(m ,n) : (m × n) → (m × n),

where sa : 1 → 1 is the signal flow graph generator “scalar multiplication by a.” This layer

amplifies each copy of the input signal by the relevant rig element.

• The third layer rearranges wires. We will not write this down explicitly, but simply say it is the

signal flow graph 1
3

: m × n → m × n, that is the composite and monoidal product of swap and

identity maps, such that the (i−1)m+ jth input is sent to the ( j−1)n+ ith output, for all 1 ≤ i ≤ n
and 1 ≤ j ≤ m.

• Finally, the fourth layer is similar to the first, but instead adds the amplified input signals. We

define

1
4
B am + · · · + am : (m × n) → n ,
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where am is the signal flow graph that adds m inputs to produce a single output:

am B (1 + · · · + 1 + ) # · · · # (1 + 1 + ) # (1 + ) # : m → 1

UsingProposition5.54, it is a straightforwardbut tedious calculation to show that 1 � 1
1
#1

2
#1

3
#1

4
: m →

n has the property that S(1) � M.

Solution to Exercise 5.62.
1. The matrices in Exercise 5.58 may also be drawn as the following signal flow graphs:

a) ©«
0

1

2

ª®®¬ ∼

b) (
0 0

0 0

)
∼ 0

c)

(
1 2 3

4 5 6

)
∼

2

3

5

4

6

2. Here are graphical proofs that the representations we chose in our solution to Exercise 5.58 agree

with those chosen in Part 1 above.

a)

� 1

1

�

2

b)

0 � �

c)

2

3

5

4

6

�

2

3

4

5

6

�

2

3

4

5

6

�

2

3

4

5

6

Solution to Exercise 5.63.
1. The signal flow graphs

and
3

5 3

3

3

5 3
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cannot represent the same morphism because one has a path from a vertex on the left to one

on the right, and the other does not. To prove this, observe that the only graphical equation in

Theorem 5.60 that breaks a path from left to right is the equation

0 �

So a 0 scalar must within a path from left to right before we could rewrite the diagram to break

that path. No such 0 scalar can appear, however, because the diagram does not contain any, and

the sum and product of any two nonzero natural numbers is always nonzero.

2. Replacing each of the 3s with 0 allows us to rewrite the diagram to

Solution to Exercise 5.67.
The three conditions of Definition 5.65 are

(a) (µ ⊗ id) # µ � (id ⊗ µ) # µ,
(b) (η ⊗ id) # µ � id � (id ⊗ η) # µ, and
(c) σM,M # µ � µ.

where σM,M is the swap map on M in C.

1. Suppose µ : R × R → R is defined by µ(a , b) � a ∗ b and η ∈ R is defined to be η � 1. The

conditions, written diagrammatically, say that starting in the upper left of each diagram below,

the result in the lower right is the same regardless of which path you take:

(a , b , c) (a ∗ b , c)

(a , b ∗ c) a ∗ b ∗ c

(µ⊗id)

(id⊗µ) µ

µ

a (1, a)

(a , 1) a

(η⊗id)

(id⊗η) ida µ

µ

(a , b) (b , a)

a ∗ b

σ

µ
µ

and this is true for (R, ∗, 1).
2. The same reasoning works for (R,+, 0), shown below:

(a , b , c) (a+b , c)

(a , b+c) a+b+c

(µ⊗id)

(id⊗µ) µ

µ

a (0, a)

(a , 0) a

(η⊗id)

(id⊗η) ida µ

µ

(a , b) (b , a)

a+b

σ

µ
µ

Solution to Exercise 5.69.
The functor U : Mat(R) → Set is given on objects by sending n to the set Rn

, and on morphisms by

matrix-vector multiplication. Here Rn
means the set of n-tuples or n-dimensional vectors in R. In

particular, R0 � {()} consists of a single vector of dimension 0.

1. U preserves the monoidal unit because 0 is the monoidal unit of any prop (Mat(R) is a prop),

{1} is the monoidal unit of Set, and R0
is canonically isomorphic to {1}. U also preserves the

monoidal product because there is a canonical isomorphism Rm × Rn � Rm+n
.

2. A monoid object in Mat(R) is a tuple (m , µ, η) where m ∈ N, µ : m + m → m, and η : 0 → m
satisfy the properties µ(η, x) � x � µ(x , η) and µ(x , µ(y , z)) � µ(µ(x , y), z). Note that there is

only one morphism 0→ m in Mat(R) for any m. It is not hard to show that for any m ∈ N there

is only one monoid structure. For example, when m � 2, µ must be the following matrix

µ B

©«
1 0

0 1

1 0

0 1

ª®®®®¬
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Anyway, for any monoid (m , µ, η), the morphism U(η) : R0 → Rm
is given by U(η)(1) B

(0, . . . , 0), and the morphism U(µ) : Rm × Rm → Rm
is given by

U(µ)((a
1
, . . . , am), (b1

, . . . , bm)) B (a1
+ b

1
, . . . , am + bm).

These give Rm
the structure of a monoid.

3. The triple (1, , ) corresponds to the additive monoid structure on R, e.g. with (5, 3) 7→ 8.

Solution to Exercise 5.77.
1. The behavior B( ) of the reversed addition icon : 1→ 2 is the relation {(x , y , z) ∈ R3 | x �

y + z}.
2. The behavior B( ) of the reversed copy icon, : 2→ 1 is the relation {(x , y , z) ∈ R3 | x � y �

z}.

Solution to Exercise 5.80.
If B ⊆ Rm × Rn

and C ⊆ Rp × Rq
are morphisms in RelR , then take B + C ⊆ Rm+p × Rn+q

to be the set

B + C B {(w , y , x , z) ∈ Rm+p × Rn+q | (w , x) ∈ B and (y , z) ∈ C}.

Solution to Exercise 5.82.
The behavior of 1 : m → n and hop : n → ` are respectively

B(1) � {(x , z) ∈ Rm × Rn | S(1)(x) � z}
B(hop) � {(z , y) ∈ Rn × R` | z � S(h)(y)}

and by Eq. (5.78), the composite B(1 # (hop)) � B(1) # B(hop) is:

{(x , y) | there exists z ∈ Rn
such that S(1)(x) � z and z � S(h)(y)}.

Since S(1) and S(h) are functions, the above immediately reduces to the desired formula:

B(1 # (hop)) � {(x , y) | S(1)(x) � S(h)(y)}.

Solution to Exercise 5.83.
The behavior of 1op : n → m and h : m → p are respectively

B(1op) � {(y , x) ∈ Rn × Rm | y � S(1)(x)}
B(h) � {(x , z) ∈ Rm × Rp | S(h)(x) � z}

and by Eq. (5.78), the composite B((1op) # h) � B(1op) # B(h) is:

{(y , z) | there exists x ∈ Rm
such that y � S(1)(x) and S(h)(x) � z}.

This immediately reduces to the desired formula:

B((1op) # h) � {(S(1)(x), S(h)(x)) | x ∈ Rm}.

Solution to Exercise 5.84.
1. The behavior of the 0-reverse is the subset {y ∈ R | y � 0}, and its n-fold tensor is similarly

{y ∈ Rn | y � 0}. Composing this relation with S(1) ⊆ Rm × Rn
gives {x ∈ Rm | S(1) � 0},

which is the kernel of S(1).
2. The behavior of the discard-inverse is the subset {x ∈ R}, i.e. the largest subset of R, and

similarly its m-fold tensor is Rn ⊆ Rn
. Composing this relation with S(1) ⊆ Rm × Rn

gives

{y ∈ Rn | there exists x ∈ Rm
such that S(1)(x) � y}, which is exactly the image of S(1).
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3. For any 1 : m → n, we first claim that the behavior B(1) � {(x , y) | S(1)(x) � y} is linear, i.e. it
is closed under addition and scalar multiplication. Indeed, S(1) is multiplication by a matrix,

so if S(1)(x) � y then S(1)(rx) � r y and S(1)(x
1
+ x

2
) � S(1)(x

1
) + S(1)(x

2
). Thus we con-

clude that (x , y) ∈ B(1) implies (rx , r y) ∈ B(1), so it’s closed under scalar multiplication, and

(x
1
, y

1
), (x

2
, y

2
) ∈ B(1) implies (x

1
+ x

2
, y

1
+ y

2
) ∈ B(1) so it’s closed under addition. Similarly,

the behavior B(1op) is also linear; the proof is similar.

Finally, we need to show that the composite of any two linear relations is linear. Suppose that

B ⊆ Rm × Rn
and C ⊆ Rn × Rp

are linear. Take (x
1
, z

1
), (x

2
, z

2
) ∈ B # C and take r ∈ R.

By definition, there exist y
1
, y

2
∈ Rn

such that (x
1
, y

1
), (x

2
, y

2
) ∈ B and (y

1
, z

1
), (y

2
, z

2
) ∈ C.

Since B and C are linear, (rx
1
, r y

1
) ∈ B and (r y

1
, rz

1
) ∈ C, and also (x

1
+ x

2
, y

1
+ y

2
) ∈ B and

(y
1
+ y

2
, z

1
+ z

2
) ∈ C. Hence (rx

1
, rz

1
) ∈ (B # C) and (x

1
+ x

2
, z

1
+ z

2
) ∈ (B # C), as desired.

Solution to Exercise 5.85.
Suppose that B ⊆ Rm ×Rn

and C ⊆ Rn ×Rp
are linear. Their composite is the relation (B #C) ⊆ Rm ×Rp

consisting of all (x , z) for which there exists y ∈ Rn
with (x , y) ∈ B and (y , z) ∈ C. We want to show

that the set (B # C) is linear, i.e. closed under scalar multiplication and addition.

For scalar multiplication, take an (x , z) ∈ (B #C) and any r ∈ R. Since B is linear, we have (r ∗ x , r ∗ y) ∈ B
and since C is linear we have (r ∗ y , r ∗ z) ∈ C, so then (r ∗ x , r ∗ z) ∈ (B # C). For addition, if we also

have (x′, z′) ∈ (B # C) then there is some y′ ∈ Rn
with (x′, y′) ∈ B and (y′, z′) ∈ C, so since B and C are

linear we have (x + x′, y + y′) ∈ B and (y + y′, z + z′) ∈ C, hence (x + x′, z + z′) ∈ (B # C).
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A.6 Solutions for Chapter 6.
Solution to Exercise 6.3.

Let A � {a , b}, and consider the preorders shown here:

a• b• ,

a• → b• ,

a•� b• .

1. The left-most (the discrete preorder on A) has no initial object, because a � b and b � a.
2. The middle one has one initial object, namely a.
3. The right-most (the co-discrete preorder on A) has two initial objects.

Solution to Exercise 6.6.
Recall that the objects of a free category on a graph are the vertices of the graph, and the morphisms

are paths. Thus the free category on a graph G has an initial object if there exists a vertex v that has a

unique path to every object. In 1. and 2., the vertex a has this property, so the free categories on graphs

1. and 2. have initial objects. In graph 3., neither a nor b have a path to each other, and so there is no

initial object. In graph 4., the vertex a has many paths to itself, and hence its free category does not

have an initial object either.

Solution to Exercise 6.7.
1. The remaining conditions are that f (1R) � 1S , and that f (r

1
∗R r

2
) � f (r

1
) ∗S f (r

2
).

2. The initial object in the category Rig is the natural numbers rig (N, 0,+, 1, ∗). The fact that is

initial means that for any other rig R � (R, 0R ,+R , 1R , ∗R), there is a unique rig homomorphism

f : N→ R.

What is this homomorphism? Well, to be a rig homomorphism, f must send 0 to 0R , 1 to 1R .

Furthermore, we must also have f (m + n) � f (m) +R f (n), and hence

f (m) � f (1 + 1 + · · · + 1︸           ︷︷           ︸
m summands

) � f (1) + f (1) + · · · + f (1)︸                        ︷︷                        ︸
m summands

� 1R + 1R + · · · + 1R︸                 ︷︷                 ︸
m summands

.

So if there is a rig homomorphism f : N → R, it must be given by the above formula. But does

this formula work correctly for multiplication?

It remains to check f (m ∗ n) � f (m) ∗R f (n), and this will follow from distributivity. Noting that

f (m ∗ n) is equal to the sum of mn copies of 1R , we have

f (m) ∗R f (n) � (1R + · · · + 1R︸          ︷︷          ︸
m summands

) ∗R (1R + · · · + 1R︸          ︷︷          ︸
n summands

)

� 1R ∗ (1R + · · · + 1R︸          ︷︷          ︸
n summands

) + · · · + 1R ∗ (1R + · · · + 1R︸          ︷︷          ︸
n summands

)

︸                                                        ︷︷                                                        ︸
m summands

� 1R + · · · + 1R︸          ︷︷          ︸
mn summands

� f (m ∗ n).

Thus (N, 0,+, 1, ∗) is the initial object in Rig.

Solution to Exercise 6.8.
In Definition 6.1, it is the initial object � ∈ C that is universal. In this case, all objects c ∈ C are

‘comparable objects’. So the universal property of the initial object is that to any object c ∈ C, there is a
unique map � → c coming from the initial object.

Solution to Exercise 6.10.
If c

1
is initial then by the universal property, for any c there is a unique morphism c

1
→ c; in particular,

there is a unique morphism c
1
→ c

2
, call it f . Similarly, if c

2
is initial then there is a unique morphism

c
2
→ c

1
, call it 1. But how do we know that f and 1 are mutually inverse? Well since c

1
is initial
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there is a unique morphism c
1
→ c

1
. But we can think of two: idc1

and f # 1. Thus they must be

equal. Similarly for c
2
, so we have f # 1 � idc1

and 1 # f � idc2
, which is the definition of f and 1 being

mutually inverse.

Solution to Exercise 6.13.
Let (P, ≤) be a preorder, and p , q ∈ P. Recall that a preorder is a category with at most one morphism,

denoted ≤, between any two objects. Also recall that all diagrams in a preorder commute, since this

means any two morphisms with the same domain and codomain are equal.

Translating Definition 6.11 to this case, a coproduct p + q is P is an element of P such that p ≤ p + q and

q ≤ p + q, and such that for all elements x ∈ P with maps p ≤ x and q ≤ x, we have p + q ≤ x. But this
says exactly that p + q is a join: it is a least element above both p and q. Thus coproducts in preorders

are exactly the same as joins.

Solution to Exercise 6.16.
The function [ f , 1] is defined by

[ f , 1] : A t B −→ T

apple1 7−→ a

banana1 7−→ b

pear1 7−→ p

cherry1 7−→ c

orange1 7−→ o

apple2 7−→ e

tomato2 7−→ o

mango2 7−→ o.

Solution to Exercise 6.17.
1. The equation ιA # [ f , 1] � f is the commutativity of the left hand triangle in the commutative

diagram (6.12) defining [ f , 1].
2. The equation ιB # [ f , 1] � 1 is the commutativity of the right hand triangle in the commutative

diagram (6.12) defining [ f , 1].
3. The equation [ f , 1]#h � [ f #h , 1 #h] follows from the universal property of the coproduct. Indeed,

the diagram

A A + B B

C

D

ιA

f
f #h

[ f ,1]

ιB

1

1#h

h

commutes, and the universal property says there is a unique map [ f # h , 1 # h] : A + B → D for

which this occurs. Hence we must have [ f , 1] # h � [ f # h , 1 # h].
4. Similarly, to show [ιA , ιB] � idA+B , observe that the diagram

A A + B B

A + B

ιA

ιA
idA+B

ιB

ιB

trivially commutes. Hence by the uniqueness in (6.12), [ιA , ιB] � idA+B .
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Solution to Exercise 6.18.
This exercise is about showing that coproducts and an initial object give a symmetricmonoidal category.

Since all we have are coproducts and an initial object, and since these are defined by their universal

properties, the solution is to use these universal properties over and over, to prove that all the data of

Definition 4.45 can be constructed.

1. To define a functor + : C × C → C we must define its action on objects and morphisms. In both

cases, we just take the coproduct. If (A, B) is an object of C × C, its image A + B is, as usual, the

coproduct of the two objects of C. If ( f , 1) : (A, B) → (C,D) is a morphism, then we can form a

morphism f + 1 � [ f # ιC , 1 # ιD] : A + B → C + D, where ιC : C → C + D and ιD : D → C + D
are the canonical morphisms given by the definition of the coproduct A + B.
Note that this construction sends identity morphisms to identity morphisms, since by Exer-

cise 6.17 4 we have

idA + idB � [idA # ιA , idB # ιB] � [ιA , ιB] � idA+B .

To show that + is a functor, we need to also show it preserves composition. Suppose we also have

amorphism (h , k) : (C,D) → (E, F) in C×C. We need to show that ( f +1) # (h+ k) � ( f # h)+ (1 # k).
This is a slightly more complicated version of the argument in Exercise 6.17 3. It follows from the

fact the diagram below commutes:

A A + B B

C C + D D

E + F

ιA

f
f+1

ιB

1

ιC

h#ιE

h+k

ιD

k#ιF

Indeed,weagainuse theuniqueness of the copairing in (6.12), this time to show that ( f #h)+(1#k) �
[ f # h # ιE , 1 # k # ιF] � ( f + 1) # (h + k), as required.

2. Recall the universal property of the initial object gives a unique map !A : � → A. Then the

copairing [idA , !A] is a map A + � → A. Moreover, it is an isomorphism with inverse ιA : A →
A + �. Indeed, using the properties in Exercise 6.17 and the universal property of the initial

object, we have ιA # [idA , !A] � idA, and

[idA , !A] # ιA � [idA # ιA , !A # ιA] � [ιA , !A+�] � [ιA , ι�] � idA+�.

An analogous argument shows [!A , idA] : � + A→ A is an isomorphism.

3. We’ll just write down the maps and their inverses; we leave it to you, if you like, to check that

they indeed are inverses.

a) The map [idA + ιB , ιC] � [[ιA , ιB # ιB+C], ιC # ιB+C] : (A + B) + C → A + (B + C) is an

isomorphism, with inverse [ιA , ιB + idC] : A + (B + C) → (A + B) + C.

b) The map [ιA , ιB] : A + B → B + A is an isomorphism. Note our notation here is slightly

confusing: there are two maps named ιA, (i) ιA : A → A + B, and (ii) ιA : A → B + A, and

similarly for ιB . In the above we mean the map (ii). It has inverse [ιA , ιB] : B + A→ A + B,
where in this case we mean the map (i).

Solution to Exercise 6.24.
1. Suppose given an arbitrary diagram of the form B ← A → C in DiscS ; we need to show that it

has a pushout. The only morphisms in DiscS are identities, so in particular A � B � C, and the

square consisting of all identities is its pushout.

2. Suppose DiscS has an initial object s. Then S cannot be empty! But it also cannot have more

than one object, because if s′ is another object then there is a morphism s → s′, but the only

morphisms in S are identities so s � s′. Hence the set S must consist of exactly one element.
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Solution to Exercise 6.26.
The pushout is the set 4, as depicted in the top right in the diagram below, equipped also with the

depicted functions:

f

1

pushout

(A.1)

We want to see that this checks out with the description from Example 6.25, i.e. that it is the set of

equivalence classes in 5 t 3 generated by the relation { f (a) ∼ 1(a) | a ∈ 4}. If we denote elements of 5

as {1, . . . , 5} and those of 3 as {1′, 2′, 3′}, we can redraw the functions f , 1:

1 • 1
′

2 • 2
′

3 • 3
′

4 •
5

which says we take the equivalence relation on 5 t 3 generated by: 1 ∼ 1
′
, , 3 ∼ 1

′
, 5 ∼ 2

′
, and 5 ∼ 3

′
.

The equivalence classes are {1, 1′, 3}, {2}, {4}, and {5, 2′, 3′}. These four are exactly the four elements

in the set labeled ‘pushout’ in Eq. (A.1).

Solution to Exercise 6.28.
1. The diagram to the left commutes because � is initial, and so has a unique map � → X +Y. This

implies we must have f # ιX � 1 # ιY .
2. There is a uniquemap X+Y → T making the diagram in (6.21) commute simply by the universal

property of the coproduct (6.12) applied to the maps x : X → T and y : Y → T.
3. Suppose X +� Y exists. By the universal property of �, given any pair of arrows x : X → T and

y : Y → T, the diagram

� X

Y T

f

1 x

y

commutes. This means, by the universal property of the pushout X +� Y, there exists a unique

map t : X +� Y → T such that ιX # t � x and ιY # t � y. Thus X +� Y is the coproduct X + Y.

Solution to Exercise 6.35.
We have to check that the colimit of the diagram shown left really is given by taking three pushouts as

shown right:

B Z

A C

D

B Z

A Y R

X Q S

p

p p
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That is, we need to show that S, together with the maps from A, B, X, Y, and Z, has the required

universal property. So suppose given an object T with two commuting diagrams as shown:

B Z

A Y

X T

We need to show there is a unique map S → T making everything commute. Since Q is a pushout of

X ← A→ Y, there is a unique map Q → T making a commutative triangle with Y, and since R is the

pushout of Y ← B → Z, there is a unique map R → T making a commutative triangle with Y. This

implies that there is a commuting (Y,Q , R, T) square, and hence a unique map S→ T from its pushout

making everything commute. This is what we wanted to show.

Solution to Exercise 6.41.
The formula in Theorem 6.37 says that the pushout X +N Y is given by the set of equivalence classes of

X t N t Y under the equivalence relation generated by x ∼ n if x � f (n), and y ∼ n if y � 1(n), where

x ∈ X, y ∈ Y, n ∈ N . Since for every n ∈ N there exists an x ∈ X such that x � f (n), this set is equal to
the set of equivalence classes of X tY under the equivalence relation generated by x ∼ y if there exists

n such that x � f (n) and y � 1(n). This is exactly the description of Example 6.25.

Solution to Exercise 6.48.
The monoidal product is

A + B N + P B + C

Solution to Exercise 6.49.
Let x and y be composable cospans in CospanFinSet. In terms of wires and connected components,

the composition rule in CospanFinSet says that (i) the composite cospan has a unique element in the

apex for every connected component of the concatenation of the wire diagrams x and y, and (ii) in the

wire diagram for x # y, each element of the feet is connected by a wire to the element representing the

connected component to which it belongs.

Solution to Exercise 6.57.
Morphisms 1, 4, and 6 are equal, and morphisms 3 and 5 are equal. Morphism 3 is not equal to any

other depicted morphism. This is an immediate consequence of Theorem 6.55.

Solution to Exercise 6.59.
1. The input to h should be labelled B.
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2. The output of 1 should be labelled D, since we know from the labels in the top right that h is a

morphism B→ D ⊗ D.

3. The fourth output wire of the composite should be labelled D too!

Solution to Exercise 6.62.
We draw the function depictions above, and the wiring depictions below. Note that we depict the

empty set with blank space.

1 + 1 1 1

multiplication µ
1

� 1 1

unit η
1

1 1 1 + 1

comultiplication δ
1

1 1 �

counit ε
1

Solution to Exercise 6.63.
The special law says that the composite of cospans

� X
id−→ X

[id,id]
←−−−−− X + X

[id,id]
−−−−−→ X

id←− X

is the identity. This comes down to checking that the square

X + X X

X X

[id,id]

[id,id]

id

id

(A.2)

is a pushout square. It is trivial to see that the square commutes. Suppose now that we have maps

f : X → Y and 1 : X → Y such that

X + X X

X T

[id,id]

[id,id]

f

1

Write ι
1

: X → X +X for the map into the first copy of X in X +X, given by the definition of coproduct.

Then, using the fact that ι
1

# [id, id] � id from Exercise 6.17 1, and the commutativity of the above

square, we have f � ι
1

# [id, id] # f � ι
1

# [id, id] # 1 � 1. This means that f : X → T is the unique map

such that

X X

X X

T

[id,id]

[id,id] id f

id

1� f

f

commutes, and so (A.2) is a pushout square.

Solution to Exercise 6.67.
The missing diagram is
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Solution to Exercise 6.70.
Let A ⊆ S and B ⊆ T. Then

ϕS′ ,T′
(
(im f × im1)(A × B)

)
� ϕS′ ,T′({ f (a) | a ∈ A} × {1(b) | b ∈ B})

� {( f (a), 1(b)) | a ∈ A, b ∈ B}
� im f×1(A × B)

� im f×1(ϕS,T (A, B)).

Thus the required square commutes.

Solution to Exercise 6.78.
They mean that every category CospanC is equal to a category CospanF , for some well-chosen F. They
also tell you how to choose this F: take the functor F : C → Set that sends every object of C to the set

{∗}, and every morphism of C to the identity function on {∗}. Of course, you will have to check this

functor is a lax symmetric monoidal functor, but in fact this is not hard to do.

To check that CospanC is equal to CospanF , first observe that they have the same objects: the objects of

C. Next, observe that a morphism in CospanF is a cospan X ← N → Y in C together with an element

of FN � {∗}. But FN also has a unique element, ∗! So there’s no choice here, and we can consider

morphisms of CospanF just to be cospans in C. Moreover, composition of morphisms in CospanF is

simply the usual composition of cospans via pushout, so CospanF � CospanC.

(More technically, we might say that CospanC and CospanF are isomorphic, where the isomorphism

is the identity-on-objects functor CospanC → CospanF that simply decorates each cospan with ∗, and
its inverse is the one that forgets this ∗. But this is close enough to equal that many category theorists,

us included, don’t mind saying equal in this case.)

Solution to Exercise 6.79.
We can represent the circuit in Eq. (6.71) by the tuple (V,A, s , t , `) where V � {ul, ur, dl, dr}, A �

{r1, r2, r3, c1, i1}, and s, t, and ` are defined by the table

r1 r2 r3 c1 i1

s(−) dl ul ur ul dl

t(−) ul ur dr ur dr

`(−) 1Ω 2Ω 1Ω 3F 1H

Solution to Exercise 6.80.
The circuit Circ( f )(c) is

3Ω

1 2 ∼ 3 4

Solution to Exercise 6.82.
The circuit ψ

2,2(b , s) is the disjoint union of the two labelled graphs b and s:

Solution to Exercise 6.84.

The cospan is the cospan 1

f
−→ 2

1
←− 1, where f (1) � 1 and 1(1) � 2. The decoration is the C-circuit

(2, {a}, s , t , `), where s(a) � 1, t(a) � 2 and `(a) � battery.
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Solution to Exercise 6.86.
Recall the circuit C B (V,A, s , t , `) from the solution to Exercise 6.79. Then the first decorated cospan

is given by the cospan 1

f
−→ V

1
←− 2, f (1) � ul, 1(1) � ur, and 1(2) � ur, decorated by circuit C. The

second decorated cospan is given by the cospan 2

f ′
−→ V′

1′
←− 2 and the circuit C′ B (V′,A′, s′, t′, `′),

where V′ � {l , r, d}, A′ � {r1′, r2′}, and the functions are given by the tables

1 2

f ′(−) l d

1′(−) r r

r1’ r2’

s(−) l r

t(−) r d

`(−) 5Ω 8Ω

To compose these, we first take the pushout of V
1
←− 2

f ′
−→ V′. This gives the a new apex V′′ �

{ul, dl, dr,m, r} with five elements, and composite cospan 1

h−→ V′′
k←− 2 given by h(1) � ul, k(1) � r

and k(2) � m. The new circuit is given by (V,′′A + A′, s ,′′ t ,′′ `′′)where the functions are given by

r1 r2 r3 c1 i1 r1’ r2’

s′′(−) dl ul m ul dl m r

t′′(−) ul m dr m dr r m

`′′(−) 1Ω 2Ω 1Ω 3F 1H 5Ω 8Ω

This is exactly what is depicted in Eq. (6.74).

Solution to Exercise 6.88.
Composing η and x we have

η # x � �

� �

and composing the result of ε gives

η # x # ε � � �

� � �

Solution to Exercise 6.96.
1. The cospan shown left corresponds to the wiring diagram shown right:

inner circles’ ports

links

outer circle’s ports
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It has two inner circles, each with two ports. One port of the first is wired to a port of the second.

One port of the first is wired to the outside circle, and one port of the second is wired to the

outside circle. This is exactly what the cospan says to do.

2. The cospan shown left corresponds to the wiring diagram shown right:

inner circles’ ports

links

outer circle’s ports

3. The composite 1 ◦
1

f has arity (2, 2, 2, 2; 0); there is a depiction on the left:

inner circles’ ports

links

outer circle’s ports

4. The associated wiring diagram is shown on the right above. One can see that one diagram has

been substituted in to a circle of the other.
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A.7 Solutions for Chapter 7.
Solution to Exercise 7.4.

In the commutative diagram below, suppose the (B, C, B′, C′) square is a pullback:

A B C

A′ B′ C′

f

h1

1

h2 h3

f ′ 1′

y

We need to show that the (A, B,A′, B′) square is a pullback iff the (A, C,A′, C′) rectangle is a pullback.
Suppose first that (A, B,A′, B′) is a pullback, and take any (X, p , q) as in the following diagram:

X

A B C

A′ B′ C′

p

q

f

h1

1

h2 h3

f ′ 1′

y

where q # f ′ # 1′ � p # h
3
. Then by the universal property of the (B, C, B′, C′) pullback, we get a unique

dotted arrow r making the left-hand diagram below commute:

X

B C

B′ C′

p

q# f ′

r 1

h2 h3

1′

y

X

A B C

A′ B′ C′

r

q

r′

f

h1

1

h2 h3

f ′ 1′

y

In other words r # h
2
� 1 # f ′ and r # 1 � p. Then by the universal property of the (A, B,A′, B′) pullback,

we get a unique dotted arrow r′ : X → A making the right-hand diagram commute, i.e. r′ # f � r and

r′ # h
1
� q. This gives the existence of an r with the required property, r′ # f � r and r′ # f # 1 � r # 1 � p.

To see uniqueness, suppose given another morphisms r
0
such that r

0
# f # 1 � p and r

0
# h

1
� q:

X

A B C

A′ B′ C′

r0

p

q

f

h1

1

h2 h3

f ′ 1′

y

Then by the uniqueness of r, we must have r
0

# f � r, and then by the uniqueness of r′, we must have

r
0
� r′. This proves the first result.

The second is similar. Suppose that (A, C,A′, C′) and (B, C, B′, C′) are pullbacks and suppose given a

commutative diagram of the following form:

X

A B C

A′ B′ C′

r

q

f

h1

1

h2 h3

f ′ 1′

y

i.e. where r # h
2
� q # f ′. Then letting p B r # 1, we have

p # h
3
� r # 1 # h

3
� r # h

2
# 1′ � q # f ′ # 1′
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so by the universal property of the (A, C,A′, C′) pullback, there is a unique morphism r′ : X → A such

that r′ # f # 1 � p and r
0

# h
1
� q, as shown:

X

A B C

A′ B′ C′

r′ r
p

q

f

h1

1

h2 h3

f ′ 1′

y

But now let r
0
B r′ # f . It satisfies r

0
# 1 � p and r

0
# h

2
� q # f ′, and r satisfies the same equations:

r # 1 � p and r # h
2
� q # f ′. Hence by the universal property of the (B, C, B′, C′) pullback r

0
� r′. It

follows that r′ is a pullback of the (A, B,A′, B′) square, as desired.

Solution to Exercise 7.6.
A function f : A→ B is injective iff for all a

1
, a

2
∈ A, if f (a

1
) � f (a

2
) then a

1
� a

2
. It is amonomorphism

iff for all sets X and functions 1
1
, 1

2
: X → A, if 1

1
# f � 1

2
# f then 1

1
� 1

2
. Indeed, this comes directly

from the universal property of the pullback from Definition 7.5,

X

A A

A B

11

12

idA

idA f

f

y

because the dashed arrow is forced to equal both 1
1
and 1

2
, thus forcing 1

1
� 1

2
.

1. Suppose f is a monomorphism, let a
1
, a

2
∈ A be elements, and suppose f (a

1
) � f (a

2
). Let

X � {∗} be a one element set, and let 1
1
, 1

2
: X → A be given by 1

1
(∗) B a

1
and 1

2
(∗) B a

2
. Then

1
1

# f � 1
2

# f , so 1
1
� 1

2
, so a

1
� a

2
.

2. Suppose that f is an injection, let X be any set, and let 1
1
, 1

2
: X → A be such that 1

1
# f � 1

2
# f .

We will have 1
1
� 1

2
if we can show that 1

1
(x) � 1

2
(x) for every x ∈ X. So take any x ∈ X; since

f (1
1
(x)) � f (1

2
(x)) and f is injective, we have 1

1
(x) � 1

2
(x) as desired.

Solution to Exercise 7.7.
1. Suppose we have a pullback as shown, where i is an isomorphism:

A′ B′

A B

f ′

i′ i�

f

y

Let j B i−1
be the inverse of i, and consider 1 B ( f # j) : A → B′. Then 1 # i � f , so by the

existence part of the universal property, there is a map j′ : A → A′ such that j′ # i′ � idA and

j′ # f ′ � f # j. We will be done if we can show i′ # j′ � idA′ . One checks that (i′ # j′) # i′ � i′ and
that (i′ # j′) # f ′ � i′ # f # j � f ′ # i # j � f ′. But idA′ also satisfies those properties: idA′ # i′ � i′ and
idA′ # f ′ � f ′, so by the uniqueness part of the universal property, (i′ # j′) � idA′ .

2. We need to show that the following diagram is a pullback:

A B

A B

f

f

y

So take any object X and morphisms 1 : X → A and h : X → B such that 1 # f � h # idB . We need

to show there is a unique morphism r : X → A such that r # idA � 1 and r # f � h. That’s easy:
the first requirement forces r � 1 and the second requirement is then fulfilled.
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Solution to Exercise 7.8.
Consider the diagram shown left, in which all three squares are pullbacks:

A

A′ A

A′ A

B′ B

1

f

1

f ′
f

f ′

h

A′ A

A′ A

A′ A

B′ B

1

1

f

1

f ′
f

f ′

h

The front and bottom squares are the same—the assumed pullback—and the right-hand square is a

pullback because f is assumed monic. We can complete it to the commutative diagram shown right,

where the back square and top square are pullbacks by Exercise 7.7. Our goal is to show that the

left-hand square is a pullback.

To do this, we use two applications of the pasting lemma, Exercise 7.4. Since the right-hand face is a

pullback and the back face is a pullback, the diagonal rectangle (lightly drawn) is also a pullback. Since

the front face is a pullback, the left-hand face is also a pullback.

Solution to Exercise 7.9.
The following is an epi-mono factorization of f :

•
•
•

•
•

•
•
•

Solution to Exercise 7.11.
1. If V is a quantale with the stated properties, then

• I serves as a top element: v ≤ I for all v ∈ V .

• v ⊗ w serves as a meet operation, i.e. it satisfies the same universal property as ∧, namely

v ⊗ w is a greatest lower bound for v and w.

Now the( operation satisfies the same universal property as exponentiation (hom-object) does,

namely v ≤ (w ( x) iff v ⊗ W ≤ x. So V is a cartesian closed category, and of course it is a

preorder.

2. Not every cartesian closed preorder comes from a quantale with the stated properties, because

quantales have all joins and cartesian closed preorders need not. Finding a counterexample—a

cartesian closed preorder that is missing some joins—takes some ingenuity, but it can be done.

Here’s one we came up with:

(0, 0) (0, 1) (0, 2) (0, 3)

(1, 0) (1, 1) (1, 2)

(2, 0) (1, 1)

(3, 0)

This is the product preorder Nop × Nop
: its objects are pairs (a , b) ∈ N × N with (a , b) ≤ (a′, b′)

iff, in the usual ordering on Nwe have a′ ≤ a and b′ ≤ b. But you can just look at the diagram.

It has a top element, (0, 0), and it has binary meets, (a , b) ∧ (a′, b′) � (max(a , a′),max(b , b′)). But
it has no bottom element, so it has no empty join. Thus we will be done if we can show that for
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each x , y, the hom-object x ( y exists. The formula for it is x ( y �
∨{w | w ∧ x ≤ y}, i.e. we

need these particular joins to exist. Since y ∧ x ≤ y, we have y ≤ x ( y. So we can replace the

formula with x ( y �
∨{w | y ≤ w and w ∧ x ≤ y}. But the set of elements in Nop × Nop

that

are bigger than y is finite and nonempty.2 So this is a finite nonempty join, andNop ×Nop
has all

finite nonempty joins: they are given by inf.

Solution to Exercise 7.16.
Let m : Z→ B be the characteristic function of the inclusion N ⊆ Z.

1. pmq(−5) � false. 2. pmq(0) � true.

Solution to Exercise 7.17.
1. The characteristic function pidNq : N→ B sends each n ∈ N to true.

2. Let !N : � → N be the inclusion of the empty set. The characteristic function p!Nq : N→ B sends

each n ∈ N to false.

Solution to Exercise 7.19.
1. The sort of thing (*?*) we’re looking for is a subobject of B, say A ⊆ B. This would have a

characteristic function, and we’re trying to find the A for which the characteristic function is

¬ : B→ B.

2. The question now asks “what is A?” The answer is {false} ⊆ B.

Solution to Exercise 7.20.
1. Here is the truth table for P � (P ∧Q):

P Q P ∧Q P � (P ∧Q)
true true true true

true false false false

false true false true

false false false true

(A.3)

2. Yes!

3. The characteristic function for P ⇒ Q is the function p⇒q : B×B→ B given by the first, second,

and fourth column of Eq. (A.3).

4. It classifies the subset {(true, true), (false, true), (false, false) ⊆ B × B.

Solution to Exercise 7.21.
Say that pEq, pPq, pTq : N→ B classify respectively the subsets E B {n ∈ N | n is even}, P B {n ∈ N |
n is prime}, and T B {n ∈ N | n ≥ 10} of N.

1. pEq(17) � false because 17 is not even.

2. pPq(17) � true because 17 is prime.

3. pTq(17) � true because 17 ≥ 10.

4. The set classified by (pEq ∧ pPq) ∨ pTq is that of all natural numbers that are either above 10 or

an even prime. The smallest three elements of this set are 2, 10, 11.

Solution to Exercise 7.27.
1. The 1-dimensional analogue of an ε-ball around a point x ∈ R is B(x , ε) B {x′ ∈ R | |x− x′ | < ε},

i.e. the set of all points within ε of x.
2. A subset U ⊆ R is open if, for every x ∈ U there is some ε > 0 such that B(x , ε) ⊆ U.

3. Let U
1
B {x ∈ R | 0 < x < 2} and U

2
B {x ∈ R | 1 < x < 3}. Then U B U

1
∪U

2
� {x ∈ R | 0 <

x < 3}.

2
If y � (a , b) then there are exactly (a + 1) ∗ (b + 1) elements y′ for which y ≤ y′.
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4. Let I � {1, 2, 3, 4, . . .} and for each i ∈ I let Ui B {x ∈ R | 1

i < x < 1}, so we have U
1
⊆ U

2
⊆

U
3
⊆ · · · . Their union is U B

⋃
i∈I Ui � {x ∈ R | 0 < x < 1}.

Solution to Exercise 7.29.
1. The coarse topology on X is the one whose only open sets are X ⊆ X and � ⊆ X. This is a

topology because it contains the top and bottom subsets, it is closed under finite intersection (the

intersection A ∩ B is � iff one or the other is �), and it is closed under arbitrary union (the union⋃
i∈I Ai is X iff Ai � X for some i ∈ I).

2. The fine topology on X is the one where every subset A ⊆ X is considered open. All the

conditions on a topology say “if such-and-such then such-and-such is open,” but these are all

satisfied because everything is open!

3. If (X,P(X)) is discrete, (Y,OpY) is any topological space, and f : X → Y is any function then it

is continuous. Indeed, this just means that for any open set U ⊆ Y the preimage f −1(U) ⊆ X is

open, and everything in X is open.

Solution to Exercise 7.31.
1. The Hasse diagram for the Sierpinsky topology is � → {1} → {1, 2} .
2. A set (Ui)i∈I covers U iff either

• I � � and U � �; or
• Ui � U for some i ∈ I.

In other words, the only way that some collection of these sets could cover another set U is if that

collection contains U or if U is empty and the collection is also empty.

Solution to Exercise 7.32.
Let (X,Op) be a topological space, suppose that Y ⊆ X is a subset, and consider the subspace topology

Op
?∩Y .

1. We want to show that Y ∈ Op
?∩Y . We need to find B ∈ Op such that Y � B ∩ Y; this is easy, you

could take B � Y or B � X, or anything in between.

2. We still need to show that Op
?∩Y contains � and is closed under finite intersection and arbitrary

union. � � �∩ Y, so according to the formula, � ∈ Op
?∩Y . Suppose that A

1
,A

2
∈ Op

?∩Y . Then

there exist B
1
, B

2
∈ Opwith A

1
� B

1
∩Y and A

2
� B

2
∩Y. But then A

1
∩A

2
� (B

1
∩Y)∩(B

2
∩Y) �

(B
1
∩ B

2
) ∩ Y, so it is in Op

?∩Y since B
1
∩ B

2
∈ Op. The same idea works for arbitrary unions:

given a set I and Ai for each i ∈ I, we have Ai � Bi ∩ Y for some Bi ∈ Op, and⋃
i∈I

Ai �
⋃
i∈I

(Bi ∩ Y) �
(⋃

i∈i

Bi

)
∩ Y ∈ Op

?∩Y .

Solution to Exercise 7.34.
Let’s imagine a V-category C, where V is the quantale corresponding to the open sets of a topological

space (X,Op). Its Hasse diagram would be a set of dots and some arrows between them, each labeled

by an open set U ⊆ Op. It might look something like this:

A• B•

•
C

•
D

U5U1

U2

U3

U4C B

Recall from Section 2.3 that the ‘distance’ between two points is computed by taking the join, over all

paths between them, of the monoidal product of distances along that path. For example, C(B, C) �
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(U
3
∧U

1
) ∨ (U

4
∧U

2
), because ∧ is the monoidal product in V.

In general, we can thus imagine the open set C(a , b) as a kind of ‘size restriction’ for getting from a to b,
like bridges that your truck needs to pass under. The size restriction for getting from a to itself is X: no

restriction. In general, to go on any given route (path) from a to b, you have to fit under every bridge

in the path, so we take their meet. But we can go along any path, so we take the join over all paths.

Solution to Exercise 7.38.

•a •b •c •d •eY B

•
a1

•
a2

•
b1

•
b2

•
b3

•
c1 •

e1

•
e2X B

f (A.4)

1. The fiber of f over a is {a
1
, a

2
}.

2. The fiber of f over c is {c
1
}.

3. The fiber of f over d is �.
4. A function f ′ : X → Y for which every fiber has either one or two elements is shown below.

•a •b •c •d •eY B

•
e1

•
a2

•
b1

•
c1

•
b2 •

b3 •
a1

•
e2X B

f

Solution to Exercise 7.40.
Refer to Eq. (A.4).

1. Here is a drawing of all six sections over V
1
� {a , b , c}:

•
a
•
b
•
c

•

•

•

•

•

•

1
1

•
a
•
b
•
c

•

•

•

•

•

•

1
2

•
a
•
b
•
c

•

•

•

•

•

•

1
3

•
a
•
b
•
c

•

•

•

•

•

•

1
4

•
a
•
b
•
c

•

•

•

•

•

•

1
5

•
a
•
b
•
c

•

•

•

•

•

•

1
6

2. When V
2
� {a , b , c , d}, there are no sections: Sec f (V2

) � �.
3. When V

3
� {a , b , d , e}, the set Sec f (V3

)) has 2 ∗ 3 ∗ 1 ∗ 2 � 12 elements.
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Solution to Exercise 7.42.
Sec f ({a , b , c}) andSec f ({a , c}) are drawnas the top row (six-element set) andbottom row (two-element

set) below, and the restriction map is also shown:

(a
1
, b

1
, c

1
) (a

1
, b

2
, c

1
) (a

1
, b

3
, c

1
) (a

2
, b

1
, c

1
) (a

2
, b

2
, c

1
) (a

2
, b

3
, c

1
)

(a
1
, c

1
) (a

2
, c

1
)

Solution to Exercise 7.44.
1. Let 1

1
B (a

1
, b

1
) and 1

2
B (b

2
, e

1
); these do not agree on the overlap.

2. No, there’s no section 1 ∈ Sec f (U1
∪U

2
) for which 1

��
U1

� 1
1
and 1

��
U2

� 1
2
.

•a •b

•
a1

•
a2

•
b1

•
b2

•
b3

h
1

•b •e

•
b1

•
b2

•
b3

•
e1

•
e2

h
2

3.
•a •b •e

•
a1

•
a2

•
b1

•
b2

•
b3

•
e1

•
e2

glued section

4.

Solution to Exercise 7.47.
No, there is not a one-to-one correspondence between sheaves on M and vector fields on M. The

relationship between sheaves on M and vector fields on M is that the set of all vector fields on M
corresponds to one sheaf, namely Secπ , where π : TM → M is the tangent bundle as described in

Example 7.46. There are so many sheaves on M that they don’t even form a set (it’s just a ‘collection’);

again, one member of this gigantic collection is the sheaf Secπ of all possible vector fields on M.

Solution to Exercise 7.49.
1. The Hasse diagram for the Sierpinsky topology is � → {1} → {1, 2} .

2. A presheaf F on Op consists of any three sets and any two functions F({1, 2}) → F({1}) → F(�)
between them.

3. Recall from Exercise 7.31 that the only non-trivial covering (a covering of U is non-trivial if it does
not contain U) occurs when U � � in which case the empty family over U is a cover.

4. As explained in Example 7.36, F will be a sheaf iff F(�) � {1}. Thus we the category of sheaves

is equivalent to that of just two sets and one function F({1, 2}) → F({1}).

Solution to Exercise 7.52.
The one-point space X � {1} has two open sets, � and {1}, and every sheaf S ∈ Shv(X) assigns
S(�) � {()} by the sheaf condition (see Example 7.36). So the only data in a sheaf S ∈ Shv(X) is the set
S({1}). This is how we get the correspondence between sets and sheaves on the one point space.

According to Eq. (7.50), the subobject classifier Ω : Op(X)op → Set in Shv(X) should be the functor

whereΩ({1}) is the set of open sets of {1}. So we’re hoping to see that there is a one-to-one correspon-

dence between the set Op({1}) and the set B � {true, false} of booleans. Indeed there is: there are

two open sets of {1}, as we said, � and {1}, and these correspond to false and true respectively.

Solution to Exercise 7.53.
By Eqs. (7.50) and (7.51) the definition of Ω(U) is Ω(U) B {U′ ∈ Op | U′ ⊆ U}, and the definition of

the restriction map for V ⊆ U is U′ 7→ U′ ∩ V .
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1. It is functorial: given W ⊆ V ⊆ U and U′ ⊆ U, we indeed have (U′ ∩ V) ∩W � U′ ∩W , since

W ⊆ V . For functoriality, we also need preservation of identities, and this amounts toU′∩U � U′

for all U′ ⊆ U.

2. Yes, a presheaf is just a functor; the above check is enough.

Solution to Exercise 7.55.
We need a graph homomorphism of the following form:

A• B• C• D•
f

1

h i pG′q−−−−−−−−→ 0 V(0,0; 0)
(0,V ; 0)

(V,V ; 0)

(V,V ; A)
(V,0; 0)

There is only one that classifies G′, and here it is. Let’s write γ B pG′q.
• Since D is missing from G′, we have γ(D) � 0 (vertex: missing).

• Since vertices A, B, C are present in G′ we have γ(A) � γ(B) � γ(C) � V (vertex: present).

• The above forces γ(i) � (V, 0; 0) (arrow from present vertex to missing vertex: missing).

• Since the arrow f is in G′, we have γ( f ) � (V,V ; A) (arrow from present vertex to present vertex:

present).

• Since the arrows 1 and h are missing in G′, we have γ(1) � γ(h) � (V,V ; 0) (arrow from present

vertex to present vertex: missing).

Solution to Exercise 7.59.
With U � R − {0} ⊆ R, we have:

1. The complement of U is R −U � {0} and ¬U is its interior, which is ¬U � �.
2. The complement of ¬U is R − � � R, and this is open, so ¬¬U � R.

3. It is true that U ⊆ ¬¬U.

4. It is false that ¬¬U ⊆? U.

Solution to Exercise 7.60.
1. If for any V ∈ Op we have > ∧ V � V then when V � X we have > ∧ X B > ∩ X � X, but

anything intersected with X is itself, so > � > ∩ X � X.

2. (>∨V) B (X∪V) � X holds and (V ⇒ X) � ⋃
{R∈Op|R∩V⊆X} R � X holds because (X∩V) ⊆ X.

3. If for any set V ∈ Op we have (⊥ ∨V) � V , then when V � ∅ we have (⊥ ∨�) � (⊥ ∪�) � �, but
anything unioned with � is itself, so ⊥ � ⊥ ∪ � � �.

4. (⊥∧V) � (�∩V) � � holds, and (⊥ ⇒ V) � ⋃
{R∈Op|R∩�⊆V} R � X holds because (X ∩�) ⊆ V .

Solution to Exercise 7.62.
S is the sheaf of people, the set of which changes over time: a section in S over any interval of time is

a person who is alive throughout that interval. A section in the subobject {S | p} over any interval of

time is a person who is alive and likes the weather throughout that interval of time.

Solution to Exercise 7.64.
We need an example of a space X, a sheaf S ∈ Shv(X), and two predicates p , q : S → Ω for which

p(s) `s:S q(s) holds. Take X to be the one-point space, take S to be the sheaf corresponding to the set

S � N, let p(s) be the predicate “24 ≤ s ≤ 28,” and let q(s) be the predicate “s is not prime.” Then

p(s) `s:S q(s) holds.

As an informal example, take X to be the surface of the earth, take S to be the sheaf of vector fields

as in Example 7.46 thought of in terms of wind-blowing. Let p be the predicate “the wind is blowing

due east at somewhere between 2 and 5 kilometers per hour” and let q be the predicate “the wind is

blowing at somewhere between 1 and 5 kilometers per hour.” Then p(s) `s:S q(s) holds. This means
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that for any open set U, if the wind is blowing due east at somewhere between 2 and 5 kilometers

per hour throughout U, then the wind is blowing at somewhere between 1 and 5 kilometers per hour

throughout U as well.

Solution to Exercise 7.66.
We have the predicate p : N × Z→ B given by p(n , z) iff n ≤ |z |.

1. The predicate ∀(z : Z). p(n , z) holds for {0} ⊆ N.
2. The predicate ∃(z : Z). p(n , z) holds for N ⊆ N.
3. The predicate ∀(n : N). p(n , z) holds for � ⊆ Z.
4. The predicate ∃(n : N). p(n , z) holds for Z ⊆ Z.

Solution to Exercise 7.67.
Suppose s is a person alive throughout the interval U. Apply the above definition to the example

p(s , t) � “person s is worried about news t” from above.

1. The formula says that ∀(t : T). p(s , t) “returns the largest open set V ⊆ U for which p(s
��
V , t) � V

for all t ∈ T(V).” Note that T(V) is the set of items that are in the news throughout the interval

V . Substituting, this becomes “the largest interval of time V ⊆ U over which person s is worried

about news t for every item t that is in the news throughout V .” In other words, for V to be

nonempty, the person s would have to be worried about every single item of news throughout V .

My guess is that there’s a festival happening or a happy kitten somewhere that person s is not

worried about, but maybe I’m assuming that person s is sufficiently mentally “normal.” There

may be people who are sometimes worried about literally everything in the news; we ask you to

please be kind to them.

2. Yes, it is exactly the same description.

Solution to Exercise 7.68.
Suppose s is a person alive throughout the interval U. Apply the above definition to the example

p(s , t) � “person s is worried about news t” from above.

1. The formula says that ∃(t : T). p(s , t) “returns the union V �
⋃

i Vi of all the open sets Vi for

which there exists some ti ∈ T(Vi) satisfying p(s
��
Vi
, ti) � Vi .” Substituting, this becomes “the

union of all time intervals Vi for which there is some item ti in the news about which s is worried

throughout Vi .” In other words it is all the time that s is worried about at least one thing in

the news. Perhaps when s is sleeping or concentrating on something, she is not worried about

anything, in which case intervals of sleeping or concentrating would not be subsets of V . But if

s said “there’s been such a string of bad news this past year, it’s like I’m always worried about

something!,” she is saying that it’s like V �“this past year.”

2. This seems like a good thing for “there exists a piece of news that worries s” to mean: the news

itself is allowed to change as long as the person’s worry remains. Someone might disagree and

think that the predicate should mean “there is one piece of news that worries s throughout the

whole interval V .” In that case, perhaps this person is working within a different topos, e.g. one

where the site has fewer coverings. Indeed, it is the notion of covering that makes existential

quantification work the way it does.

Solution to Exercise 7.70.
It is clear that if j( j(q)) � j(q) then j( j(q)) ≤ j(q) by reflexivity. On the other hand, assume the

hypothesis, that p ≤ j(p) for all U ⊆ X and p ∈ Ω(U). If j( j(q)) ≤ j(q), then letting p B j(q) we have

both j(p) ≤ p and p ≤ j(p). This means p � j(p), but Ω is a poset (not just a preorder) so p � j(p), i.e.
j( j(q)) � j(q) as desired.

Solution to Exercise 7.72.
Let S be the sheaf of people and j be “assuming Bob is in San Diego...”

1. Take p(s) to be “s likes the weather.”
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2. Let U be the interval 2019/01/01 – 2019/02/01. For an arbitrary person s ∈ S(U), p(s) is a subset
of U, and it means the subset of U throughout which s likes the weather.

3. Similarly j(p(s)) is a subset of U, and it means the subset of U throughout which, assuming Bob

is in San Diego, s liked the weather. In other words, j(p(s)) is true whenever Bob is not in San

Diego, and it is true whenever s likes the weather.

4. It is true that p(s) ≤ j(p(s)), by the ‘in other words’ above.

5. It is true that j( j(p(s)) � j(p(s), because suppose given a time during which “if Bob is in San

Diego then if Bob is in San Diego then s likes the weather.” Then if Bob is in San Diego during

this time then s likes the weather. But that is exactly what j(p(s))means.

6. Take q(s) to be “s is happy.” Suppose “if Bob is in San Diego then both s likes the weather and s
is happy.” Then both “if Bob is in San Diego then s likes the weather” and “if Bob is in San Diego

then s is happy” are true too. The converse is equally clear.

Solution to Exercise 7.76.
We have o[a ,b] B {[d , u] ∈ IR | a < d ≤ u < b}.

1. Since 0 ≤ 2 ≤ 6 ≤ 8, we have [2, 6] ∈ o[0,8] by the above formula.

2. In order to have [2, 6] ∈? o[0,5]∪o[4,8], wewouldneed tohave either [2, 6] ∈? o[0,5] or [2, 6] ∈? o[4,8].
But the formula does not hold in either case.

Solution to Exercise 7.77.
A subset U ⊆ R is open in the subspace topology of R ⊆ IR iff there is an open set U′ ⊆ IR with

U � U′ ∩ R. We want to show that this is the case iff U is open in the usual topology.

Suppose that U is open in the subspace topology. Then U � U′∩R, where U′ ⊆ IR is the union of some

basic opens, U′ �
⋃

i∈I o[ai ,bi ], where o[ai ,bi ] � {[d , u] ∈ IR | ai < d < u < bi}. Since R � {[x , x] ∈ IR},
the intersection U′ ∩ Rwill then be

U �

⋃
i∈I

{x ∈ R | ai < x < bi}

and this is just the union of open balls B(mi , ri) where mi B
ai+bi

2
is the midpoint and ri B

bi−ai
2

is

the radius of the interval (ai , bi). The open balls B(mi , ri) are open in the usual topology on R and the

union of opens is open, so U is open in the usual topology.

Suppose that U is open in the usual topology. Then U �
⋃

j∈ J B(m j , ε j) for some set J. Let a j B m j − ε j
and b j B m j + ε j . Then

U �

⋃
j∈ J

{x ∈ R | a j < x < b j} �
⋃
j∈ J

(o[a j ,b j ] ∩ R) �
©«
⋃
j∈ J

o[a j ,b j ]
ª®¬ ∩ R

which is open in the subspace topology.

Solution to Exercise 7.80.
Fix any topological space (X,OpX) and any subset R ⊆ IR of the interval domain. Define HX(U) B
{ f : U ∩ R→ X | f is continuous}.

1. HX is a presheaf: given V ⊆ U the restriction map sends the continuous function f : U ∩ R→ X
to its restriction along the subset V ∩ R ⊆ U ∩ R.

2. It is a sheaf: given any family Ui of open sets with U �
⋃

i Ui and a continuous function

fi : Ui ∩ R→ X for each i, agreeing on overlaps, they can be glued together to give a continuous

function on all of U ∩ R, since U ∩ R � (⋃i Ui) ∩ R �
⋃

i(Ui ∩ R).
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morphism in, 81

object in, 81

of algebras for an operad, 218

of bĳections, 150

of categories, 93
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of cospans, 195
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of operads, 218
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preorder reflection of, 86

presentation of, 84, 93, 158

category of categories, see category, of

categories

category theory
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books on, iv
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change of base, see enrichment, change
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monoidal preorder of, 48
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hom object in, see hom object

monoidal, see monoidal closed cat-

egory, 76

closure operator, 33–35, 250
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problem, 119

cocone, 114

codomain, seemorphism, codomain
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as bookkeeping, 136

conditions, 136

Mac Lane’s theorem, 137
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and interconnection, 194
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presheaves formcolimit completion,
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pushout as, 188
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hypergraph category as, 203

companion profunctor, 130



INDEX 333

comparable, 15

completeness

of proof system, 170

composition
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sition in
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categories, composition in
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cone, 111

conjoint profunctor, 130

connected, 10
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connection
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continuous function, 234
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cooking, iv

coproduct, 186–188

corelation, 142, 150

corelations

hypergraph category of, see hyper-
graph category, of corelations

cospan, 194–197

apex of, 194

decorated, 206

foot of, 194

cospans

as theoryof Frobeniusmonoids, 200

category of, 196

composition of, 195

decorated, 203

hypergraph category of, see hyper-
graph category, of cospans

Cost, 54, 69, 71
counit, 141

cover, 234, 237

empty, 237

cowlick

inevitability of, 242

cross section, see section
currying, 103, 227, 249

cyber-physical system, 147

dagger, 21, 66

data migration, 99, 104

adjoints, 102

left pushforward, 104

pullback, 100, 102

right pushforward, 104

database, 77–81, 224

as interlocking tables, 77

communication between, 79

constraints, 79, 94

data migration, 80

foreign key, 78

ID columns of, 77

instance, 93–94, 97

instance homomorphism, 97

instances form a topos, 232

query, 106, 112

schema, see database schema, 158

database schema, 78, 93

as category presentation, 79, 85

free, 78

mapping between, 80

design, 117

diagram

as functor, 95

commutative, 95

differential equation, 162

discrete dynamical system, 100

induced graph of, 105

disjoint union, see union, disjoint
divides relation, 8, 25

as preorder, 15

domain, see morphism, domain

dual, see also properties, dual
as opposite, 72

category as opposite, in Prof, 145
double, 142

object, 141
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discrete, 101, seediscrete dynamical

system
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closed, 211
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composition in, 139

general definition, 138
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preorders as, 57
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enriched functor, 65
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base of, 57

change of base, 64

epi-mono factorization, 28, 225, 227, 243
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surjection as, 227

equivalence of categories, 66, 97

equivalence relation, 9, 193, 194
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as symmetric preorder, 13
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feasibility relation, 119–125
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feedback, 174

fiber, see preimage

flip-flop, 181

floor function, 27

foreign key, see database, foreign key

free

category, 82, 89, 154

monoid, 155

preorder, 153
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schema, 78
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law, 198

monoid, 198

structure, 197–201

function, 2, 10

as database instance, 90

as relation, 10

bĳective, 10, 150, 156
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identity, 11

injective, 10, 226

structure preserving, 2
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functor, 91–93

data migration, see data migration

diagram as, 95

enriched, see enriched functor

operad, 217

presheaf as, 232

prop, 151
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future
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Galois connection, 26–36
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tion

gluing, 237

graph, 14

arrow, 14

as Set-valued functor, 97

complete, 104

discrete, 104

free category on, 82

homomorphism, 98
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vertex, 14

weighted, 62

graphs

database schema for, 97–102

homomorphism of, 97

topos of, 233

graphs

homomorphism of, 99

greatest common divisor, 25
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group, 84, 88

commutator subgroup, 104

free, 104
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database schema as, 78

for metric spaces, 62

for preorders, 5

for profunctors, 132

weighted graph as, 62

Hausdorff distance, 60, 73

hom object, 57, 58, 64, 128, 138, 139

matrix of, 64

hom-set, 81

hypergraph category, 197–203

of corelations, 202

of cospans, 202
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operad for, 216

theory of, 218
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spider, 184, 199
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function, 11, see also function, iden-
tity

functor, 93

in enriched categories, see enriched
category, identity in

in wiring diagrams, 135

matrix, 74, 166

morphism, 81, 82

natural transformation, 96

port graph, 153
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iff, 14

IMPLIES operation, 231, 245
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infimum, 25

infix notation, 8, 9, 13, 42, 230

informatics

discarding in, 52
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monoidal preorder of, 51

initial object, 184–186

as colimit, 192

empty set as, 185

interaction, 221

interconnection, 182

as variable sharing, 147

network-type, 183

via Frobenius structures, 197

interface, 182, 222
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isomorphism, 88–89

adjunction as relaxed version of, 27

as stable under pullback, 226

as stable under pushout, 189

bĳection as, 88

of preorders, 21

join, 4, 23–25, 73

as coproduct, 186

joins

preservation of, 5, 31

required in a quantale, 71

Kan extension, 115

language, 223

internal, 223, 251

Lawvere metric space, 59–65

as Cost-category, 59
of regions, 60

least common multiple, 25

least upper bound, 23

level shift, 18, 35, see also primordial

ooze

lifting problems, 94

limit, 107–113, 224, 225, 231

formula for finite limits in Set, 112
product as, 108

pullback as, 112

terminal object as, 108

linear relation, 177

linear relations

hypergraph category of, see hyper-
graph category, of linear rela-

tions

logic, 34, 224, 230–232

implication in, 6

in a topos, 243

manufacturing, 39

discard operation in, 50

monoidal preorder of, 49

map

monotone, see also monotone map,

18–22

order-preserving, see map, mono-

tone

structure preserving, 1, 18

mapping object

see hom object, 57

matching family, 237

matrices

multiplication of, 74

rig of, 160

matrix, 63, 73, 123

associated to a signal flow graph,

165–168

feasibility, 122

identity, 74

of distances, 62

meet, 23–25, 109

meets

preservation of, 26, 31

metric space, 66

as Cost-category, 61
as topological space, 235

discrete, 104

extended, 59

ordinary, 59

presentation of, 62

mirror image, see transpose
modal operator, 250

modes of transport, 63

monoid, 42, 83, see also monoidal cate-

gory, monoid object in

as one-object category, 83

free, 104, 155

group as, 88

monoidal category, iv, 136–138

monoid object in, 172–173

monoidal closed category, 69

booleans as, 70

Cost, see Cost
monoidal functor, 173, 204, 206, 209, 213



INDEX 337

monoidal monotone as, 56

monoidal monotone, 55–57

monoidal preorder, 41–57

opposite of, 55

monoidal product, 41

as stacking, 197, 211

monoidal structure, 41

weak, 42

monoidal unit, 41

drawn as nothing, 45

monomorphism, 225, 226

as stable under pullback, 226

injection as, 226

monotone map, see alsomap, monotone

as Bool-functor, 66
as functor, 92

morphism, v

codomain, 81

domain, 81

identity, 81

in free category, 82

inequality as mere existence of, 86

invertible, 88

natural numbers, 15, 42, 53

as free category, 83

as free monoid, 155

as rig, 159

natural numbers as

as set, 7

natural transformation, 95–97

as presheaf morphism, 233

between monotone maps, 97

component of, 95, 96

graph homomorphism as, 98

identity, 96

naturality condition, 95

navigator, 72, 126

network

diagram, 181

language, 201

NOT operation, 231, 245

notation, see also icon
for classified subobjects, 229

for common sets, 7

for monoidal structures, 42

infix, see infix
set builder, 7

obvious

conventionalmathematicalmeaning

of, 150

ooze

primordial, see primordial ooze

open set, 234

open system, 182

operad, 184, 211–218

algebra of , 217

as custom compositionality, 184

from monoidal category, 214

of cospans, 215

of sets, 214

of wiring diagrams, 211

operation in, 213

operation, see operad
logical, 224

opposite

V-category, 66

category, see category, opposite
preorder, 18

opposite category

and presheaves, 232

as dual, 145

OR operation, 230, 245

order, see also preorder
preservation of, 5

total, 16

ordinals

as categories, 83

partial order, 13, see also preorder, skele-
tal, 127

partition, 9, 20, 28–30

as surjection, 11
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associated equivalence relation of,

10

from preorder, 16

label irrelevance of, 9

part of, 9

pullback of, 29

pushforward of, 29

pie

lemon meringue, 40, 47

poker, 43

port graph, 151–153, 155

acyclicity condition, 151

as morphism, 152, 156

poset, see partial order
power set, 16, 17, 19, 54, see also pre-

order, of subobjects, 204

predicate, 224, 228, 247, 256

prediction vs. possibility, 221

preimage, 10, 11, 32, 120, 234, 238

preorder, 12–18

as Bool-category, 57, 58
as category, 85

codiscrete, 13, 104, 303

Cost, see Cost
dagger, see dagger
discrete, 13, 20, 104, 303

free, 104

free on a relation, 153

monoidal, seemonoidal preorder

of open sets, 236

of partitions, 17

of subobjects, 247

partial order as, 13

presentation of, 14

skeletal, 13, 21

symmetric monoidal, see monoidal

preorder, 137

preorder relation

as binary relation, 12

presentation

of linear algebra, 168

of metric space, 62

of monoid, 85

of preorder, 14

of prop, 158

presheaf, 232–234

as database instance, 233

restriction maps, 232

sections, 232

presheaves

morphism of, 233

topos of, 232

primordial ooze, see also ooze, primor-

dial, 93, 97, 134, 173

product

as limit, 111

in a category, 108

meet as, 109

monoidal, 136

of V-categories, 67

of categories, 110, 144

of preorders, 17

of sets, 8, 109

profunctor, 119–132

Cost, 122, see also Cost
as bridges, 122, 131

Bool, 119
collage of, see collage
enriched, 121, see profunctor
unit, 128, 130

profunctors

category of, 125–130

compact closed category of, 139

composition of, 125, 127

program semantics, 34, 37

prop, 149–179

FinSet, 150
expression in, 157

free, 155

hypergraph, 202

of R-relations, 175

of matrices, 164, 170
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posetal, 151

presentation of, 158

signature of, 155

properties

dual, 33

proposition, 54, see also logic
pullback, 225

along a map, 22, 32, 101

as limit, 112

monomorphism in terms of, 226

of isomorphism, 226

pullbacks

pasting of, 225

pushout, 28, 188–191

along isomorphism, 189

as colimit, 188

epimorphism in terms of, 226

in cospan composition, 195

quantale, 68, 71–76, 121, 123, 160

commutative, 71

Cost as, see Cost
matrix multiplication in, 73

of open sets, 236

quantales

as self-enriched, 71

quantification, 248

quotient, 10, 104, 157, 193

as data migration, 107

real numbers, 16, 42, 45, 172

as metric space, 61

as preorder, 23

as set, 7

topology on, 234

recipes, 40

reflexivity, 9, 12

as identity in a preorder, 85

relation, 8, 151

binary, 8, 35

divides, see divides relation
equivalence, see equivalence relation

free preorder on, 35, 153

function as, 10

linear, see linear relation
preorder, see preorder
subset, 54

relations

composition of, 175

resource, 117

theory, 39–52

restriction map, see presheaf, restriction
map

retraction, 89

reverse icon, see transpose
rig, 159–160

matrices as, 160

matrices over, 164

vs. ring, 160

ring

free, 104

safety proof, 255

schema, see dtabase schema89

semantics, 223, 251

sound, 251

semiring, see rig
set, 7–8

nth
ordinal as, 7

as sheaf on one-point space, 242

booleans as, 7

empty, 7, 11

integers as, 7

natural numbers as, 7

one element, 7

real numbers as, 7

sets

category of, 87

sheaf, 223, 232–242

condition, 237

constant, 253

of local functions, 254

of sections of a function, 237, 240

of vector fields, 241
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on IR as semantics of behavior, 253

sheaves

morphism of, 237

topos of, 242

Sierpinski space, 235, 242

signal flow graph, 148–179

and linear algebra, 176

as morphism, 162

general, 175

semantics of, 163

simplified, 160

site, 232

database schema as, 232

topological space as, 234

skeleton, 13, 66

snake equations, 141

soundness

of proof system, 170

spider, 183, 199

as iconography, 184

spiderable wire

Frobenius structure as, 199

stacking, seemonoidal product

subobject classifier, 225, 228–230, 243–

251

and logic, 230

as superdense nugget from outer

space, 228

for behavior types, 254

in Set, 229
subset, 7, see also power set

summaries

limits and colimits as, 106

supremum, 25

symmetry, 9, 13, 42, 149

and dagger, 21

as required for enriched products,

67

in wiring diagrams, 46

lack of for effort, 60

of monoid operation, wiring dia-

gram for, 198

of monoidal product, 42

system

component, 222

property, 223

tangent bundle, 241

vector fields as sections of, 241

terminal object, 108

as limit, 108

limit as, 111

universal property of, 108

theory

of hypergraph props, 218

of monoids, 173

top element, see terminal object

topological space, 234–240, 252

topology

codiscrete, 104

discrete, 104, 235

subspace, 236

topos, 223, 242–257

as category of sheaves, 237, 242

database instances as, 231

of sets, 224

properties of, 225–230

total order, 15, 28

transitive closure, 29

transitivity, 9, 12

as composition in a preorder, 85

transpose, 174

tree of life, 19

triangle inequality, 60

trivial path, 82, 91, 151

type theory, 251

union, 4, 8, 64

and data migration, 105

as join, 25

disjoint, 8, 107, 133, 186
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unique up to unique isomorphism, 24,

108

unit, 141

monoidal, 41, see alsomonoidal unit

profunctor, 128

unitality, 81, 83, 125, 135

as coherence condition, 115

in enriched categories, 139

of identity functions, 87

of monoid operation, wiring dia-

gram for, 198

of monoidal product, 42

weak, 130

universal property, 23, 108, 115, 153–

159, 184

upper set, 17, 22

V-category, see enrichment

V-profunctor, see profunctor, enriched
vector, 164, 165, 173

tangent, 241

vector field, 241

vector space, 212

free, 104

weighted graph, see graph, weighted

wiring diagram, iv, 40, 43–48, 134–136,

140

as graphical proof, 47

for categories, 134

for hypergraph categories, 200

for monoidal categories, 136

for monoidal preorders, 44

icon of, 44, 46, 51

styles of, 44, 146, 183

Yoneda lemma

for preorders, 20
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