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Introduction

The	title	of	this	book	is	the	punch	line	of	an	old	joke	that	goes	like	this:

Joe	is	a	very	nice	fellow,	but	has	always	been	a	little	slow.	He	goes	into	a	store
where	a	salesman	is	standing	on	a	soapbox	in	front	of	a	group	of	people.	The
salesman	is	pitching	the	miracle	new	invention,	the	Thermos	bottle.	He	is
saying,	"It	keeps	hot	food	hot,	and	cold	food	cold...."	Joe	thinks	about	this	a
minute,	amazed	by	this	new	invention	that	is	able	to	make	a	decision	about
which	of	two	different	things	it	is	supposed	to	do	depending	on	what	kind	of
food	you	put	in	it.	He	can't	contain	his	curiosity,	he	is	jumping	up	and	down,
waving	his	arm	in	the	air,	saying	"but,	but,	but,	but..."	Finally	he	blurts	out	his
burning	question	"But	how	do	it	know?"

You	may	or	may	not	have	laughed	at	the	joke,	but	the	point	is	that	Joe	looked	at
what	this	Thermos	bottle	could	do,	and	decided	that	it	must	be	capable	of
sensing	something	about	its	contents,	and	then	performing	a	heating	or	cooling
operation	accordingly.	He	thought	it	must	contain	a	heater	and	a	refrigerator.	He
had	no	idea	of	the	much	simpler	principle	on	which	it	actually	operates,	which	is
that	heat	always	attempts	to	move	from	a	hotter	area	to	a	cooler	area,	and	all	the
Thermos	does	is	to	slow	down	this	movement.	With	cold	contents,	the	outside
heat	is	slowed	on	its	way	in,	and	with	hot	contents,	the	heat	is	slowed	on	its	way
out.	The	bottle	doesn't	have	to	"know"	in	order	to	fulfill	its	mission,	and	doesn't
heat	or	cool	anything.	And	eventually,	the	contents,	hot	or	cold,	do	end	up	at
room	temperature.	But	Joe's	concept	of	how	the	bottle	worked	was	far	more
complicated	than	the	truth.

So	the	reason	for	the	book	title,	is	that	when	it	comes	to	computers,	people	look
at	them,	see	what	they	can	do,	and	imagine	all	sorts	of	things	that	must	be	in
these	machines.	Or	they	imagine	all	sorts	of	principles	that	they	must	be	based
on,	and	therefore	what	they	may	be	capable	of.	People	may	assign	human
qualities	to	the	machine.	And	more	than	a	few	find	themselves	in	situations
where	they	feel	that	they	are	embarrassing	themselves,	like	our	friend	in	the
joke,	Joe.

But	computers	are	actually	quite	easy	to	understand.	Of	course	computers	have	a
greater	number	of	parts	than	a	Thermos	bottle,	but	each	part	is	extremely	simple,
and	they	all	operate	on	a	very	simple,	very	easy	to	understand	principle.

With	the	Thermos,	the	principle	is	that	of	the	motion	of	heat.	This	is	something



we	can	observe	in	life.	We	see	ice	cubes	melting	when	they	are	removed	from
the	freezer,	and	we	see	the	hot	meal	cooling	off	on	the	table	when	the	family	is
late	for	dinner.

In	the	computer,	the	principle	on	which	it	operates	has	to	do	with	electricity,	but
that	doesn't	mean	that	it	is	hard	to	understand.	If	you	have	observed	the	fact	that
when	you	turn	on	a	light	switch,	a	light	bulb	lights	up,	and	when	you	turn	the
switch	off,	the	light	goes	dark,	then	you	have	observed	the	principle	on	which
computers	operate.	That	is	about	all	you	need	to	know	about	electricity	to
understand	computers.



JUST	THE	FACTS	MA'AM

This	book	is	not	primarily	intended	to	be	a	textbook.	There	are	no	problems	to
do	at	the	end	of	each	chapter.	Its	intention	is	simply	to	demystify	the	subject	of
computers	for	anyone	who	has	ever	wondered	what's	going	on	inside	of	that	box.
Of	course,	it	also	makes	a	perfect	introduction	to	computers	for	a	young	person
who	will	ultimately	go	on	to	get	a	PhD	in	Computer	Science.	But	it	should	be
easily	understandable	by	housewives,	senior	citizens	and	children	who	can	read
well.	It	should	be	understandable	to	plumbers	and	street	sweepers.	It	requires	no
previous	technical	education.	It	only	requires	that	you	can	read	the	language,	you
can	turn	a	light	bulb	on	and	off,	and	you	can	do	very	simple	addition	on	the
order	of	8+5=13.

This	book	presents	the	complete	essentials	that	make	up	a	computer.	It	presents
every	piece	and	part,	in	the	proper	order	so	that	each	one	will	make	sense,	and
can	be	understood.	Every	part	is	explained	fully,	and	every	new	word	is	defined
thoroughly	when	it	is	first	used.	Any	attempt	to	simplify	the	subject	further
would	leave	gaps	in	the	big	picture	where	someone	would	still	have	to	guess
how	the	parts	work	together,	and	you	just	wouldn't	ever	have	that	"Aha,	I	get	it!"
moment	that	I	think	you'll	soon	have.

This	book	is	not	a	'dumbed-down'	version	of	some	college	textbook.	It	is	a
complete	explanation	of	the	basic	principles	of	computers.	It	is	a	technical	book,
but	so	is	a	cookbook	and	so	is	a	driver's	education	handbook.	This	book	just
starts	at	the	beginning	and	defines	every	item	needed	to	understand	the	machine.
No	matter	what	someone	already	knows	about	computers,	this	will	fill	in	any
missing	pieces	and	put	them	all	together	into	something	that	makes	sense.

Even	our	friend,	Joe,	could	understand	this	book	with	diligent	study.	There	are
thousands	of	words	and	ideas	associated	with	the	field	of	computers	that	make
the	whole	subject	seem	like	a	mess.	But	the	basic	concepts	underlying	them	are
simple.

In	this	book,	there	will	not	be	volumes	of	trivia	about	the	construction	or	history
of	computers,	just	the	essentials,	no	more	and	no	less.	Each	part	of	the	computer
has	a	simple	function,	and	when	they	are	connected	together,	you	end	up	with	a
useful	machine	called	a	computer.

There	is	nothing	to	memorize	in	this	book.	Each	chapter	is	designed	to	give	you
a	new	idea	that	you	didn't	have	before,	or	if	it	is	something	that	you	had	heard
about	previously,	it	always	seemed	confusing.	Each	idea	is	very	simple,	and	one



thing	leads	to	the	next.	Each	chapter	presents	an	idea.	Each	idea	is	simple	and
easy	to	understand.	Later	chapters	present	ideas	that	build	on	the	ideas	from
previous	chapters.

If	someone	were	to	write	a	book	about	how	to	build	a	house,	there	could	be
various	levels	of	detail.	The	simplest	book	would	say,	"lay	a	foundation,	put	up
the	walls,	cover	with	a	roof,	put	in	plumbing	and	electrical,	and	you're	done."
That	would	not	be	enough	detail	for	someone	who	didn't	already	have	some
experience	using	a	hammer	and	saw	and	installing	a	faucet	and	wiring	a	light
switch.

At	the	other	end	of	the	spectrum	would	be	a	book	that	had	separate	chapters	for
every	possible	type	of	foundation,	the	different	kinds	of	dirt	you	might	have	to
dig	in,	formulas	for	a	dozen	different	kinds	concrete,	charts	of	weather
conditions	that	are	optimum	for	laying	foundations,	etc.	That	would	be	far	too
much	information.	There	would	be	so	many	details,	that	what	was	really
important	would	get	lost.

This	book	attempts	to	give	just	enough	detail	to	see	what	every	computer	has	in
common	and	how	they	work,	not	how	to	build	the	biggest	or	best	computer	ever
made.	It	is	not	about	any	specific	brand	of	computer.	It	is	not	about	how	to	use	a
computer.	If	it	were	a	book	about	building	a	house,	it	would	probably	describe	a
simple	plan	for	a	sturdy	garden	shed	with	a	sink	and	one	bare	light	bulb,
showing	the	size	and	shape	of	every	piece	of	wood,	where	to	put	all	the	nails,
how	to	hang	the	door	and	how	to	put	the	water	pipes	together	so	they	wouldn't
leak.	It	would	not	show	how	to	build	anything	as	complicated	as	a	fancy	curved
oak	staircase.

We	are	going	to	show	the	one	simple	part	that	computers	are	made	of,	and	then
connect	a	bunch	of	them	together	until	we	have	built	a	complete	computer.	It	is
going	to	be	a	lot	simpler	than	you	ever	imagined.



SPEED

Computers	seem	mysterious	and	magical.	How	can	they	do	what	they	do?	They
play	games,	they	draw	pictures,	they	'know'	your	credit	rating.	These	machines
are	capable	of	doing	all	sorts	of	strange	and	wondrous	things.	Yet	they	are
simple.	They	can	do	only	a	very	few,	very	simple	things.	And,	they	can	only	do
one	of	these	simple	things	at	a	time.	They	appear	to	be	doing	complex	things,
only	because	they	do	a	huge	number	of	simple	things	one	after	another	in	a	small
amount	of	time.	The	result,	as	in	a	video	game,	is	very	complex	in	appearance,
but	in	reality,	is	very	simple,	just	very	very	fast.

Computers	are	designed	to	do	a	small	number	of	specific	simple	things,	and	to
do	these	things	quickly,	one	after	the	other.	Which	simple	things	are	done,	and	in
what	order,	determines	what	sort	of	task	the	computer	accomplishes	in	any	given
time,	but	anything	the	computer	does	consists	of	nothing	outside	of	its	limited
capabilities.

Once	you	see	what	a	computer	is	made	up	of,	you	will	come	to	realize	how	it	is
that	they	can	do	what	they	do,	exactly	what	sorts	of	things	they	are	capable	of,
and	also,	what	they	are	not	capable	of.

So	the	secret	of	computers	is	not	that	they	are	complex,	rather	it	is	their	speed.
Let's	look	at	exactly	how	fast	their	speed	is.

Since	computers	work	on	electricity,	their	speed	is	related	to	the	speed	of
electricity.	You	may	remember	hearing	that	the	speed	of	light	is	186,000	miles
per	second.	That's	pretty	darned	fast.	Light	can	go	around	the	entire	earth	seven
times	in	one	second,	or	from	the	Earth	to	the	Moon	in	about	a	second	and	a	half.
Per	the	physicists,	electricity	has	many	properties	in	common	with	light,	and	its
speed,	when	traveling	in	a	wire,	gets	slowed	down	to	about	half	the	speed	of
light.	But	still,	going	all	the	way	around	the	Earth	three	and	a	half	times	in	one
second	is	extremely	fast.

As	a	point	of	comparison,	imagine	it	is	a	hot	day	and	you	have	an	electric	fan
sitting	on	the	table	blowing	cool	air	on	you.	The	fan	is	spinning	around	so	fast
that	the	blades	are	a	blur,	but	it	is	only	spinning	around	about	40	times	each
second.	A	point	on	the	edge	of	one	of	those	blades	will	only	travel	about	150	feet
in	that	second,	it	will	take	35	seconds	for	that	point	to	travel	just	one	mile.

Since	the	fan	blades	are	already	a	blur,	it	may	be	hard	to	imagine	them	going	just
ten	times	faster.	If	it	did,	that	fan	would	be	putting	out	quite	a	breeze.	And	if	you



could	make	it	go	a	hundred	times	faster,	it	would	almost	certainly	self-destruct,
with	fan	blades	breaking	off	and	getting	stuck	in	the	ceiling.	But	electricity
traveling	in	the	same	circle	would	go	around	about	a	hundred	million	times	in
one	second,	that's	two	and	a	half	million	times	faster	than	the	fan	blades.	That's
fast.

A	million	is	a	very	large	number.	If	you	took	a	big	sheet	of	paper	that	was	40
inches	square	and	took	a	ruler	and	placed	it	at	the	top	edge,	and	drew	25	dots	per
inch	along	the	top	edge	of	the	paper,	you	would	have	to	draw	one	thousand	dots
to	get	across	that	sheet	of	paper.	If	you	then	moved	the	ruler	down	the	page
1/25 	of	an	inch,	and	drew	another	thousand	dots,	and	kept	doing	that,	you
would	have	to	move	the	ruler	down	the	page	one	thousand	times,	each	time
drawing	one	thousand	dots.	If	you	could	complete	such	a	boring	task,	you	would
end	up	with	a	piece	of	paper	with	a	million	dots	on	it.	That's	a	lot	of	dots	or	a	lot
of	anything.	And	just	to	finish	the	thought,	if	you	could	find	a	thousand	people
who	would	each	draw	one	of	these	million	dot	sheets,	and	stacked	up	those
thousand	sheets	in	a	pile,	you	would	then	have	a	billion	dots.

Now	let's	say	that	the	electricity	moving	around	inside	the	computer	can
accomplish	some	simple	task	by	traveling	one	foot.	That	means	that	the
computer	could	do	500	million	simple	things	in	one	second.	Again	for
comparison,	the	fan	on	the	table	will	spin	for	7	hours	to	go	around	just	one
million	times	and	it	will	take	a	full	six	months	for	it	to	spin	around	500	million
times.

When	you	talk	about	the	speed	that	electricity	can	move	between	parts	inside	the
computer,	some	of	the	parts	you	can	see	are	a	foot	apart,	some	are	closer,	an
inch,	a	tenth	of	an	inch.	And	inside	these	parts	are	a	multitude	more	parts	that	are
very	close	to	each	other,	some	just	thousandths	of	an	inch	apart.	And	the	shorter
the	distance	the	electricity	has	to	travel,	the	sooner	it	gets	there.

There	is	no	point	in	saying	how	many	things	today's	computers	do	in	a	single
second,	because	that	would	date	this	book.	Computer	manufacturers	continue	to
produce	new	computers	that	go	twice	as	fast	as	the	fastest	computers	of	only	two
or	three	years	past.	There	is	a	theoretical	limit	to	how	fast	they	can	go,	but
engineers	keep	finding	practical	ways	to	get	around	the	theories	and	make
machines	that	go	faster	and	faster.

During	all	of	this	time	that	computers	have	been	getting	faster,	smaller	and
cheaper,	the	things	that	computers	do,	really	have	not	changed	since	they	were
first	invented	in	the	1940's.	They	still	do	the	same	few	simple	things,	just	faster,

th



cheaper,	more	reliably	and	in	a	smaller	package.

There	are	only	a	few	sections	to	a	computer,	and	they	are	all	made	out	of	the
same	kinds	of	parts.	Each	section	has	a	specific	mission,	and	the	combination	of
these	parts	into	a	machine	was	a	truly	marvelous	invention.	But	it	is	not	difficult
to	understand.



Language

In	this	book,	we	are	going	to	need	to	define	some	words	that	are	used	to	describe
the	parts	inside	a	computer.

In	some	professions,	notably	the	Medical	and	Legal,	there	is	a	tendency	to	make
up	a	lot	of	new	words,	and	to	take	them	from	the	ancient	Greek	and	Latin
languages,	and	to	make	them	long	and	hard	to	pronounce.

In	the	world	of	computers,	it	seems	that	the	pioneer	inventors	were	a	less	formal
sort	of	people.	Most	of	the	words	they	used	are	simple	words	from	everyday
language,	words	that	already	existed,	but	are	used	in	a	new	way.

Some	of	the	new	words	are	words	we	already	know,	used	as	a	different	part	of
speech,	like	an	existing	noun	now	used	as	a	verb.	Some	of	the	words	are
acronyms,	the	first	letters	from	the	words	of	a	phrase.

Each	word	will	be	described	thoroughly	when	it	is	first	used.	And	although	there
are	thousands	of	words	and	acronyms	in	use	if	you	consider	the	entire	computer
industry,	there	are	only	about	a	dozen	or	two	words	needed	to	understand	the
computer	itself.	You	have	probably	heard	some	of	these	words	before,	and
figured	out	what	they	meant	from	how	they	were	used,	but	now	you	will	get	the
proper	and	full	definitions.	In	many	cases	you	may	find	that	they	are	simpler
than	you	thought.



JUST	A	LITTLE	BIT

What	is	in	a	computer?	It	shows	you	still	pictures,	moving	pictures,	music,	your
checkbook,	letters	you	have	written,	it	plays	video	games,	communicates	all
around	the	world,	and	much	much	more.	But	are	there	pictures	inside	the
computer?	If	you	got	out	a	microscope	and	knew	where	to	look,	could	you	find
little	pictures	somewhere	inside	the	computer?	Would	you	see	"A"s	and	"B"s	and
"8"s	and	"12"s	moving	around	in	there	somewhere?

The	answer	is	no,	there	are	no	pictures,	numbers	or	letters	in	a	computer.	There
is	only	one	kind	of	thing	in	a	computer.	There	are	a	large	number	of	this	kind	of
thing,	but	there	is	only	one	kind	of	thing	in	there.	It	is	called	a	bit.

When	you	flip	a	coin	up	in	the	air,	and	let	it	fall	on	the	ground,	it	will	end	up	on
the	floor	in	one	of	two	possible	states	-	with	either	the	head	showing,	or	the	tail.

The	light	in	your	living	room	(assuming	you	have	a	switch	and	not	a	dimmer)
can	be	either	on	or	off.

The	lock	on	your	front	door	can	be	either	locked	or	unlocked.

What	do	all	of	these	things	have	in	common?	They	are	all	places	that	contain	a
thing	that	can	be	in	one	of	two	possible	states.	This	is	the	definition	of	a	bit.

A	bit	is	some	kind	of	a	physical	object	that	has	a	size	and	a	location	in	space,	and
it	has	some	quality	about	itself,	that	at	any	given	time	can	be	in	one	of	two
possible	states,	and	maybe	made	to	change	back	and	forth	between	those	two
states.

A	lump	of	clay	is	not	a	bit.	It	can	be	molded	into	a	ball,	a	cube,	a	pancake,	a	ring,
a	log,	a	face	or	anything	else	you	can	think	of.	It	has	a	size	and	a	location	in
space,	but	there	are	too	many	states	that	it	can	be	in	for	it	to	be	called	a	bit.	If
you	took	that	lump	of	clay,	flattened	it	out,	scratched	"yes"	on	one	side	of	it,	and
"no"	on	the	other	side,	and	then	put	it	in	a	kiln	and	fired	it	until	it	was	hard,	then
you	might	be	able	to	call	it	a	bit.	It	could	sit	on	a	table	with	either	the	"yes"	or
"no"	showing.	Then	it	would	only	have	two	states.

You	have	probably	heard	of	bits	before	in	relation	to	computers,	and	now	you
know	what	they	are.	In	a	computer,	the	bits	are	not	like	the	coin	or	the	lock,	they
are	most	like	the	light.	That	is,	the	bits	in	a	computer	are	places	that	either	have
electricity	or	they	do	not.	In	a	computer,	the	bits	are	very,	very	small	and	there
are	a	very	large	number	of	bits,	but	that's	all	that	is	in	there.



Like	the	light	in	the	living	room,	the	bit	is	either	on	or	off.	In	the	living	room,
there	is	electricity	in	the	wall	coming	into	the	switch.	When	you	turn	the	switch
on,	the	electricity	goes	from	the	switch,	through	the	wires	in	the	wall	and	ceiling,
into	the	light	socket	and	then	into	the	light	bulb.	So	this	bit	in	the	living	room	is
several	feet	long,	it	includes	the	switch,	the	wires,	the	socket	and	the	light	bulb.
In	a	computer,	bits	are	mostly	tiny,	actually	microscopic.	Also,	the	computer	bit
doesn't	have	a	mechanical	switch	at	one	end	or	a	light	bulb	at	the	other.	If	you
removed	the	light	bulb	from	the	socket	in	the	living	room,	the	switch	would	still
send	electricity	to	the	socket	when	it	was	on,	and	it	would	still	be	a	bit	-	you	just
wouldn't	be	able	to	see	whether	it	was	on	or	off	by	looking	at	a	light	bulb.	Your
computer	has	something	resembling	switches,	like	the	keys	on	the	keyboard,	and
something	resembling	light	bulbs,	like	the	tiny	dots	on	the	screen,	but	most	of
the	bits	are	inside	and	unseen.

This	is	basically	all	there	is	in	a	computer	-	bits.	There	are	lots	and	lots	of	them,
and	they	are	arranged	and	connected	up	in	various	ways,	which	we	will	examine
in	detail	as	the	book	progresses,	but	this	is	what	is	inside	all	computers	-	bits.	A
bit	is	always	in	one	of	its	two	possible	states,	either	off	or	on,	and	they	change
between	on	and	off	when	they	are	told	to	do	so.	Computer	bits	aren't	like	the
coin	that	has	to	physically	flip	over	to	change	from	one	state	to	the	other.	Bits
don't	change	shape	or	location,	they	don't	look	any	different,	they	don't	move	or
rotate	or	get	bigger	or	smaller.	A	computer	bit	is	just	a	place,	if	there	is	no
electricity	in	that	place,	then	the	bit	is	off.	When	electricity	is	present,	then	the
bit	is	on.

If	you	want	to	change	a	coin	from	showing	heads	to	showing	tails,	you	have	to
physically	move	it	to	flip	it	over,	which	takes	some	amount	of	time.	Because	the
only	thing	that	has	to	move	in	a	computer	bit	is	the	electricity,	changing	it's	state
from	off	to	on,	or	on	to	off	can	happen	much	more	quickly	than	anything	that	has
to	be	moved	physically.

As	another	example,	remember	the	wild	American	west	from	the	movies?	There
were	little	towns	separated	by	vast	distances.	The	bigger	towns	would	have	a
telegraph	office.	In	this	office	was	a	guy	wearing	a	funny	hat	who	had	a	spring-
loaded	switch	called	a	key,	and	he	would	send	messages	by	pressing	this	key	on
and	off	in	certain	patterns	that	represented	the	letters	of	the	alphabet.	That	key
was	connected	to	a	battery	(yes	they	had	batteries	back	then)	and	a	wire	that	was
strung	along	poles	until	it	got	to	another	town.	The	key	simply	connected	the
battery	to	the	wire	when	it	was	pressed,	and	disconnected	the	battery	when	the
key	was	not	pressed.	In	the	other	town	there	was	another	telegraph	office,	the



wire	came	into	that	office,	the	end	of	it	was	wrapped	around	an	iron	rod	(which
turns	into	a	magnet	when	there	is	electricity	in	the	wire,)	the	magnetized	rod
attracted	a	little	bar	of	iron	held	nearby	with	a	spring,	and	made	a	clicking	sound
every	time	the	electricity	came	on.	The	guy	in	the	office	listened	to	the	pattern	of
the	clicking	and	wrote	down	the	letters	of	the	message.	They	might	have	used	a
light	bulb	instead	of	the	clicker,	except	that	light	bulbs	had	not	yet	been
invented.

The	point	of	bringing	up	this	subject,	is	that	this	whole	telegraph	machine,	from
the	key	that	gets	pressed	in	one	town,	through	the	long	wire	that	travels	to
another	town	many	miles	away,	to	the	clicker,	this	whole	apparatus	comprises
just	one	single	bit.	It	is	a	place	that	can	either	have	or	not	have	electricity,	and
goes	on	and	off	as	it	is	told.	And	this	method	of	communication	revolutionized
the	world	in	many	ways.	But	this	very	important	invention	of	the	1840s
consisted	of	nothing	more	than	one	bit.

So	I	hope	this	begins	to	simplify	the	subject	of	computers	for	you.	There	is	only
one	thing	inside	computers,	bits.	Lots	of	them	to	be	sure,	but	when	you
understand	bits,	you	understand	what's	in	there.



WHAT	THE...?

Imagine	it	is	a	bright	sunny	day,	and	you	walk	into	a	room	with	lots	of	open
windows.	You	notice	that	the	ceiling	light	is	on.	You	decide	that	this	is	a	waste,
and	you	are	going	to	turn	the	light	off.	You	look	at	the	wall	next	to	the	door	and
see	a	switch	plate	with	two	switches.	So	you	assume	that	the	one	closer	to	the
door	is	for	the	ceiling	light.	But	then	you	notice	that	the	switch	is	already	off.
And	the	other	switch	is	off	too.	So	then	you	think	"well,	maybe	someone
installed	the	switch	upside	down,"	so	you	decide	to	flip	the	switch	anyway.	You
flip	it	on	and	off	but	nothing	happens,	the	ceiling	light	stays	lit.	So	then	you
decide	that	it	must	be	the	other	switch,	and	you	flip	it	on,	off,	on,	off.	Again
nothing	happens,	that	ceiling	light	continues	to	shine	at	you.	You	look	around,
there	is	no	other	door,	there	are	no	other	switches,	no	apparent	way	to	turn	off
this	darned	light.	It	just	has	to	be	one	of	these	two	switches,	who	built	this	crazy
house	anyway?	So	you	grab	one	switch	with	each	hand	and	start	flipping	them
wildly.	Then	suddenly	you	notice	the	ceiling	light	flicker	off	briefly.	So	you	slow
down	your	switch	flipping	and	stop	when	the	ceiling	light	is	off.	Both	switches
say	"on",	and	the	light	is	now	off.	You	turn	one	switch	off,	then	on,	and	the	light
goes	on,	then	back	off.	This	is	backwards.	One	switch	off	equals	light	on?	So
then	you	turn	the	other	switch	off,	then	on,	the	same	thing,	the	light	goes	on,
then	back	off.	What	the	heck?	Anyway,	you	finally	figure	out	how	it	works.	If
both	switches	are	on,	the	light	goes	off.	If	one	or	the	other	or	both	switches	are
off,	then	the	ceiling	light	is	on.	Kind	of	goofy,	but	you	accomplish	what	you
intended,	you	turn	both	switches	on,	the	light	goes	off,	and	you	get	the	heck	out
of	this	crazy	room.

Now	what	is	the	purpose	of	this	little	story	about	the	odd	light	switches?	The
answer	is,	that	in	this	chapter	we	are	going	to	present	the	most	basic	part	that
computers	are	made	of.	This	part	works	exactly	like	the	lighting	system	in	that
strange	room.

This	computer	part	is	a	simple	device	that	has	three	connections	where	there
may	or	may	not	be	some	electricity.	Two	of	those	connections	are	places	where
electricity	may	be	put	into	the	device,	and	the	third	connection	is	a	place	where
electricity	may	come	out	of	the	device.

Of	the	three	connections,	two	of	them	are	called	"inputs,"	because	electricity	can
be	sent	to	them	from	somewhere	else.	The	third	connection	is	called	the	"output"
because	electricity	can	come	out	of	it	and	then	be	sent	somewhere	else.



This	computer	part	is	a	device	that	does	something	with	bits.	If	you	have	two
bits,	and	you	connect	those	two	bits	to	the	inputs,	this	device	"looks"	at	those
two	bits,	and	"decides"	whether	to	turn	the	one	output	bit	on	or	off.

The	way	it	"decides"	is	very	simple,	and	is	always	the	same.	If	both	inputs	are
on,	the	output	will	be	off.	If	one	or	both	of	the	inputs	are	off,	then	the	output	will
be	on.	That's	just	the	way	that	the	room	with	the	odd	light	switches	worked.

Remember	that	there	is	nothing	but	bits	inside	the	computer.	This	simple	device
is	where	bits	come	from	and	where	they	go	to.	The	"decision"	that	this	device
makes	is	how	bits	come	to	be	turned	on	and	off	in	a	computer.

Two	bits	go	into	the	device,	and	one	bit	comes	out.	Two	bits	come	from
somewhere	else,	are	examined	by	the	device,	and	a	new	third	bit	is	generated	so
that	it	may	go	somewhere	else.

If	you	have	been	extra	observant,	you	may	have	asked	yourself	this	question:
"when	both	inputs	are	off,	the	output	is	on,	so....	how	do	you	get	electricity	at	the
output	if	both	inputs	are	off?"	Well,	that	is	an	excellent	question,	and	the
excellent	answer	is	that	every	one	of	these	devices	is	also	connected	to	power.
Like	every	appliance	or	table	lamp	in	your	house,	where	each	has	a	plug	with
two	pins,	this	device	has	a	pair	of	wires,	one	of	which	is	connected	to	a	place
where	the	electricity	is	always	on,	and	the	other	is	connected	to	a	place	where
the	electricity	is	always	off.	This	is	where	the	electricity	for	the	output	comes
from.	When	someone	builds	a	computer,	they	have	to	make	all	of	those	power
connections	to	each	one	of	those	parts	in	order	to	have	it	work,	but	when	we	are
drawing	diagrams	of	parts,	how	they	are	connected,	and	what	they	will	do,	we
won't	bother	drawing	the	power	wires	-	they	would	just	clutter	up	the	drawing.	It
is	understood	that	each	part	has	its	power	connection,	and	we	don't	worry	about
it.	Just	understand	that	it	is	there,	and	we	won't	mention	it	any	more	for	the	rest
of	the	book.	I	wouldn't	have	even	mentioned	it	here	except	that	I	figured	that
you'd	probably	ask	yourself	that	question	sooner	or	later.

Now	I	know	I	said	that	you	don't	have	to	understand	much	about	electricity	to
understand	computers.	Here	is	as	complicated	as	it	gets.	There	are	actually	a	half
dozen	electronic	parts	inside	of	this	device	that	make	it	work,	but	we	are	not
going	to	examine	those	parts	in	this	book.	Someone	who	has	an	electronics
background	could	look	at	what's	in	there,	and	in	about	30	seconds	would	say
"Oh	yeah,	if	both	inputs	are	on,	the	output	will	be	off,	and	for	any	other
combination	the	output	will	be	on,	just	like	the	book	says."	And	then	that	person
could	go	ahead	and	read	this	book	without	ever	having	to	think	about	what's	in



there	again.	Someone	who	doesn't	know	electronics	misses	out	on	those	few
seconds	of	understanding,	but	this	book	is	the	same	for	everyone.

In	normal	house	wiring,	one	switch	turns	one	light	on	and	off.	In	the	computer,	it
takes	two	switches,	and	it's	sort	of	backwards	in	that	they	both	have	to	be	on	to
turn	the	light	off.	But	if	you	accept	the	fact	that	something	could	be	made	that
operates	this	way,	you	can	then	understand	how	everything	in	the	computer
works.

This	type	of	computer	part	is	in	fact	the	ONLY	type	of	part	required	to	build	a
computer.	Of	course	it	takes	a	lot	of	them	to	build	a	complete	computer,	but	with
enough	of	them,	you	can	make	any	type	of	computer.	So	there	you	go	again,	see
how	simple	a	computer	is?	It	is	just	full	of	this	little	type	of	thing	-	a	lot	of	them
to	be	sure,	but	this	is	all	there	is.

Now	we	need	to	give	this	device	a	name,	this	thing	inside	the	computer	that	bits
are	made	of,	it	is	called	a	"gate."	I	can't	find	a	good	reason	why	it	is	called	a
gate,	a	gate	in	a	fence	lets	people	through	when	it	is	open,	and	stops	people	when
it	is	closed.	A	computer	gate	generates	a	third	bit	from	two	other	bits,	it	doesn't
open	and	close	or	stop	or	let	anything	through.	The	meaning	of	this	computer
term	"gate"	doesn't	seem	to	fit	into	the	common	meaning	of	the	word,	but	sorry,	I
didn't	make	up	the	name,	that's	just	what	it	is	called.	You'll	get	used	to	it.	At	least
it	isn't	some	long	word	from	the	ancient	Greek.

In	the	next	few	chapters,	we	are	going	to	show	how	we	can	do	something	useful
by	connecting	several	gates	together.	We	will	use	drawings	like	the	following.
The	'D'	shape	with	the	little	circle	at	its	tip	represents	the	device	we	have
described,	and	the	lines	represent	the	wires	going	in	and	coming	out	of	it	that	get
attached	to	other	parts	of	the	computer.	The	picture	on	the	left	shows	a	gate
complete	with	its	power	wires,	but	as	promised,	we	won't	be	concerned	with
them	for	the	rest	of	this	book.	The	drawing	on	the	right	shows	everything	we
need:

This	is	a	representation	of	a	gate.	The	two	wires	on	the	left	(a	and	b)	are	the



inputs,	and	the	wire	on	the	right	(c)	is	the	output.	All	three	wires	are	bits,	which
means	that	they	are	either	on	or	off.	Each	input	bit	comes	from	somewhere	else
in	the	computer	and	is	either	on	or	off	depending	on	what	is	happening	where	it
came	from,	and	then	this	gate	sets	its	output	on	or	off	depending	on	the	states	of
its	two	inputs.

Sometimes	it	is	useful	to	make	a	little	chart	that	shows	how	the	various	input
combinations	create	the	output,	like	this:

Each	line	shows	one	possible	combination	of	the	inputs,	and	what	the	output	will
be	under	those	circumstances.

Compare	this	little	chart	with	the	experience	with	the	odd	room	with	the	two
light	switches.	If	one	switch	is	called	'a,'	the	other	switch	is	called	'b,'	and	the
ceiling	light	is	called	'c,'	then	this	little	chart	describes	completely	and	exactly
how	the	equipment	in	that	room	operates.	The	only	way	to	get	that	light	off	is	to
have	both	switch	'a'	and	switch	'b'	on.



SIMPLE	VARIATIONS

As	mentioned,	this	gate	is	the	only	thing	you	need	to	build	a	computer,	but	you
need	a	lot	of	them,	and	they	have	to	be	wired	together	in	an	intelligent	manner	in
order	to	be	able	to	make	them	do	something	useful.	What	we	are	going	to	do
here	is	to	show	two	simple	things	that	are	done	many	times	inside	any	computer.

This	first	one	is	very	simple.	Take	the	gate	above,	and	take	the	two	input	wires,
'a'	and	'b,'	and	tie	them	together.	Thus	'a'	and	'b'	will	always	be	the	same.	They
can	still	be	changed	on	and	off,	but	'a'	and	'b'	can	never	be	different.	'A'	and	'b'
can	either	both	be	on,	or	both	be	off.	Thus	the	chart	of	this	combination	only	has
two	lines	on	it,	two	possibilities:

Actually,	since	columns	'a'	and	'b'	are	the	same,	there	is	really	only	one	input	and
it	can	be	drawn	simply	like	this	with	a	triangle	instead	of	the	'D'	shape.	Its	chart
is	also	very	simple:



For	our	second	variation,	lets	combine	one	of	our	original	type	of	gate	with	the
new	gate	that	we	just	invented,	like	this:

And	we'll	combine	the	charts	of	how	they	work.	The	'a,'	'b'	and	'x'	are	like	the
first	gate,	the	'x'	and	'c'	are	like	the	second	gate.

This	combination	is	used	so	often	inside	computers,	that	it	is	built	as	a	single
unit,	and	the	'x'	bit	is	not	available	to	connect	to.	So	to	make	it	simpler	to
understand,	it	is	drawn	as	a	single	unit	like	this:

The	only	difference	between	this	picture	and	the	picture	of	our	original	gate	is
that	the	little	circle	after	the	big	'D'	is	missing.

Since	'x'	is	not	used,	the	chart	can	also	be	simplified,	and	it	looks	like	this:



The	only	difference	between	this	chart	and	the	chart	of	our	original	gate	is	that
every	item	in	column	'c'	is	the	opposite	of	what	it	was	in	the	original	chart.

Imagine	that	this	combination	of	gates	was	installed	in	that	room	with	the	two
light	switches	and	the	ceiling	light.	The	only	way	the	light	could	be	on	is	if	both
switches	were	on.	So	if	you	walked	in	there	and	saw	the	light	on,	and	then
looked	at	the	switches,	you	would	see	that	they	were	both	on.	No	matter	which
switch	you	decided	was	for	the	light,	and	you	switched	it	off,	the	light	would	go
off.	You	might	not	notice	that	if	you	turned	both	off,	and	then	wanted	to	turn	the
light	back	on,	you	wouldn't	be	able	to	do	it	by	just	flipping	one	switch.	You
would	have	to	go	through	the	same	experiment,	flipping	both	switches	until	the
light	came	on,	and	you	would	find	that	one	switch	and	the	other	switch	would
have	to	be	on	to	get	the	light	to	light.

This	combination	gate	could	be	described	this	way:	For	the	output	to	be	on,	one
input	AND	the	other	input	must	both	be	on.	Thus	this	type	of	gate	has	a	name,
and	in	the	tradition	of	the	informal	terminology	invented	by	computer	people,
because	it	reminds	us	of	what	the	word	AND	means,	it	is	simply	called	an	"AND
gate."

Now	to	fill	in	a	few	details	purposely	left	out	above,	the	original	gate	we	looked
at	works	like	the	AND	gate	except	the	output	is	the	opposite,	or	the	negative	of
the	AND	gate.	Thus	it	is	called	a	Negative	AND	gate,	or	just	a	"NAND	gate"	for
short.

The	simple	gate	that	had	both	inputs	tied	together	also	has	its	own	name.	The
output	is	always	the	opposite	of	the	one	input,	that	is,	if	the	input	is	on,	the
output	is	not	on	(off.)	If	the	input	is	off,	the	output	is	not	off	(on.)	The	output	is
always	NOT	what	the	input	is,	thus,	it	is	called	a	"NOT	gate."

Notice	the	difference	between	the	diagrams	of	the	AND	gate	and	the	NAND



gate.	They	are	the	same	except	that	there	is	a	little	circle	at	the	beginning	of	the
output	of	the	NAND	gate.	The	thing	that	looks	like	a	large	letter	'D'	means	to	do
the	AND'	function,	which	means	to	take	action	only	if	both	inputs	are	on,	and
the	little	circle	means	switch	to	the	opposite.	So	an	AND	gate	is	on	if	both	inputs
are	on,	a	NAND	gate	is	off	if	both	inputs	are	on.	The	NOT	gate	starts	with	a
triangle,	which	just	means	take	the	input	and	turn	it	into	an	output.	The	circle
then	means	to	switch	to	the	opposite.

The	AND	gate	is	used	a	lot	in	computers,	and	it	is	probably	the	easiest	to
understand,	but	we	looked	at	the	NAND	gate	first	for	two	reasons.	The	first	and
less	important	reason	is	that	the	NAND	gate	is	the	easiest	gate	to	build.	When
you	have	to	build	a	large	number	of	gates,	it	will	be	cheaper	and	more	reliable	if
you	can	use	the	type	of	gate	that	is	easiest	to	build.

The	second,	and	very	important	reason	that	we	looked	at	the	NAND	gate	first	is
this:	That	everything	in	a	computer	that	makes	it	a	computer,	can	be	made	out	of
one	or	more	NAND	gates.	We	have	already	seen	that	the	NOT	gate	and	the	AND
gate	can	be	made	out	of	NAND	gates,	and	we	will	see	a	few	more	interesting
combinations	as	we	go	along.	But	every	one	of	them	is	based	on	this	silly	little
thing	called	a	NAND	gate.

The	problem	in	this	chapter	has	been	that	the	NAND	gate	is	the	basic	building
block	of	computers,	but	the	AND	gate	is	the	first	gate	that	has	a	name	that	makes
sense.	So	we	looked	first	at	the	NAND	gate	and	the	NOT	gate	without	giving
them	names.	Then	we	built	an	AND	gate,	gave	it	its	name,	and	went	back	and
named	the	first	two.

As	a	note	on	the	language	here,	the	word	'and'	is	a	conjunction	in	regular
English.	It	connects	two	things,	as	in	"I	like	peas	and	carrots."	In	computers,	we
use	the	word	in	two	new	ways.	First,	it	is	an	adjective,	a	word	that	modifies	a
noun.	When	we	say	"this	is	an	AND	gate,"	the	word	"gate"	is	a	noun,	and	the
word	"AND"	tells	us	what	kind	of	a	gate	it	is.	This	is	how	"AND"	has	been	used
in	this	chapter.	"AND"	will	also	be	used	as	a	verb,	as	in	"let	us	AND	these	two
bits."	We	will	see	AND	used	in	this	way	later	in	the	book.

So	back	to	the	simplicity	theme	of	this	book,	we	have	said	that	there	is	only	one
thing	in	computers,	bits.	And	now	we	see	that	bits	are	constructed	using	gates,
and	all	gates	come	down	to	the	NAND	gate.	So	all	you	have	to	know	to
understand	computers	is	this	very	simple	device,	the	NAND	gate.	No	kidding!
Can	you	understand	this	thing?	Then	you	can	understand	the	whole	computer.



DIAGRAMS

If	you	want	to	see	how	a	mechanical	machine	works,	the	best	way	to	do	it	is	to
look	inside	of	it,	watch	the	parts	move	as	it	operates,	disassemble	it,	etc.	The
second	best	way	is	to	study	it	from	a	book	that	has	a	lot	of	pictures	showing	the
parts	and	how	they	interact.

A	computer	is	also	a	machine,	but	the	only	thing	that	moves	inside	of	it	is	the
invisible	and	silent	electricity.	It	is	very	boring	to	watch	the	inside	of	a	computer,
it	doesn't	look	like	anything	is	happening	at	all.

The	actual	construction	of	the	individual	parts	of	a	computer	is	a	very	interesting
subject,	but	we	are	not	going	to	cover	it	any	further	than	to	say	the	following:
The	technique	starts	with	a	thin	crystal	wafer,	and	in	a	series	of	steps,	it	is
subjected	to	various	chemicals,	photographic	processes,	heat	and	vaporized
metal.	The	result	is	something	called	a	'chip,'	which	has	millions	of	electronic
parts	constructed	on	its	surface.	The	process	includes	connecting	the	parts	into
gates,	and	connecting	the	gates	into	complete	computer	sections.	The	chip	is
then	encased	in	a	piece	of	plastic	that	has	pins	coming	out	of	it.	Several	of	these
are	plugged	into	a	board,	and	there	you	have	a	computer.	The	computer	we	are
going	to	'build'	in	this	book	could	easily	fit	on	one	chip	less	than	a	quarter	of	an
inch	square.

But	the	point	is,	that	unlike	a	mechanical	machine,	the	actual	structure	of	a	chip
is	very	cluttered	and	hard	to	follow,	and	you	can't	see	the	electricity	anyway.	The
diagrams	we	saw	in	the	previous	chapter	are	the	best	way	to	show	how	a
computer	works,	so	we'd	better	get	pretty	good	at	reading	them.

Throughout	the	rest	of	this	book,	we	are	going	to	build	new	parts	by	connecting
several	gates	together.	We	will	describe	what	the	new	part	does,	and	then	give	it
a	name	and	its	own	symbol.	Then	we	may	connect	several	of	those	new	parts
into	something	else	that	also	gets	a	name	and	a	symbol.	Before	you	know	it,	we
will	have	assembled	a	complete	computer.

Every	time	there	is	a	new	diagram,	the	text	will	explain	what	its	purpose	is,	and
how	the	parts	achieve	it,	but	the	reader	really	must	look	the	diagram	over	until	it
can	be	seen	that	the	gates	actually	do	what	the	book	says	they	will	do.	If	this	is
done	faithfully	with	each	one,	you	will	very	shortly	see	exactly	how	a	computer
works.

There	are	only	two	things	in	our	drawings,	there	are	parts	that	have	inputs	and



outputs,	and	there	are	lines,	or	wires,	that	connect	outputs	and	inputs	together.

When	electricity	comes	out	of	the	output	of	a	gate,	the	electricity	travels	through
the	whole	wire	as	fast	as	it	can	go.	If	the	output	of	a	gate	is	on,	then	the
electricity	is	on	in	the	wire	that	is	connected	to	it,	for	as	far	as	it	goes.	If	the
output	of	a	gate	is	off,	the	whole	wire	is	off.	I	guess	you	could	consider	that	the
bit	that	comes	out	of	the	gate	includes	the	whole	wire	as	well.

The	inputs	of	gates	do	not	use	up	the	electricity	in	the	wire,	so	one	output	may
be	connected	to	the	input	of	one	or	many	gates.

When	wires	are	connected	together,	this	is	shown	by	a	dot	where	they	meet	on
the	diagram,	and	all	wires	that	are	connected	together	get	electricity	as	if	they
were	one	wire.	When	wires	cross	on	a	diagram	without	a	dot,	it	means	that	there
is	no	connection	between	them,	they	are	not	touching,	the	two	bits	are	separate.

Whenever	there	is	a	choice,	the	diagrams	will	show	the	path	of	the	electricity
moving	from	left	to	right,	or	from	the	top	of	the	page	towards	the	bottom.
However,	there	will	be	many	exceptions	to	this,	especially	later	on	in	the	book.
But	you	can	always	tell	which	way	the	electricity	is	moving	in	a	wire	by	starting
at	an	output	and	following	it	to	an	input.

Most	of	the	diagrams	in	the	book	are	very	easy	to	follow.	In	a	few	cases,	there
will	also	be	one	of	those	charts	that	shows	what	the	output	will	be	for	every
possible	combination	of	inputs.	If	you	have	trouble	following	a	diagram,	you	can
pencil	in	the	ons	and	offs	right	on	the	page,	or	place	coins	on	the	page	and	flip
them	so	that	heads	means	on	and	tails	means	off.

Unfortunately,	the	diagram	in	the	next	chapter	is	probably	the	hardest	one	to
follow	in	the	whole	book,	but	once	you	master	it,	you'll	be	an	expert	diagram
reader.



REMEMBER	WHEN

You	have	probably	heard	of	computer	memory,	and	now	we	are	going	to	see
exactly	what	that	is.	Since	the	only	thing	inside	of	computers	is	bits,	and	the	only
thing	that	happens	to	bits	is	that	they	either	turn	on	or	turn	off,	then	it	follows
that	the	only	thing	a	computer	can	'remember'	is	whether	a	bit	was	on	or	off.	We
will	now	see	how	that	is	accomplished.

The	following	diagram	shows	one	bit	of	computer	memory.	It	happens	to	be	one
of	the	neatest	tricks	you	can	do	with	a	few	gates.	We	will	examine	how	it	works
here	at	great	length,	and	after	we	understand	it,	we	will	replace	it	with	its	own
symbol,	and	use	it	as	a	building	block	for	bigger	and	better	things.

It	is	made	of	only	four	NAND	gates,	but	its	wiring	is	kind	of	special.	Here	it	is:

This	combination	as	a	whole	has	two	inputs	and	one	output.	"I'	is	where	we	input
the	bit	that	we	want	to	remember,	and	'o'	is	the	output	of	the	remembered	bit.	'S'
is	an	input	that	tells	these	gates	when	to	'set'	the	memory.	There	are	also	three
internal	wires	labeled	'a',	'b'	and	'c'	that	we	will	have	to	look	at	to	see	how	these
parts	work	together.	Try	to	follow	this	carefully,	once	you	see	that	it	works,	you
will	understand	one	of	the	most	important	and	most	commonly	used	things	in	a
computer.

To	see	how	this	works,	start	with	's'	on	and	'i'	off.	Since	'i'	and	's'	go	into	gate	1,
one	input	is	off,	so	'a'	will	be	on.	Since	'a'	and	's'	go	to	gate	2,	both	inputs	are	on,
and	therefore	'b'	will	be	off.	Looking	at	gate	4,	since	'b'	is	off,	the	output	of	gate
4,	'c'	will	be	on.	Since	'c'	and	'a'	are	both	on,	the	output	of	gate	3,	'0'	will	be	off.
'O'	goes	back	down	to	gate	4	providing	a	second	off	input,	leaving	'c'	still	on.
The	important	thing	to	note	here	is	that	with	's'	on,	'0'	ends	up	the	same	as	'i.'

Now	with	's'	still	on,	lets	change	'i'	to	on.	Since	'i'	and	's'	go	into	gate	1,	'a'	will	be
off.	'A'	goes	to	one	side	of	both	gate	2	and	gate	3,	therefore	their	outputs	'0'	and



'b'	must	both	be	on.	'O'	and	'b'	both	on	go	into	gate	4	and	turn	'c'	off,	which	goes
back	up	to	gate	3	providing	it	with	a	second	off	input,	leaving	'0'	still	on.	The
important	thing	to	note	here	is	the	same	thing	we	noted	in	the	previous	paragraph
-	that	with	's'	on,	'0'	ends	up	the	same	as	'i.'

So	far,	we	have	seen	that	when	's'	is	on,	you	can	change	'i'	on	and	off,	and	'0'	will
change	with	it.	'O'	will	go	on	and	off	just	the	same	as	'i.'	With	's'	on,	this
combination	is	no	more	useful	than	a	wire	connecting	'i'	to	'0.'

Now	let's	see	what	happens	when	we	turn	's'	off.	Look	at	gate	1.	When	's'	is	off,
'a'	will	be	on	no	matter	what	you	do	to	'i.'	Now	you	can	switch	'i'	on	and	off	and
nothing	will	happen.	The	same	goes	for	gate	2.	'A'	maybe	on,	but	's'	is	off,	so	'b'
can	only	be	on.	Both	'a'	and	'b'	are	on,	and	changing	'i'	does	nothing.	Now	the
only	thing	left	that	matters,	the	big	question	is,	what	will	'0'	be?

If	'i'	and	'0'	were	on	before's'	got	turned	off,	gate	3	had	both	inputs	off,	and	gate	4
had	both	inputs	on.	When	's'	goes	off,	'a'	comes	on,	which	is	one	input	to	gate	3.
But	the	other	input	is	off,	so	nothing	changes,	'0'	stays	on.

If	'i'	and	'0'	were	off	before's'	got	turned	off,	gate	3	had	both	inputs	on,	and	gate	4
had	both	inputs	off.	When	's'	goes	off,	'b'	comes	on,	which	is	one	input	to	gate	4.
But	the	other	input	is	off,	so	nothing	changes,	'c'	stays	on	and	'0'	stays	off.

So	the	answer	to	the	question	of	what	happens	to	'0'	when	's'	is	turned	off,	is	that
it	stays	the	way	it	was,	and	it	is	no	longer	affected	by	'i.'

Now	what	do	we	have	here?	With	's'	on,	'0'	does	whatever	'i'	does.	With	's'	off,	'0'
stays	the	way	it	and	'i'	were,	at	the	last	instant	just	before's'	went	off.	Now	'i'	can
change,	but	'0'	stays	the	way	it	was.	This	combination	of	gates	locks	in	the	way
'i'	was	at	an	earlier	time.	This	is	how	a	combination	of	four	NAND	gates	can
"remember."	This	is	only	one	bit	of	memory,	but	this	is	the	basic	building	block
of	all	computer	memory.	All	that	computer	memory	is,	is	a	way	of	preserving	the
way	a	bit	was	set	at	some	point	in	time.

I	hope	you	followed	the	wires	and	the	ons	and	offs	in	this	chapter.	Once	you	see
exactly	how	this	thing	works,	you	will	know	that	these	simple	NAND	gates	can
create	a	memory	bit,	and	I	assure	you	that	you	will	never	wonder	about	it	again.

Now	that	we	know	how	this	thing	works,	we	no	longer	need	to	look	at	that	tricky
internal	wiring	of	this	combination.	We	have	seen	how	it	works,	and	from	now
on,	we	will	just	use	this	diagram	to	represent	it:



'I'	is	the	input	bit	that	you	want	to	save.	'S'	is	the	input	that	allows	'i'	into	the
memory	bit	when	's'	is	on,	and	locks	it	in	place	or	'sets'	it	when	's'	goes	off.	'O'	is
the	output	of	the	current	or	saved	data.	'M'	stands	for	Memory.	Pretty	simple,	eh?

Let's	go	back	to	our	room	with	the	funny	light	switches.	It	had	a	NAND	gate
hooked	up	in	it.	Let's	take	the	NAND	gate	out	and	replace	it	with	this	new
memory	bit.	We'll	connect	the	left	switch	to	the	'i'	wire,	the	right	switch	to	the	's'
wire,	and	the	ceiling	light	to	the	'o'	wire.	We	could	start	out	with	everything
looking	the	same,	that	is,	the	light	is	on,	but	both	switches	are	off.	That	would
mean	that	at	some	point	in	the	past,	both	'i'	and	's'	were	on,	and	's'	got	turned	off
first,	locking	the	then	state	of	'i'	into	our	memory	bit,	which	then	comes	out	at	'o.'
Then	'i'	could	have	been	switched	off	without	affecting	anything.	So	if	we
walked	in	and	decided	that	we	wanted	to	turn	the	light	off,	we	would	first	try	the
'i'	switch,	turn	it	on	and	off,	and	nothing	would	happen.	Then	we	would	try	the	's'
switch.	When	we	turn	it	on,	the	light	would	go	off.	Aha	we	say,	the	's'	switch
controls	the	light,	but	it	is	installed	up-side-down!	So	then	we	turn	the	's'	switch
back	off,	expecting	the	light	to	come	back	on,	but	the	light	remains	off.	Now	the
switches	are	in	the	same	position	as	they	were	when	we	entered	the	room,	they're
both	off,	but	now	the	light	is	off	as	well,	boy	is	this	confusing.	Now	I	don't	want
to	speculate	on	how	much	cursing	would	go	on	before	someone	figured	this	out,
but	in	the	end	they	would	find	that	when	's'	was	on,	the	light	went	on	and	off
with	'i,'	and	when	's'	was	off,	the	light	would	stay	the	way	it	was	just	before's'	got
turned	off.



WHAT	CAN	WE	DO	WITH	A	BIT?

Now	we	have	described	a	bit,	we	have	shown	how	to	build	one,	how	to
remember	over	time	what	state	a	bit	was	in	at	an	earlier	instant	in	time,	now
what?	What	do	we	do	with	it?

Since	a	bit	is	actually	nothing	more	than	the	electricity	being	on	or	off,	the	only
actual,	real	thing	we	can	do	with	a	bit	is	to	turn	lights	on	or	off,	or	toasters	or
whatever.

But	we	can	also	use	a	bit	to	represent	something	else	in	our	lives.	We	can	take	a
bit,	and	connect	it	to	a	red	light,	and	say	that	when	this	bit	is	on,	it	means	stop,
and	when	this	bit	is	off,	you	may	go.	Or	if	a	particular	bit	is	on,	you	want	fries
with	your	burger;	if	it	is	off,	you	want	the	burger	only.

This	is	the	action	of	using	a	code.	What	is	a	code?	A	code	is	something	that	tells
you	what	something	else	means.	When	something	is	supposed	to	mean
something,	somewhere	someone	has	to	make	a	list	of	all	of	the	states	of	the
'thing,'	and	the	meanings	associated	with	each	of	those	states.	When	it	comes	to
a	bit,	since	it	only	can	be	in	two	different	states,	then	a	bit	can	only	mean	one	of
two	things.	A	code	for	a	bit	would	only	need	two	meanings,	and	one	of	those
meanings	would	be	associated	with	the	bit	being	off,	and	the	other	meaning
would	be	associated	with	the	bit	being	on.

This	is	how	you	assign	meaning	to	a	bit.	The	bit	does	not	contain	any	meaning	in
and	of	itself;	there	is	no	room	in	a	bit	for	anything	other	than	the	presence	or
absence	of	electricity.	Meaning	is	assigned	to	a	bit	by	something	external	to	the
bit.	There	is	nothing	about	traffic	or	French	fries	in	a	bit,	we	are	just	saying	that
for	this	bit	in	this	place,	connected	to	a	red	light	hanging	over	an	intersection,
when	it	is	on,	you	must	stop,	when	it	is	off,	you	may	go.	Another	bit,	in	a	cash
register	in	a	fast	food	restaurant,	means	put	fries	in	the	bag	when	the	bit	is	on,	or
no	fries	when	it	is	off.

These	are	two	cases	of	someone	inventing	a	simple	two-item	code.	In	one	case,
the	code	is:	bit	on	means	fries,	bit	off	means	no	fries,	in	the	other	case,	bit	off
means	go,	bit	on	means	stop.	These	two	bits	are	the	same,	they	are	just	used	for
different	purposes,	and	someone	decides	what	the	meaning	of	these	two	bits	will
be.	The	code	is	written	down	somewhere	in	the	law	books,	or	in	the	restaurant
manager's	handbook,	but	the	code	is	not	in	the	bit.	The	state	of	the	bit	merely
tells	someone	which	line	of	the	code	they	are	supposed	to	believe	is	true	at	the
current	moment.	That's	what	a	code	is.



Like	the	spies	who	pass	messages	by	using	a	secret	code,	the	message	may	be
seen	by	other	people,	but	those	other	people	don't	have	the	code,	so	they	don't
know	what	the	message	means.	Maybe	one	spy	has	a	flowerpot	sitting	on	the	sill
in	the	front	window	of	his	apartment.	When	the	pot	is	on	the	left	side	of	the	sill,
it	means	"Meet	me	at	the	train	station	at	1:30."	And	when	the	flowerpot	is	on	the
right	side	of	the	sill,	it	means	"No	meeting	today."	Every	day,	the	other	spy
walks	down	the	street	and	glances	up	at	that	window	to	see	whether	he	needs	to
go	to	the	train	station	today.	Everyone	else	who	walks	down	that	street	can	just
as	easily	see	this	message,	but	they	don't	have	the	code,	so	it	means	nothing	to
them.	Then	when	the	two	spies	do	meet,	they	can	pass	a	piece	of	paper	that	is
written	in	another	secret	code.	They	encode	and	decode	the	message	using	a
codebook	that	they	do	not	carry	when	they	meet.	So	if	their	message	is
intercepted	by	anyone	else,	it	won't	mean	anything	to	that	someone	else.
Someone	who	doesn't	have	the	codebook	won't	have	the	proper	meanings	for	the
symbols	on	the	sheet	of	paper.

A	computer	bit	is	still,	and	will	always	be,	nothing	more	than	a	place	where	there
is	or	is	not	electricity,	but	when	we,	as	a	society	of	human	beings,	use	a	bit	for	a
certain	purpose,	we	give	meaning	to	the	bit.	When	we	connect	a	bit	to	a	red	light
and	hang	it	over	an	intersection,	and	make	people	study	driver's	handbooks
before	giving	them	driver's	licenses,	we	have	given	meaning	to	that	bit.	Red
means	'stop,'	not	because	the	bit	is	capable	of	doing	anything	to	a	vehicle
traveling	on	the	road,	but	because	we	as	people	agree	that	red	means	stop,	and
we,	seeing	that	bit	on,	will	stop	our	car	in	order	to	avoid	being	hit	by	a	car
traveling	on	the	cross	street,	and	we	hope	that	everyone	else	will	do	the	same	so
that	we	may	be	assured	that	no	one	will	hit	us	when	it	is	our	turn	to	cross	the
intersection.

So	there	are	many	things	that	can	be	done	with	a	bit.	It	can	indicate	true	or	false,
go	or	stop.	A	single	yes	or	no	can	be	a	major	thing,	as	in	the	answer	to	"Will	you
marry	me?"	or	an	everyday	matter	such	as	"Would	you	like	fries	with	that?"

But	still,	there	are	many	things	that	cannot	be	done	with	a	bit,	or	seem	to	be
incompatible	with	the	idea	of	bits	altogether.	There	can	be	many	examples	of
yes/no	things	in	everyday	life,	but	there	are	many	more	things	that	are	not	a
simple	yes	or	no.

In	the	case	of	the	telegraph,	which	was	indisputably	just	one	bit,	how	can	there
be	more	than	two	items	in	the	Morse	code?	The	answer	is	that	the	ability	to	send
and	receive	messages	depended	on	the	skills	and	the	memories	of	the	operators
at	both	ends	of	the	wire.	In	the	Morse	Code,	if	the	key	was	pressed	for	a	very



short	time,	that	was	called	a	"dot(.),"	and	if	it	was	pressed	for	a	slightly	longer
time,	that	was	called	a	"dash(-)."	Each	letter	of	the	alphabet	was	assigned	a
unique	combination	of	dots	and	or	dashes,	and	both	operators	studied	the	code,
memorized	it	and	practiced	using	it.	For	instance,	the	code	for	the	letter	'N'	was
dash	dot	(-.)	and	the	code	for	the	letter	'C	was	dash	dot	dash	dot	(-.-.).	The	length
of	the	on	times	were	different	to	make	dots	and	dashes,	and	the	lengths	of	the	off
times	were	different	to	distinguish	between	the	time	that	separates	dots	and
dashes	within	a	letter,	the	time	that	separates	letters,	and	the	time	that	separates
words.	You	need	a	longer	off	time	to	keep	from	confusing	a	'C	with	two	'N's.
The	receiving	person	had	to	recognize	these	as	patterns	-	that	is,	he	had	to	hear
and	remember	the	lengths	of	several	on	and	off	times	until	he	recognized	a	letter.
The	telegraph	apparatus	didn't	have	any	memory	at	all,	there	was	never	even	one
whole	letter	on	the	wire	at	any	one	time,	the	pieces	of	letters	went	down	the
wire,	to	be	assembled	into	dots	and	dashes	in	the	mind	of	the	operator,	then	into
letters,	and	then	into	words	and	sentences	written	on	a	sheet	of	paper.	So	the
telegraph	bit	achieves	more	than	two	meanings	by	having	several	individual
times	when	there	maybe	ons	or	offs.

If	a	computer	were	built	on	the	principles	of	the	Morse	code,	it	would	just	have	a
light	bulb	on	top	of	it	flashing	the	code	at	us.	Since	we'd	rather	see	whole	letters,
words	and	sentences	on	the	screen	simultaneously,	we	need	something	more	than
a	single	bit	and	this	old	code.

Even	in	the	examples	used	in	this	chapter,	real	traffic	lights	actually	have	three
bits,	one	for	red,	one	for	yellow	and	one	for	green.	If	you	had	only	one	bit,	you
could	just	have	a	red	light	at	the	intersection,	and	when	it	was	on	that	would
mean	stop,	and	when	it	was	off	that	would	mean	go.	But	when	it	was	off,	you
might	wonder	whether	it	was	really	off,	or	whether	the	bulb	had	just	burned	out.
So	using	three	bits	is	a	lot	more	useful	in	this	case.

In	the	real	world,	we	have	already	seen	that	computers	can	contain	letters,
words,	sentences,	entire	books,	as	well	as	numbers,	pictures,	sounds	and	more.
And	yet,	all	of	this	does	come	down	to	nothing	more	than	bits.

If	we	want	our	computer	memory	to	be	able	to	hold	more	than	an	on	or	off,	or
yes	or	no,	we	will	have	to	have	something	more	than	just	one	bit.	Fortunately,
we	can	do	something	much	more	useful	just	by	using	several	bits	together,	and
then	making	up	a	code	(or	maybe	several	codes)	to	assign	some	useful	meaning
to	them.



A	ROSE	BY	ANY	OTHER	NAME

Before	we	go	on,	we	are	going	to	introduce	a	change	to	what	we	call	something.
As	we	know,	all	of	the	bits	in	the	computer	are	places	where	there	is	or	is	not,
some	electricity.	We	call	these	states,	"on"	and	"off,"	and	that	is	exactly	what
they	are.	Even	though	these	are	short	words,	there	are	places	where	it	is	a	lot
easier,	clearer	and	simpler	to	use	a	single	symbol	to	describe	these	states.
Fortunately,	we're	not	going	to	invent	anything	tricky,	we're	just	going	to	use	two
symbols	you	already	know	well,	the	numbers	zero	and	one.	From	here	on	out,
we	will	call	off	o,	and	we	will	call	on	1.	And	sometimes	we	will	still	use	on	and
off.

Thus	the	chart	for	our	NAND	gate	will	look	like	this:

This	is	very	easy	to	understand,	of	course,	but	the	point	that	needs	to	be	made
here,	is	that	the	computer	parts	have	not	changed,	the	only	thing	that	has
changed	is	what	we,	as	people	looking	at	the	machine,	are	calling	it.	Just	because
we	call	a	bit	a	zero	or	one,	that	doesn't	mean	that	suddenly	numbers	have
appeared	and	are	running	around	inside	the	computer.	There	are	still	no	numbers
(or	words	or	sounds	or	pictures)	in	a	computer,	only	bits,	exactly	as	previously
described.	We	could	have	called	them	plus	and	minus,	yes	and	no,	true	and	false,
heads	and	tails,	something	and	nothing,	north	and	south,	or	even	Bert	and	Ernie.
But	zero	and	one	will	do	it.	This	is	a	just	a	simple,	two	item	code.	On	means	l,
and	off	means	0.

As	a	comment	here,	there	seems	to	be	a	trend	among	the	appliance
manufacturers	of	the	world	to	replace	the	obsolete	and	old-fashioned	terms	of	on
and	off	with	the	modern	0	and	1.	On	many	power	switches	they	put	a	o	by	the
off	position,	and	a	1	by	the	on	position.	The	first	place	I	saw	this	was	on	a



personal	computer,	and	I	thought	that	it	was	a	cute	novelty,	being	on	a	computer,
but	now	this	practice	has	spread	to	cell	phones,	coffee	makers	and	automobile
dashboards.	But	I	think	that	this	is	a	mistake.	Do	you	understand	that	the	code
could	just	as	easily	have	been	defined	as	"off	means	1	and	on	means	0?"	The
computer	would	work	exactly	the	same	way,	only	the	printing	in	the	technical
manuals	that	describe	what	is	happening	inside	the	computer	would	change.

When	you	see	one	of	these	o/1	switches,	you	have	to	translate	it	back	from	this
very	commonly	used	computer	code	into	what	it	really	means,	on	or	off.	So	why
bother?	You	don't	want	to	turn	your	coffee	machine	'1',	you	want	the	power	ON
so	you	can	get	your	Java	and	wake	up	already.	Imagine	putting	these	symbols	on
a	waffle	maker	back	in	1935.	Nobody	would	have	had	any	idea	of	what	it	meant.
It	is	probably	just	so	that	manufacturers	don't	have	to	have	switches	printed	in
different	languages.	Or	maybe	this	trend	comes	from	an	altruistic	desire	to
educate	the	public	into	the	modern	'fact'	that	a	1	is	the	same	as	on,	but	it	isn't	a
fact,	it's	an	arbitrary	code.



EIGHT	IS	ENOUGH

In	order	to	be	able	to	represent	something	more	than	simple	yes/no	matters,	what
we	are	going	to	do	is	to	stack	up	eight	bits	in	a	single	package,	and	use	them	as	a
single	unit.	Here	is	a	diagram	of	how	it	is	done.	We	have	taken	eight	of	our
memory	bits,	each	one	still	has	its	own	data	input	'i'	and	its	own	output	'o,'	but
we	have	wired	all	eight	of	the	set	inputs	's'	together.	Thus	when	the	single	's'	gets
turned	on	and	then	off	again,	all	eight	of	these	'M's	will	capture	the	states	of	their
corresponding	'i'	s	at	the	same	time.	The	picture	on	the	left	shows	all	eight	'M's,
the	one	on	the	right	is	the	same	thing,	just	a	little	simpler.

This	assembly	has	a	name;	it	is	called	a	byte,	thus	the	"B"	in	the	diagram.	There
are	several	conflicting	explanations	of	exactly	where	this	word	came	from,	but
since	it	sounds	just	like	the	word	"bite,"	you	can	just	think	of	it	as	a	whole
mouthful	compared	with	a	smaller	unit,	a	bit.	Just	to	show	you	that	computer
designers	do	have	a	sense	of	humor,	when	they	use	four	bits	as	a	unit,	they	call	it
a	nibble.	So	you	can	eat	a	tiny	bit	of	cherry	pie,	or	have	a	nibble	or	take	a	whole
byte.

When	we	had	a	bit,	we	would	just	say	that	its	state	was	either	o	or	1.	Now	that
we	have	a	byte,	we	will	write	the	contents	of	the	byte	like	this:	0000	0000,	and



you	can	see	why	we	switched	from	using	off/on	to	0/1.	That	shows	the	contents
of	each	of	the	eight	bits,	in	this	case	they	are	all	zeros.	The	space	in	the	middle	is
just	there	to	make	it	a	little	easier	to	read.	The	left	hand	o	or	1	would	correspond
to	the	top	bit	in	our	byte,	and	the	rightmost	o	or	1	would	represent	the	bottom
bit.

As	you	had	better	know	by	now,	a	bit	has	two	possible	states	that	it	can	be	in	—
on	or	off.	If	you	have	two	bits,	there	are	four	possible	states	that	those	two	bits
can	be	in.	Do	you	remember	the	chart	we	drew	for	the	inputs	of	the	NAND	gate?
There	were	four	lines	on	the	chart,	one	for	each	possible	combination	of	the	two
input	bits	to	the	gate,	0-0,	0-1,	1-0	and	1-1.

Notice	that	the	order	of	the	bits	does	matter	-	that	is,	if	you	look	at	two	bits	and
only	ask	how	many	bits	are	on,	there	are	only	three	possibilities:	no	bits	on,	one
bit	on	or	two	bits	on.	That	would	be	calling	the	1-0	and	0-1	combinations	the
same	thing.	For	the	purpose	of	using	multiple	bits	to	implement	a	code,	we
definitely	care	about	the	order	of	the	bits	in	a	byte.	When	there	are	two	bits,	we
want	to	use	all	four	possibilities,	so	we	have	to	keep	the	bits	in	order.

How	many	different	possibilities	are	there	when	you	use	eight	bits?	If	all	you
have	is	one	bit,	it	can	be	in	one	of	two	states.	If	you	add	a	second	bit,	the	pair	has
twice	as	many	states	as	before	because	the	old	bit	has	its	two	states	while	the
new	bit	is	one	way,	and	then	the	old	bit	has	its	two	states	while	the	new	bit	is	the
other	way.	So	two	bits	have	four	states.	When	you	add	a	third	bit,	the	first	two
have	four	states	with	the	new	bit	off	and	four	states	with	the	new	bit	on,	for	a
total	of	eight	states.	Every	time	you	add	a	bit,	you	just	double	the	number	of
possible	states.	Four	bits	have	16	states,	five	have	32,	six	have	64,	seven	have
128,	eight	have	256,	nine	have	512	states,	and	so	on.

We	are	going	to	take	eight	bits,	and	call	it	a	byte.	Since	a	bit	is	a	thing	that	has	a
location	in	space,	that	can	be	in	one	of	two	states,	then	a	byte	is	a	thing	that	has
eight	separate	locations	in	space,	each	of	which	can	be	on	or	off,	that	are	kept	in
the	same	order.	The	byte,	taken	as	a	whole,	is	a	location	in	space	that	can	be	in
any	one	of	256	states	at	any	given	time,	and	may	be	made	to	change	its	state
over	time.



CODES

A	bit	could	only	represent	yes/no	types	of	things,	but	now	that	we	have	256
possibilities,	we	can	look	for	things	in	our	lives	that	are	slightly	more
complicated.

One	of	the	first	things	that	might	fit	the	bill	is	written	language.	If	you	look	in	a
book	and	see	all	of	the	different	types	of	symbols	that	are	used	to	print	the	book,
you	will	see	all	26	letters	of	the	alphabet	in	uppercase	as	well	as	lowercase.	Then
there	are	the	numbers	o	through	9,	and	there	are	punctuation	marks	like	periods,
commas,	quotes,	question	marks,	parentheses	and	several	others.	Then	there	are
special	symbols	like	the	'at'	sign	(@,)	currency	($,)	and	more.	If	you	add	these
up,	52	letters,	10	numbers,	a	few	dozen	for	punctuation	and	symbols,	you	get
something	like	100	different	symbols	that	may	appear	printed	on	the	pages	of	the
average	book.

From	here	on	out,	we	will	use	the	word	'character'	to	mean	one	of	this	sort	of
thing,	one	of	the	letters,	numbers,	or	other	symbols	that	are	used	in	written
language.	A	character	can	be	either	a	letter,	a	number,	a	punctuation	mark	or	any
other	type	of	symbol.

So	we	have	written	language	with	about	100	different	characters,	and	our	byte
with	256	possibilities,	maybe	we	can	represent	language	with	bytes.	Lets	see,
how	do	you	put	an	'A'	into	a	byte?	There	is	nothing	inherent	in	a	byte	that	would
associate	it	with	a	character,	and	there	is	nothing	inherent	in	a	character	that	has
anything	to	do	with	bits	or	bytes.	The	byte	doesn't	hold	shapes	or	pictures.
Dividing	a	character	into	eight	parts	does	not	find	any	bits.

The	answer,	as	before,	is	to	use	a	code	to	associate	one	of	the	possible	states	of
the	byte	with	something	that	exists	in	the	real	world.	The	letter	A'	will	be
represented	by	a	particular	pattern	of	1s	and	0s	in	the	bits	of	a	byte.	The	byte	has
256	different	possible	states,	so	someone	needs	to	sit	down	with	pencil	and	paper
and	list	out	all	256	of	those	combinations,	and	next	to	each	one,	put	one	of	the
characters	that	he	wants	that	pattern	to	represent.	Of	course,	by	the	time	he	gets
to	the	101st	line	or	so,	he'll	run	out	of	characters,	so	he	can	add	every	type	of
rarely	used	symbol	he	can	think	of,	or	he	can	just	say	that	the	rest	of	the
combinations	will	have	no	meaning	as	far	as	written	language	is	concerned.

And	so,	in	the	early	days	of	computers,	each	manufacturer	sat	down	and
invented	a	code	to	represent	written	language.	At	some	point,	the	different
companies	realized	that	it	would	be	beneficial	if	they	all	used	the	same	code,	in



case	they	ever	wanted	their	company's	computers	to	be	able	to	communicate
with	another	brand.	So	they	formed	committees,	held	meetings	and	did	whatever
else	they	needed	to	do	to	come	up	with	a	code	that	they	could	all	agree	on.

There	are	several	versions	of	this	code	designed	for	different	purposes,	and	they
still	hold	meetings	today	to	work	out	agreements	on	various	esoteric	details	of
things.	But	we	don't	need	to	concern	ourselves	with	all	that	to	see	how	a
computer	works.	The	basic	code	they	came	up	with	is	still	in	use	today,	and	I
don't	know	of	any	reason	why	it	would	ever	need	to	be	changed.

The	code	has	a	name,	it	is	the:	American	Standard	Code	for	Information
Interchange.	This	is	usually	abbreviated	to	ASCII,	pronounced	"aass-key."	We
don't	need	to	print	the	whole	code	here,	but	here's	a	sample.	These	are	20	of	the
codes	that	they	came	up	with,	the	first	10	letters	of	the	alphabet	in	uppercase	and
lowercase:

Each	code	is	unique.	It's	interesting	to	note	the	way	that	they	arranged	the	codes
so	that	the	codes	for	uppercase	and	lowercase	of	the	same	letter	use	the	same
code	except	for	one	bit.	The	third	bit	from	the	left	is	off	for	all	uppercase	letters,
and	on	for	all	lowercase	letters.



If	you	wanted	to	put	a	message	on	your	computer	screen	that	said	"Hello	Joe"
you	would	need	nine	bytes.	The	first	byte	would	have	the	code	for	uppercase
"H",	the	second	byte	would	have	the	code	for	lowercase	"e",	the	third	and	fourth
bytes	would	have	the	code	for	lowercase	"1",	the	fifth	byte	would	have	the	code
for	lowercase	"o",	the	sixth	byte	would	have	the	code	for	a	blank	space,	and
bytes	seven,	eight	and	nine	would	contain	the	codes	for	"J",	"o"	and	"e."

Notice	that	there	is	even	a	code	for	a	blank	space	(it	is	0010	0000	by	the	way.)
You	may	wonder	why	there	needs	to	be	a	code	for	a	blank	space,	but	that	just
goes	to	show	you	how	dumb	computers	are.	They	don't	really	contain	sentences
or	words,	there	are	just	a	number	of	bytes	set	with	the	codes	from	the	ASCII
code	table	that	represent	the	individual	symbols	that	we	use	in	written	language.
And	one	of	those	"symbols,"	is	the	lack	of	any	symbol,	called	a	space,	that	we
use	to	separate	words.	That	space	tells	us,	the	reader,	that	this	is	the	end	of	one
word	and	the	beginning	of	another.	The	computer	only	has	bytes,	each	of	which
can	be	in	one	of	its	256	states.	Which	state	a	byte	is	currently	in,	means	nothing
to	the	computer.

So	let	us	take	a	memory	byte,	and	set	the	bits	to	0100	0101.	That	means	that	we
have	put	the	letter	E	into	the	byte,	right?	Well...	not	really.	We	have	set	the
pattern	that	appears	next	to	the	letter	E	in	the	ASCII	code	table,	but	there	is
nothing	inherent	in	the	byte	that	has	to	do	with	an	'E.'	If	Thomas	Edison	had
been	testing	eight	of	his	new	experimental	light	bulbs,	and	had	them	sitting	in	a
row	on	a	shelf,	and	the	first,	third,	fourth,	fifth	and	seventh	light	bulbs	had
burned	out,	the	remaining	light	bulbs	would	be	a	byte	with	this	pattern.	But	there
wasn't	a	single	person	on	the	face	of	the	Earth	who	would	have	looked	at	that
row	of	bulbs	and	thought	of	the	letter	'E,'	because	ASCII	had	not	yet	been
invented.	The	letter	is	represented	by	the	code.	The	only	thing	in	the	byte	is	the
code.

There	you	have	the	subject	of	codes.	A	computer	code	is	something	that	allows
you	to	associate	each	of	the	256	possible	patterns	in	a	byte	with	something	else.

Another	language	note	here,	sometimes	the	word	code	refers	to	the	whole	list	of
patterns	and	what	they	represent,	as	in	"This	message	was	written	with	a	secret
code."	Sometimes	code	just	refers	to	one	of	the	patterns,	as	in	"What	code	is	in
that	byte?"	It	will	be	pretty	obvious	from	the	context	which	way	it	is	being	used.



BACK	TO	THE	BYTE

Do	you	remember	the	memory	byte	we	drew	a	few	chapters	ago?	It	was	eight
memory	bits	with	their	's'	wires	all	connected	together.	Almost	every	time	that
we	need	to	remember	a	byte	inside	a	computer,	we	also	need	an	additional	part
that	gets	connected	to	the	byte's	output.	This	extra	part	consists	of	eight	AND
gates.

These	eight	AND	gates,	together,	are	called	an	"Enabler."	The	drawing	on	the
left	shows	all	of	the	parts,	the	drawing	on	the	right	is	a	simpler	way	to	draw	it.

The	second	input	of	all	eight	AND	gates	are	connected	together	and	given	the
name	'enable,'	or	'e'	for	short.	When	'e'	is	off,	whatever	comes	into	the	Enabler
goes	no	further,	because	the	other	side	of	each	AND	gate	is	off,	thus	the	outputs
of	those	gates	are	all	going	to	be	off.	When	'e'	is	on,	the	inputs	go	through	the
Enabler	unchanged	to	the	outputs,	'o.'

By	the	way,	when	gates	are	used	for	something	like	this,	the	name	"gate"	starts
to	make	some	sense.	An	Enabler	allows	a	byte	through	when	the	bit	'e'	is	l	and
stops	the	byte	when	it	is	o.	So	'e'	being	on	is	like	opening	a	gate,	and	'e'	being	off
is	like	closing	a	gate.



We	will	take	our	byte,	and	connect	it	to	an	enabler,	as	shown	in	the	left	hand
drawing.	To	simplify	once	again,	we	can	draw	it	as	shown	on	the	right.

Now	we	have	a	combination	that	can	store	eight	bits.	It	captures	them	all	at	the
same	time,	and	it	can	either	keep	them	to	itself,	or	let	them	out	for	use
somewhere	else.	This	combination	of	a	Byte	and	an	Enabler,	has	a	name,	it	is
called	a	Register,	thus	the	'R'	in	the	drawing.

There	will	be	a	few	places	in	this	book	where	there	are	registers	that	never	need
to	have	their	outputs	turned	off.	In	those	cases,	we	will	draw	a	register	that	only
has	a	'set'	bit,	and	no	'enable'	bit.	We	should	probably	refer	to	these	devices	as
'bytes,'	but	we	will	call	them	registers	nonetheless.

Register	simply	means	a	place	to	record	some	kind	of	information,	like	a	hotel
register	where	all	the	guests	sign	in,	or	a	check	register	where	you	write	down
each	check	that	is	written.	In	the	case	of	this	computer	part,	you	record	the	state
of	the	eight	input	bits.	This	register	is	very	limited	though,	in	that	it	can	only
hold	one	set	of	values;	in	a	hotel	register	there	is	a	new	line	for	each	guest.	Every
time	you	store	a	new	state	in	a	computer	register,	the	previous	state	of	the	eight
memory	bits	is	lost.	The	only	thing	that	is	in	there	is	the	most	recently	saved
value.



THE	MAGIC	BUS

There	are	many	places	in	a	computer	where	eight	wires	are	needed	to	connect
registers	together.	Our	register,	for	example,	has	eight	memory	bits,	each	of
which	have	an	input	and	an	output.	To	simplify	our	diagrams,	we	will	replace
our	eight	wires	with	a	double	line.

So	our	register	can	look	like	one	of	these:

Or,	we	can	simplify,	and	replace	it	with	one	of	these:

It's	exactly	the	same	thing,	we	will	just	save	a	lot	of	ink	in	our	drawings,	and
they	will	be	easier	to	understand.

When	there	is	a	connection	between	two	of	these	bundles	of	wires,	one	wire	of
each	bundle	is	connected	to	one	wire	of	the	other	bundle	as	shown	in	the
diagram	on	the	left.	But	we	will	simplify	it,	and	just	draw	it	like	the	diagram	on
the	right.

Now,	this	grouping	of	eight	wires	is	so	common	inside	computers	that	it	has	a
name.	It	is	called	a	bus.	Why	is	it	called	a	bus?	Well,	it	probably	has	to	do	with



the	old	electrical	term	'buss,'	that	means	a	bar	of	metal	used	as	a	very	large	wire
in	places	like	power	generating	plants.	But	there	is	also	an	interesting	similarity
to	the	kind	of	bus	that	people	use	for	transportation.

A	bus	is	a	vehicle	that	commonly	travels	along	a	predetermined	route,	and	makes
many	stops	where	people	get	on	or	off.	They	start	somewhere,	and	the	bus	takes
them	to	some	other	place	they	need	to	be.	In	the	world	of	computers,	a	bus	is
simply	a	set	of	eight	wires	that	goes	to	various	places	inside	the	computer.	Of
course,	eight	is	the	number	of	wires	needed	to	carry	a	byte	of	information.	Inside
the	computer,	the	contents	of	bytes	need	to	get	from	where	they	are	to	other
places,	so	the	bus	goes	to	all	these	places,	and	the	design	of	the	register	allows
the	contents	of	any	selected	byte	to	get	onto	the	bus,	and	get	off	at	a	selected
destination.

In	the	following	example,	we	have	a	bus,	and	there	are	five	registers,	each	of
which	has	both	its	input	and	output	connected	to	the	same	bus.

If	all	of	the	‘s’	bits	and	‘e’	bits	are	off,	each	register	will	be	set	the	way	it	is,	and
will	stay	that	way.	If	you	want	to	copy	the	information	from	R1	into	R4,	first	you
turn	the	‘e’	bit	of	R1	on.	The	data	in	R1	will	now	be	on	the	bus,	and	available	at
the	inputs	of	all	five	registers.	If	you	then	briefly	turn	the	‘s’	bit	of	R4	on	and
back	off,	the	data	on	the	bus	will	be	captured	into	R4.	The	byte	has	been	copied.
So	a	computer	bus	is	a	little	like	the	bus	that	carries	people.	There	are	a	number
of	stops,	and	bytes	can	get	to	where	they	need	to	go.

Notice	that	we	can	copy	any	byte	into	any	other	byte.	You	can	copy	R2	into	R5,
or	R4	into	R1.	The	bus	works	in	either	direction.	The	electricity	put	on	the	bus
when	you	enable	any	register	goes	as	fast	as	possible	to	the	inputs	of	everything
else	on	the	bus.	You	could	even	enable	one	register	onto	the	bus	and	set	it	into
two	or	more	other	registers	at	the	same	time.	The	one	thing	you	don’t	want	to	do
is	to	enable	the	outputs	of	two	registers	onto	the	bus	at	the	same	time.

In	terms	of	the	sizes	of	bits,	you	could	look	at	it	this	way:	When	the	‘e’	bit	of	R1
gets	turned	on,	the	bits	in	R1	now	get	longer,	they	are	a	bigger	space	because
they	are	now	connected	to	the	bus,	so	those	8	bits	now	include	R1	and	the	entire
bus.	When	the	'S'	bit	of	R4	gets	turned	on,	the	R1	bits	get	even	bigger	because
they	now	include	R1,	the	bus	and	R4.	If	anything	in	R1	were	to	somehow



change	at	this	time,	the	bus	and	R4	would	immediately	change	with	it.	When	the
's'	bit	of	R4	gets	turned	off,	R4	regains	its	status	as	a	separate	byte,	and	when	the
'e'	bit	of	R1	turns	off,	the	bus	ceases	being	a	part	of	R1.

So	this	is	a	bus.	It	is	a	bundle	of	eight	wires	that	typically	goes	to	many	places.

One	more	thing	about	registers:	There	are	many	places	where	we	are	going	to
connect	the	input	and	output	of	a	register	to	the	same	bus,	so	to	simplify	even
further,	we	can	just	show	one	bundle	of	wires	labeled	'i/0,'	meaning	input	and
output.	All	of	the	following	are	exactly	equivalent	as	far	as	how	they	work.	The
placement	of	the	wires	on	the	drawing	maybe	adjusted	to	make	it	as	uncluttered
as	possible.

Another	language	note:	A	byte	is	a	location	that	can	be	in	one	of	256	states.
Sometimes	we	talk	about	moving	a	byte	from	here	to	there.	By	definition,	bytes
do	not	move	around	inside	the	computer.	The	byte	only	refers	to	the	location,	but
sometimes	when	someone	wants	to	refer	to	the	current	setting	of	the	byte,	and
they	ought	to	say	"lets	copy	the	contents	of	R1	into	R4,"	they	simplify	and	say
"move	R1	to	R4"	or	"move	this	byte	over	there."	They're	using	the	word	byte	to
refer	to	the	contents	of	the	byte.	Again,	the	context	usually	makes	this	very	clear.
In	the	example	above	of	copying	the	contents	of	R1	into	R4,	you	may	hear	it
described	as	"moving	a	byte	from	R1	to	R4."	Technically,	R1and	R4	are	the
bytes,	which	do	not	move,	only	the	contents	goes	from	place	to	place.

Also,	the	contents	do	not	leave	the	place	where	they	came	from.	When	you	are
done	"moving"	a	byte,	the	"from"	byte	has	not	changed,	it	doesn't	lose	what	it
had.	At	the	other	end,	the	pattern	that	was	originally	in	the	"to"	byte	is	now
"gone,"	it	didn't	go	anywhere,	it	was	just	written	over	by	the	new	information.
The	old	pattern	simply	ceases	to	exist.	The	new	information	is	exactly	the	same
as	what	is	still	in	the	first	byte.	The	byte	didn't	move,	there	are	still	two	bytes	in
two	locations,	but	the	information	in	the	first	byte	has	been	copied	into	the
second	byte.



MORE	GATE	COMBINATIONS

Now	we	are	going	to	show	just	two	more	combinations,	and	then	we	will	be	able
put	together	what	we	know	so	far,	to	make	the	first	half	of	a	computer.	So	don't
get	discouraged,	just	a	little	further	and	we'll	be	halfway	home.

The	first	combination	is	very	simple.	It	is	just	an	AND	gate	with	more	than	two
inputs.	If	you	connect	two	AND	gates	like	this	diagram	on	the	left,	you	see	that
for	'd'	to	be	on,	all	three	inputs,	'a,'	'b'	and	'c'	have	to	be	on.	So	this	combination
can	simply	be	drawn	like	this	diagram	on	the	right:

And	the	chart	that	shows	how	it	operates	looks	like	this:

Imagine	replacing	input	'c'	with	another	AND	gate,	then	you	would	have	a	four
input	AND	gate.	You	could	then	replace	any	of	the	four	inputs	with	another
AND	gate,	and	have	a	five	input	AND	gate.	This	can	be	done	as	many	times	as



necessary	for	what	you	are	doing.

As	you	add	inputs,	the	chart	will	need	more	and	more	lines.	Every	time	you	add
another	input,	you	double	the	number	of	combinations	that	the	inputs	can	have.
The	chart	we	saw	for	the	original	two	input	AND	gate	had	four	lines,	one	for
each	possibility.	The	three	input,	directly	above,	has	eight	lines.	A	four	input
AND	gate	will	have	16	lines,	a	five	input	will	have	32,	etc.	In	all	cases	though,
for	an	AND	gate,	only	one	combination	will	result	in	the	output	turning	on,	that
being	the	line	where	all	inputs	are	on.

Here	is	the	last	combination	we	need	to	make	the	first	half	of	a	computer.	This
combination	is	different	from	anything	we	have	looked	at	so	far,	in	that	it	has
more	outputs	than	inputs.	Our	first	example	has	two	inputs	and	four	outputs.	It	is
not	very	complicated,	it	just	has	two	NOT	gates	and	four	AND	gates.

In	the	diagram	below,	'a'	and	'b'	are	the	inputs	coming	in	from	the	left.	Both	of
them	are	connected	to	NOT	gates.	The	NOT	gates	generate	the	opposite	of	their
inputs.	There	are	four	vertical	wires	going	down	the	page	that	come	from	'a'	and
'b'	and	the	opposites	of	'a'	and	'b.'	Thus,	for	each	'a'	and	'b,'	there	are	two	wires
going	down	the	page,	where	one	of	them	will	be	on	if	its	input	is	on,	and	the
other	will	be	on	if	its	input	is	off.	Now	we	put	four	AND	gates	on	the	right,	and
connect	each	one	to	a	different	pair	of	the	vertical	wires	such	that	each	AND
gate	will	turn	on	for	a	different	one	of	the	four	possible	combinations	of	'a'	and
'b.'	The	top	AND	gate,	labeled	"0/0"	is	connected	to	the	wire	that	is	on	when	'a'
is	off,	and	the	wire	that	is	on	when	'b'	is	off,	and	thus	turns	on	when	'a'	and	'b'	are
both	o.	The	next	AND	gate,	"0/1"	is	connected	to	the	wire	that	is	on	when	'a'	is
off,	and	'b,'	so	it	turns	on	when	'a'	is	o	and	'b'	is	1,	etc.

The	inputs	can	be	on	in	any	combination,	both	bits	off,	one	on,	the	other	on,	or
both	on.	None,	one	or	two	on.	The	outputs,	however,	will	always	have	one	and
only	one	output	on	and	the	other	three	off.	The	one	which	is	on	is	determined	by
the	current	states	of	'a'	and	'b.'



This	combination	is	called	a	decoder.	The	name	means	that	if	you	consider	the
four	possible	states	of	the	two	inputs	as	a	code,	then	the	output	tells	you	which
of	the	codes	is	currently	on	the	input.	Maybe	it’s	not	a	great	name,	but	that’s
what	it	meant	to	someone	once,	and	the	name	stuck.	This	decoder	has	two
inputs,	which	means	that	there	can	be	four	combinations	of	the	states	of	the
inputs,	and	there	are	four	outputs,	one	corresponding	to	each	of	the	possible
input	combinations.

This	can	be	extended.	If	we	added	a	third	input,	there	would	then	be	eight
possible	input	combinations,	and	if	we	used	eight,	three	input	AND	gates,	we
could	build	a	three	input,	eight	output	decoder.	Similarly,	we	could	build	a	four
input,	16	output	decoder.	Decoders	are	named	by	the	number	of	inputs	“X”	the
number	of	outputs.	Like	2X4,	3X8,	4X16,	5X32,	6X64,	etc.



Again,	we	will	simplify	our	drawings,	we	won’t	show	any	of	the	internal	parts	or
wiring,	we’ll	just	have	a	box	with	a	name	and	the	inputs	and	outputs	that	we	are
interested	in.	We	have	seen	how	NAND	gates	make	NOT	gates	and	AND	gates,
and	then	NOT	gates	and	AND	gates	make	a	Decoder.	It	is	a	box	full	of	NAND
gates	wired	up	to	do	something	useful.	We	know	what	it	does,	one	and	only	one
of	the	outputs	is	always	on,	and	which	one	it	is,	is	determined	by	the	state	of	the
three	inputs.	That’s	all	it	does.



FIRST	HALF	OF	THE	COMPUTER

Lets	build	something	with	the	parts	we	have	so	far.	Actually,	we	can	now	build
fully	half	of	what's	in	a	computer.

First,	let's	build	something	similar	out	of	wood	(in	our	minds,)	then	we'll	come
back	and	show	how	to	build	a	computer	version	that	does	pretty	much	the	same
thing.

You	know	in	a	hotel,	at	the	front	desk,	on	the	wall	behind	the	clerk,	there	are	a
series	of	little	wooden	cubbyholes,	one	for	each	room	in	the	hotel.	That's	where
they	keep	extra	room	keys	and	messages	or	mail	for	the	guests.	Or	you	may	have
seen	an	old	movie	where	someone	in	an	old	post	office	was	sorting	the	mail.	He
sits	at	a	table	with	a	series	of	cubbyholes	at	the	back.	He	has	a	pile	of	unsorted
mail	on	the	table,	picks	up	one	at	a	time,	reads	the	address,	and	puts	the	letter	in
the	appropriate	cubbyhole.

So	we're	going	to	build	some	cubbyholes.	Ours	will	be	three	inches	square,	and
there	will	be	sixteen	cubbyholes	high	and	sixteen	cubbyholes	across.	That's	a
total	size	of	four	feet	by	four	feet,	with	a	total	of	two	hundred	fifty	six	cubbies.

Now	we'll	add	something	that	they	don't	have	in	the	post	office	or	the	hotel.
We're	going	to	put	a	large	wood	panel	right	in	front	of	the	cubbies	which	is	twice
as	wide	as	the	whole	thing,	and	in	the	middle	it	has	a	vertical	slot	that	is	just
large	enough	to	expose	one	column	of	16	cubbies.	The	panel	will	have	wheels	on
the	bottom	so	it	can	slide	left	and	right	to	expose	any	one	of	the	vertical	columns
of	sixteen	cubbies	at	a	time,	and	cover	all	of	the	other	columns.

Let's	take	another	wood	panel	just	like	the	first,	but	turn	it	up	sideways	so	it	is
twice	as	high	as	our	cubbyholes,	and	the	slot	in	the	middle	goes	side	to	side.	This
second	panel	will	be	mounted	right	in	front	of	the	first,	in	something	like	a
window	frame,	so	it	can	slide	up	and	down,	exposing	just	one	row	of	sixteen
cubbies	at	a	time.

So	now	we	have	a	series	of	256	cubbyholes,	and	two	slotted	wooden	panels	in
front	of	them	that	allow	only	one	cubby	at	a	time	to	be	visible.	In	each	of	these
cubbies,	we	will	place	a	single	slip	of	paper	on	which	we	will	write	one	of	the
possible	combinations	of	eight	zeros	and	ones.

This	cubbyhole	device	has	256	places	to	store	something.	At	any	given	time,	we
can	select	one	and	only	one	of	those	places	by	sliding	the	wood	panels	side	to
side	or	up	and	down.	At	the	selected	cubbyhole,	we	can	reach	in	and	get	the	slip



of	paper	and	read	it,	or	replace	it	with	another	one.

Now	we	will	take	the	gates,	registers	and	decoders	that	we	have	described,	and
make	something	out	of	them	that	does	pretty	much	the	same	thing	as	our
cubbyhole	device.	This	thing	will	have	256	places	in	which	to	store	something,
and	we	will	be	able	to	select	one	and	only	one	of	those	places	at	any	given	time.

Referencing	the	diagram	below,	we	start	with	a	single	register.	Its	input	'a,'	is	a
bus	that	comes	from	somewhere	else	in	the	computer.	A	combination	of	bits	is
placed	on	the	bus	and	the	'sa'	(set	a)	bit	goes	1	then	o.	That	bit	pattern	is	now
stored	in	this	register,	which	is	one	of	those	registers	whose	output	is	always	on.
The	first	four	output	bits	are	connected	to	one	4X16	decoder,	and	the	other	four
output	bits	are	connected	to	another	4X16	decoder.	The	outputs	of	the	two
decoders	are	laid	out	in	a	grid	pattern.	The	wires	do	not	touch	each	other,	but
there	are	16	by	16,	or	256	intersections	here	that	we	will	make	use	of	soon.	A
decoder,	as	stated,	has	one	and	only	one	of	its	outputs	on	at	any	time,	and	the	rest
are	off.	Since	we	have	two	decoders	here,	there	will	be	one	horizontal	grid	wire
on,	and	one	vertical	grid	wire	on.	Therefore,	of	these	256	intersections,	there	will
be	only	one	intersection	where	both	the	horizontal	and	vertical	wires	are	on.
Which	intersection	that	is	will	change	every	time	the	value	in	R	is	changed,	but
there	will	always	be	one	where	both	wires	are	on	while	the	other	255	will	have
only	one	on	or	none	on.



At	the	bottom	of	this	diagram	is	one	bus	and	an	‘s’	and	‘e’	bit,	just	the	same	as
the	connections	that	go	to	a	register.	As	you	can	see,	they	go	upwards	and	into
the	grid.	The	diagram	doesn’t	show	it,	but	they	go	up	under	the	grid	all	the	way
to	the	top,	so	that	each	of	the	256	intersections	has	a	bus	and	an	‘s’	and	‘e’	bit
nearby.

There	is	a	circle	on	the	diagram	above,	around	one	of	the	intersections	of	the
grid.	What	is	in	this	circle	is	magnified	in	the	diagram	below,	showing	that	there
are	three	AND	gates	and	one	register	at	each	of	the	256	intersections.	As	we	can
see,	there	is	an	AND	gate	‘x,’	connected	to	the	one	vertical	grid	wire	and	the	one
horizontal	grid	wire	at	this	intersection.	These	‘x’	gates	are	the	only	things
connected	to	the	grid.	The	rest	of	the	connections	go	down	to	the	bus	and	‘s’	and
‘e’	bits	at	the	bottom	of	the	diagram.	Remember	that	there	is	only	one
intersection	where	both	grid	wires	are	on.	Therefore,	there	are	256	of	these	‘x’
gates,	but	only	one	of	them	has	its	output	on	at	any	given	time.	The	output	of
that	‘x’	gate	goes	to	one	side	each	of	two	more	AND	gates.	These	two	gates
control	access	to	the	set	and	enable	inputs	of	the	register	at	that	intersection.	So
when	an	‘x’	gate	is	off,	the	‘s’	and	‘e’	bits	of	that	register	cannot	be	turned	on.
That	will	be	the	case	for	255	of	these	registers,	the	ones	where	the	'x'	gate	is	off.
But	one	intersection	has	its	'x'	gate	on,	and	its	register	can	be	set	from	the	bus,	or



its	contents	can	be	enabled	onto	the	bus	and	sent	elsewhere	by	using	the	's'	and
'e'	bits	at	the	bottom	of	the	diagram.

The	above	is	the	computer's	main	memory.	It	is	half	of	what	is	necessary	to	build
a	computer.	It	is	sometimes	called	by	different	names,	but	the	most	correct	name
comes	from	the	fact	that	you	can	select	any	one	of	the	256	bytes	one	moment,
and	then	you	can	immediately	select	any	other	of	the	256	bytes,	and	it	does	not
matter	where	the	last	one	was,	or	where	the	next	one	is,	there	is	no	speed
advantage	or	disadvantage	to	the	order	in	which	you	select	the	bytes.	Because	of
this	quality,	this	is	a	good	type	of	memory	to	use	if	you	want	to	be	able	to	access
the	bytes	of	memory	in	a	random	order.	So	this	type	of	memory	is	called
"Random	Access	Memory,"	or	"RAM"	for	short.

This	is	RAM.	It	uses	257	registers.	256	registers	are	memory	storage	locations,
one	register	is	used	to	select	one	of	the	storage	locations	and	is	called	the
"Memory	Address	Register"	or	"MAR"	for	short.	Now	that	we	know	what's	in	it,
we	can	make	a	simplified	diagram	like	this,	and	an	even	simpler	bus	version:



This	is	fully	half	of	a	computer.	A	computer	has	just	two	parts,	and	this	is	one	of
them.	So	now	you	know	half	of	what	is	inside	a	computer.	Every	part	is	made
out	of	NAND	gates.	That	wasn’t	very	difficult	was	it?

There	is	one	problem	here,	and	that	is	that	256	bytes	is	a	very	small	size	for	a
computer’s	RAM.	We	maybe	able	to	get	away	with	it	in	this	book,	but	if	you
want	a	real	computer,	it’s	going	to	need	a	RAM	with	many	more	bytes	to	choose
from.

A	larger	RAM	can	be	built	by	providing	two	registers	that	are	used	to	select	a
memory	storage	location.	This	allows	the	use	of	8X256	decoders,	and	results	in
a	grid	with	65,536	intersections,	and	thus	a	RAM	with	65,536	different	locations
in	which	to	store	something.

Here’s	an	idea	of	what	it	would	look	like:	(Don’t	bother	trying	to	count	the	grid
lines,	it	was	only	possible	to	fit	about	half	of	them	on	the	printed	page.)



A	bus	carries	one	byte	at	a	time,	so	selecting	one	of	the	65,536	memory	locations
of	this	RAM	would	be	a	two-step	process.	First,	one	byte	would	have	to	be
placed	on	the	‘a’	bus	and	set	into	R0,	then	the	second	byte	would	have	to	be
placed	onto	the	‘a’	bus	and	set	into	R1.	Now	you	could	access	the	desired
memory	location	with	the	bus	and	the	‘s’	and	‘e’	bits	at	the	bottom	of	the
drawing.

Simplifying	again,	we	have	something	that	looks	very	much	like	our	256	byte
RAM,	it	just	has	one	more	input	bit.



For	the	rest	of	this	book,	we	will	be	using	the	256	byte	RAM	just	to	keep	things
simple.	If	you	want	to	imagine	a	computer	with	a	larger	RAM,	every	time	we
send	a	byte	to	the	Memory	Address	Register,	all	you	have	to	do	is	imagine
sending	two	bytes	instead.



NUMBERS

We	are	going	to	return	to	the	subject	of	codes	for	a	moment.	Previously	we
looked	at	a	code	called	ASCII	that	is	used	to	represent	written	language.	Well,
numbers	are	used	in	written	language	too,	so	there	are	ASCII	codes	for	the	digits
zero	through	nine.	Earlier	we	saw	20	of	the	ASCII	codes	for	part	of	the	alphabet,
here	are	10	more,	the	codes	for	numbers	in	written	language:

This	is	a	very	useful	code,	but	not	everything	that	computers	do	has	to	do	with
written	language.	For	other	tasks,	there	are	other	codes	that	are	suited	better	to
those	tasks.	When	it	comes	to	numbers,	if	you	use	ASCII,	one	byte	can	be	any	of
the	10	digits	from	0	to	9.	But	sometimes	there	is	a	byte	that	is	always	used	to
store	a	number,	and	that	number	will	never	be	printed	or	displayed	on	the	screen.
In	this	case,	we	can	use	a	different	code	that	doesn't	waste	any	of	its	possible
states	on	letters	of	the	alphabet	or	anything	other	than	numbers.	Since	a	byte	has
256	possible	states,	you	can	have	this	code	represent	256	different	numbers.
Since	we	want	to	include	zero,	this	code	starts	at	zero	and	goes	up	to	255.

Now	how	is	this	code	arranged?	The	ASCII	above	is	not	used	at	all;	this	is	a



completely	different	code.	This	code	did	not	require	any	committee	meetings	to
invent	because	it	is	the	simplest	and	most	obvious	code	that	computers	use.	It	is
the	closest	thing	there	is	to	a	‘natural’	computer	code.

Since	this	is	a	long	chapter,	here	is	a	preview	of	this	code.	It	consists	of
assigning	a	numeric	value	to	each	bit	in	the	byte.	To	use	this	code,	just	turn	on
the	bits	that	add	up	to	the	number	you	want	to	represent.

To	see	how	this	code	works,	why	it	is	used	in	computers,	and	how	those	bit
values	were	chosen,	we	will	examine	the	subject	of	numbers	outside	of
computers.

There	are	three	number	systems	that	you	are	probably	familiar	with	that	we	can
analyze.	As	I	see	it,	these	three	systems	are	each	made	up	of	two	ideas	or
elements	–	first,	a	list	of	symbols,	and	second,	a	method	for	using	those	symbols.

Probably	the	oldest	number	system	around	is	a	simple	thing	called	Tally	Marks.
It	has	two	symbols,	“|”	and	“/.”	The	method	for	using	these	symbols	is	that	you
write	down	a	“|”	for	each	of	the	first	four	things	you	are	counting,	then	for	the
fifth	mark,	you	write	a	“/”	across	the	first	four.	You	repeat	this	over	and	over	as
long	as	necessary	and	then	when	you’re	done	you	count	the	marks	by	groups	of
five	–	5,	10,	15,	20,	etc.	This	system	is	very	good	for	counting	things	as	they
pass	by,	say	your	flock	of	sheep.	As	each	animal	walks	by,	you	just	scratch	down
one	more	mark	–	you	don’t	have	to	cross	out	‘6’	and	write	‘7’.	This	system	has
another	advantage	in	that	there	is	actually	one	mark	for	each	thing	that	has	been
counted.	Later	in	the	chapter	we	are	going	to	do	some	interesting	things	with
numbers	that	may	get	confusing,	so	in	order	to	keep	things	clear,	we	will	make
use	of	this	old	system.

Do	you	remember	Roman	numerals?	It	is	a	number	system	that	also	consists	of
two	elements.	The	first	element	is	the	symbols,	just	selected	letters	from	the
alphabet,	'I'	for	one,	'V	for	five,	'X'	for	ten,	'L'	for	fifty,	'C	for	one	hundred,	'D'
for	five	hundred,	'M'	for	one	thousand.	The	second	element	is	a	method	that
allows	you	to	represent	numbers	that	don't	have	a	single	symbol.	The	Roman
method	says	that	you	write	down	multiple	symbols,	the	largest	ones	first,	and
add	them	up,	except	when	a	smaller	symbol	is	to	left	of	a	larger	one,	then	you
subtract	it.	So	'II'	is	two	(add	one	and	one,)	and	TV	is	four	(subtract	one	from



five.)	One	of	the	things	that	made	this	author	very	happy	about	the	coming	of	the
year	2000	was	the	fact	that	Roman	numerals	representing	the	year	got	a	lot
simpler.	1999	was	'MCMXCIX,'	you	have	to	do	three	subtractions	in	your	head
just	to	read	that	one.	2000	was	simply	'MM.'

The	normal	number	system	we	use	today	also	consists	of	two	ideas,	but	these	are
two	very	different	ideas	that	came	to	us	through	Arabia	rather	than	Rome.	The
first	of	these	ideas	is	also	about	symbols,	in	this	case	0,	1,	2,	3,	4,	5,	6,	7,	8	and
9.	These	digits	are	symbols	that	represent	a	quantity.	The	second	idea	is	a
method	that	we	are	so	used	to,	that	we	use	it	instinctively.	This	method	says	that
if	you	write	down	one	digit,	it	means	what	it	says.	If	you	write	down	two	digits
next	to	each	other,	the	one	on	the	right	means	what	it	says,	but	the	one	to	its	left
means	ten	times	what	it	says.	If	you	write	down	three	digits	right	next	to	each
other,	the	one	on	the	right	means	what	it	says,	the	middle	one	means	ten	times
what	it	says	and	the	one	on	the	left	means	one	hundred	times	what	it	says.	When
you	want	to	express	a	number	greater	than	9,	you	do	it	by	using	multiple	digits,
and	you	use	this	method	that	says	that	the	number	of	positions	to	the	left	of	the
first	digit	tells	you	how	many	times	you	multiply	it	by	ten	before	you	add	them
up.	So,	if	you	have	'246'	apples,	that	means	that	you	have	two	hundred	apples
plus	forty	apples	plus	six	apples.

So	how	does	this	work?	A	number	of	any	amount	can	be	written	with	the	digits
zero	through	nine,	but	when	you	go	higher	than	nine,	you	have	to	use	two	digits.
When	you	go	above	ninety	nine,	you	have	to	use	three	digits.	Above	nine
hundred	ninety	nine,	you	go	to	four	digits,	etc.	If	you	are	counting	upwards,	the
numbers	in	any	one	of	the	positions	go	'round	and	'round	-	zero	to	nine,	then	zero
to	nine	again,	on	and	on,	and	whenever	you	go	from	nine	back	to	zero,	you
increase	the	digit	to	the	left	by	1.	So	you	only	have	ten	symbols,	but	you	can	use
more	than	one	of	them	as	needed	and	their	positions	with	regard	to	each	other
specify	their	full	value.

There	is	something	odd	about	this	in	that	the	system	is	based	on	ten,	but	there	is
no	single	symbol	for	ten.	On	the	other	hand,	there	is	something	right	about	this	-
the	symbols	'0'	through	'9'	do	make	up	ten	different	symbols.	If	we	also	had	a
single	symbol	for	ten,	there	would	actually	be	eleven	different	symbols.	So
whoever	thought	of	this	was	pretty	smart.

One	of	the	new	ideas	in	this	Arabic	system	was	to	have	a	symbol	for	zero.	This
is	useful	if	you	want	to	say	that	you	have	zero	apples,	but	it	is	also	a	necessary
thing	to	keep	the	positions	of	the	digits	straight.	If	you	have	50	apples	or	107
apples,	you	need	the	zeros	in	the	numbers	to	know	what	position	each	digit	is



actually	in,	so	you	can	multiply	by	ten	the	correct	number	of	times.

Now	these	two	ideas	in	the	Arabic	number	system	(the	digits	and	the	method)
have	one	thing	in	common.	They	both	have	the	number	ten	associated	with
them.	There	are	ten	different	digits,	and	as	you	add	digits	to	the	left	side	of	a
number,	each	position	is	worth	ten	times	more	than	the	previous	one.

In	school,	when	they	first	teach	children	about	numbers,	they	say	something
about	our	number	system	being	based	on	the	number	ten,	because	we	have	ten
fingers.	So	here's	an	odd	question:	What	if	this	number	system	had	been
invented	by	three-toed	sloths?	They	only	have	three	fingers	on	each	hand,	and	no
thumbs.	They	would	have	invented	a	number	system	with	only	six	digits-	0,	1,	2,
3,	4	and	5.	Could	this	work?	If	you	had	eight	apples,	how	would	you	write	it?
There	is	no	number	'8'	in	this	system.	The	answer	is,	that	since	the	first	idea,	the
digits,	was	changed	to	only	have	six	digits,	then	the	second	idea,	the	method,
would	also	have	to	be	changed	so	that	as	you	add	positions	to	the	left,	each	one
would	have	to	be	multiplied	by	sixes	instead	of	tens.	Then	this	system	would
work.	As	you	count	your	apples,	you	would	say	"0,	1,	2,	3,	4,	5..."	and	then
what?

There's	no	'6'	for	the	next	number.	Well,	according	to	the	method,	when	you
want	to	go	beyond	the	highest	digit,	you	go	back	to	'o'	and	add	a	'1'	to	the	left.
OK,	"o,	1,	2,	3,	4,	5,	10,	11,	12."	Now	you	have	counted	all	of	your	apples.	What
would	this	'12'	mean?	It	would	be	this	many:	 	I	guess	you'd	call	it	eight,	but
you'd	write	it	'12'.	Very	odd,	but	it	does	work	out	-1	times	six	plus	two	equals
eight	apples,	it	follows	the	Arabic	method,	but	it	is	based	on	six	instead	often.	If
you	continued	counting	up,	when	you	got	to	'15,'	which	is	 	(one	times	six
plus	five,)	the	next	number	would	be	'20,'	but	the	'2'	would	mean	two	sixes,	or
this	many: 	And	55	would	be	followed	by	100.	The	'1'	in	that	third	position
would	be	how	many	'36's	there	were	(six	times	six)

This	is	a	very	odd	number	system,	but	guess	what,	you	already	use	it	in	your
everyday	life.	Yes,	think	of	the	way	we	write	time,	or	the	kind	of	clock	that
shows	the	numbers	on	its	face.	The	right	digit	of	the	minutes	and	seconds
follows	our	normal	numbers,	0-9,	0-9,	over	and	over.	But	the	left	digit	of	the
minutes	and	seconds	only	goes	0-5.	After	59	minutes,	the	clock	goes	to	the	next
hour	and	00	minutes.	There	are	60	minutes	in	an	hour,	numbered	from	00	to	59.
That	left	position	never	gets	over	5.	That	position	uses	the	number	system	based
on	six	symbols	(0-5).	The	hour	part	of	the	clock	tells	how	many	'60's	there	are,
though	you	will	never	see	a	60	on	the	face	of	the	clock.	And	you	are	so	used	to
this	that	you	don't	have	to	think	about	it.	When	the	clock	says	1:30,	you	know



that	this	is	halfway	between	1:00	and	2:00,	you	don't	have	to	do	any	math	in
your	head	to	figure	it	out.	Have	you	ever	had	to	add	time?	If	you	add	40	minutes
and	40	minutes,	you	get	80	minutes,	but	to	write	that	down	in	hours	and	minutes,
you	have	to	figure	out	how	many	60s	there	are	in	80,	in	this	case	1,	then	figure
out	how	many	minutes	there	are	beyond	60,	in	this	case	20.	So	you	write	1:20.
The	1	represents	60	minutes,	add	20	and	you	have	your	80	again.	So	this	is
pretty	complicated,	two	different	number	systems	in	the	same	number!	But	you
have	already	been	using	it	your	whole	life.

The	hour	positions	are	even	stranger.	On	a	12	hour	clock,	it	skips	zero	and	goes
1-12	AM,	then	1-12	PM.	On	a	24	hour	clock,	it	goes	from	00-23.	We	won’t	try
to	analyze	these.	The	point	we	wanted	to	make	was	that	you	are	already	familiar
with	number	systems	based	on	numbers	other	than	ten.

You	could	invent	a	number	system	for	any	amount	of	digits,	10	or	6	like	we’ve
seen	above,	or	3	or	14	or	any	number	you	choose.	But	the	simplest	one	would	be
if	you	only	had	2	digits,	0	and	1.	How	would	this	one	work?	Well,	you’d	count	0,
1...	and	then	you’re	already	out	of	digits	–	so	back	to	0	and	add	1	on	the	left,
making	the	next	number	10	then	11,	then	you’re	out	of	digits	again,	so	100	then
101,	110,	111	then	1000.	This	system	is	based	on	two,	so	there	are	only	two
digits,	and	as	you	add	positions	to	the	left,	each	one	is	worth	two	times	more
than	the	previous	one.	The	right	position	means	what	it	says,	the	next	one	to	the
left	means	two	times	what	it	says,	the	next	means	four	times	what	it	says,	the
next	means	eight	times,	etc.	When	you	get	down	to	only	having	two	possible
digits,	you	don’t	have	to	do	much	multiplication	to	figure	out	the	total	value	of	a
position.	In	the	position	that	is	worth	‘eight,’	for	example,	there	can	only	be	a
one,	meaning	one	‘eight,’	or	a	zero,	meaning	‘no	eights.’

While	we’re	at	it,	let’s	imagine	a	very	strange	animal	with	eight	fingers	on	each
hand.	That	animal	would	have	invented	numbers	based	on	sixteen.	In	their
system,	they	would	be	able	to	write	ten	through	fifteen	each	with	a	single
symbol.	Only	when	they	arrived	at	sixteen	would	they	get	back	around	to	0	and
need	to	put	a	1	in	the	position	to	the	left.	To	see	how	this	would	work,	we	need
six	new	symbols,	so	let’s	just	use	the	first	six	letters	of	the	alphabet.	‘A’	will
mean	ten,	‘B’	will	mean	eleven,	‘C’	will	mean	twelve,	‘D’	will	mean	thirteen,	‘E’



will	mean	fourteen	and	‘F’	will	mean	fifteen.	Only	after	using	all	sixteen
symbols	in	the	right	position	will	we	run	out	of	symbols,	and	the	next	number
will	be	sixteen,	written	‘10’	in	this	system.	If	you’re	familiar	with	the	pounds
and	ounces	system	of	weights,	it’s	sort	of	like	this	system.	There	are	16	ounces
in	a	pound,	so	you	know	that	8	ounces	is	half	a	pound.	Adding	9	ounces	and	9
ounces	comes	out	to	1	pound	2	ounces.

Here	is	a	chart	that	shows	five	different	number	systems.	The	first	column	is	the
old	tally	mark	system	to	keep	it	sensible.

Our	normal	0-9	numbers	are	called	the	decimal	system,	because	‘dec’	means	ten
in	some	ancient	language.	The	0-5	system	would	be	called	the	senary	system,
because	‘sen’	means	six	in	some	other	ancient	language.	This	new	system	with
just	0	and	1	is	called	the	binary	system	because	‘bi’	means	two,	also	because	of
some	ancient	language.	This	other	new	system,	the	0-F	system,	will	be	called	the
hexadecimal	system,	because	‘hex’	is	another	ancient	word	that	means	six	and
‘dec’	still	means	ten,	so	it’s	the	six	plus	ten	system.

Another	method	of	naming	different	number	systems	is	to	call	them	by	the
number	they	are	based	on,	such	as	‘base	10’	or	‘base	2,’	etc.	meaning	decimal	or
binary,	etc.	But	notice	that	the	number	after	the	word	‘base’	is	written	in	the



decimal	system.	‘2’	written	in	binary	is	‘10,’	so	‘base	10’	would	mean	binary	if
the	‘10’	was	written	in	binary.	In	fact,	every	number	system	would	be	'base	10'	if
the	'10'	was	written	in	that	system's	numbers!	So	we	could	talk	about	base	2,
base	6,	base	10	and	base	16	if	we	wanted	to,	as	long	as	we	remember	that	those
base	numbers	are	written	in	decimal.	If	we	talk	about	binary,	senary,	decimal	and
hexadecimal,	it's	the	same	thing,	just	possibly	a	little	less	confusing.

Again,	in	our	normal	decimal	numbers,	the	rightmost	position	is	the	number	of
ones.	The	next	position	to	the	left	is	the	number	of	tens,	etc.	Each	position	is
worth	ten	times	the	previous	one.	In	the	binary	system,	the	rightmost	position	is
also	the	number	of	ones,	but	the	next	position	to	the	left	is	the	number	of	'twos,'
the	next	to	the	left	is	the	number	of	'fours,'	the	next	is	'eights.'	Each	position	is
worth	two	times	the	amount	to	its	right.	Since	each	position	has	only	two
possible	values,	zero	or	one,	this	is	something	that	we	could	use	in	a	byte.

This	is	the	point	of	this	chapter.	The	binary	number	system	is	a	'natural'	match	to
the	capabilities	of	computer	parts.	We	can	use	it	as	a	code,	with	off	representing
zero	and	on	representing	one,	following	the	Arabic	number	method	with	only
two	symbols.	In	a	byte,	we	have	eight	bits.	When	we	use	this	code,	the	bit	on	the
right	will	be	worth	1	when	the	bit	is	on,	or	o	when	it	is	off.	The	next	bit	to	the
left	will	be	worth	2	when	it	is	on,	or	o	when	it	is	off.	The	next	to	the	left	is	4,	and
so	on	with	8,16,	32,	64	and	128.	In	the	order	we	normally	see	them,	the	values	of
the	eight	bits	look	like	this:	128	64	32	16	8	4	2	1.

In	this	code,	0000	0001	means	one,	00010000	means	sixteen,	0001	0001	means
seventeen	(sixteen	plus	one,)	11111111	means	255,	etc.	In	an	eight-bit	byte,	we
can	represent	a	number	anywhere	from	o	to	255.	This	code	is	called	the	"binary
number	code."

The	computer	works	just	fine	with	this	arrangement,	but	it	is	annoying	for
people	to	use.	Just	saying	what	is	in	a	byte	is	a	problem.	If	you	have	0000	0010,
you	can	call	it	"zero	zero	zero	zero	zero	zero	one	zero	binary"	or	you	can
mentally	translate	it	to	decimal	and	call	it	"two,"	and	that	is	usually	what	is	done.
In	this	book	when	a	number	is	spelled	out,	such	as	'twelve,'	it	means	12	in	our
decimal	system.	A	binary	0000	0100	would	be	called	'four,'	because	that	is	what
it	works	out	to	be	in	decimal.

Actually,	in	the	computer	industry,	people	often	use	hexadecimal,	(and	they	just
call	it	'hex'.)	If	you	look	at	the	chart	above,	you	can	see	that	four	digits	of	binary
can	be	expressed	by	one	digit	of	hex.	If	you	have	a	byte	containing	00111100,
you	can	translate	it	to	60	decimal,	or	just	call	it	"3C	hex."	Now	don't	worry,



we're	not	going	to	use	hex	in	this	book,	but	you	may	have	seen	these	types	of
numbers	somewhere,	and	now	you	know	what	that	was	all	about.



Addresses

Now	that	we	have	the	binary	number	code,	we	can	use	it	for	various	purposes	in
our	computer.	One	of	the	first	places	we	will	use	it,	is	in	the	Memory	Address
Register.	The	pattern	of	bits	that	we	put	into	this	register	will	use	the	binary
number	code.	The	bits	of	this	number	in	MAR	then	select	one	of	the	256	RAM
storage	locations.	The	number	in	MAR	is	considered	to	be	a	number	somewhere
between	o	and	255,	and	thus	each	of	the	256	RAM	bytes	can	be	considered	to
have	an	address.

This	is	fairly	simple,	but	a	point	needs	to	be	made	here	about	exactly	what	is
meant	by	an	address	inside	of	a	computer.	In	a	neighborhood	of	homes,	each
house	has	an	address,	like	125	Maple	Street.	There	is	a	sign	at	the	corner	that
says	"Maple	St."	and	written	on	the	house	are	the	numerals	"125."	This	is	the
way	we	normally	think	of	addresses.	The	point	to	be	made	here	is	that	the	houses
and	streets	have	numbers	or	names	written	on	them.	In	the	computer,	the	byte
does	not	have	any	identifying	information	on	it	or	contained	in	it.	It	is	simply	the
byte	that	gets	selected	when	you	put	that	number	in	the	Memory	Address
Register.	The	byte	gets	selected	by	virtue	of	where	it	is,	not	by	any	other	factor
that	is	contained	at	that	location.	Imagine	a	neighborhood	of	houses	that	had
sixteen	streets,	and	sixteen	houses	on	each	street.	Imagine	that	the	streets	do	not
have	signs	and	the	houses	do	not	have	numbers	written	on	them.	You	would	still
be	able	to	find	any	specific	house	if	you	were	told,	for	example,	to	go	to	'the
fourth	house	on	the	seventh	street.'	That	house	still	has	an	address,	that	is,	a
method	of	locating	it,	it	just	doesn't	have	any	identifying	information	at	the
location.	So	a	computer	address	is	just	a	number	that	causes	a	certain	byte	to	be
selected	when	that	address	is	placed	into	the	Memory	Address	Register.



THE	OTHER	HALF	OF	THE	COMPUTER

The	other	half	of	the	computer	is	also	made	ultimately	of	nothing	but	NAND
gates,	and	it	probably	has	fewer	total	parts	than	the	RAM	we	have	built,	but	it	is
not	laid	out	so	regularly	and	repetitively,	so	it	will	take	a	little	longer	to	explain.
We	will	call	this	half	of	the	computer	the	“Central	Processing	Unit,”	or	CPU	for
short,	because	it	does	something	with	and	to	the	bytes	in	RAM.	It	“processes”
them,	and	we	will	see	what	that	means	in	the	next	few	chapters.	The	thing	that	is
common	to	both	sides	of	the	computer	is	the	bus.

Here	are	the	beginnings	of	the	CPU.	The	RAM	is	shown	on	the	right,	and	the
bus	makes	a	big	loop	between	the	two	bus	connections	on	the	RAM.	The	CPU
starts	with	six	registers	connected	to	the	bus.	These	six	registers	are	all	of	the
places	that	the	CPU	will	use	to	“process”	bytes.	That’s	not	so	complicated,	is	it?

The	big	box	labeled	“Control	Section”	in	the	middle	of	the	diagram	will	be
examined	in	detail	later.	It	controls	all	of	the	‘set’	and	‘enable’	bits	in	the	CPU
and	the	RAM.	The	boxes	with	the	question	marks	will	be	explained	immediately
following	this	chapter.	For	now,	we	are	going	to	look	at	where	the	bytes	can	go
within	the	CPU.

R0,	R1,	R2,	and	R3	are	registers	that	are	used	as	short-term	storage	for	bytes	that
are	needed	in	the	CPU.	Their	inputs	and	outputs	are	connected	to	the	bus.	They
can	be	used	for	many	different	purposes,	so	they	are	known	as	"general	purpose
registers."

The	register	called	'TMP'	means	temporary.	Its	input	comes	from	the	bus,	and	its



output	goes	downward	to	one	and	then	the	other	of	the	question	marked	boxes.
TMP	has	a	'set'	bit,	but	no	'enable'	bit	because	we	never	have	a	reason	to	turn	its
output	off.

The	last	register	is	called	the	accumulator,	or	ACC	for	short.	This	is	a	word	that
comes	from	the	days	of	the	old	mechanical	adding	machines	(pre	1970.)	I	guess
it	meant	that	as	you	added	up	a	column	of	numbers,	it	would	'accumulate'	a
running	total.	In	a	computer,	it	just	means	that	it	temporarily	stores	a	byte	that
comes	from	that	big	question	marked	box.	The	output	of	ACC	is	then	connected
to	our	old	friend,	the	bus,	so	it	can	be	sent	somewhere	else	as	needed.

The	registers	in	the	CPU	and	RAM	are	the	places	where	the	contents	of	bytes
come	from	and	go	to	as	the	computer	operates.	All	movements	involve	enabling
one	register	onto	the	bus,	and	setting	the	contents	of	the	bus	into	another	register.

Now	we	will	look	at	what	is	in	those	boxes	with	the	question	marks.



MORE	GATES

We	have	used	NAND,	AND	and	NOT	gates	so	far.	There	are	two	more
combination	gates	that	we	need	to	define.	The	first	is	built	like	this:

All	it	does	is	to	NOT	the	two	inputs	to	one	of	our	good	old	NAND	gates.	Here	is
the	chart	for	it,	showing	the	intermediate	wires	so	it	is	easy	to	follow.

In	this	case,	when	both	inputs	are	off,	the	output	is	off,	but	if	either	'a'	OR	'b'	is
on,	or	both,	then	the	output	will	be	on.	So	it	has	another	very	simple	name,	it	is
called	the	"OR	gate."	Instead	of	drawing	all	the	parts,	it	has	its	own	diagram
shaped	something	like	a	shield.	The	diagram	and	chart	look	like	this:



Like	the	AND	gate,	you	can	build	OR	gates	with	more	than	two	inputs.	Just	add
another	OR	gate	in	place	of	one	of	the	inputs,	and	you	will	then	have	three
inputs,	any	one	of	which	will	turn	the	output	on.	Also	like	the	AND	gate,	every
time	you	add	an	input,	the	number	of	lines	on	the	chart	will	double.	With	the	OR
gate,	only	the	line	that	has	all	inputs	off	will	have	the	output	off.	All	the	rest	of
the	lines	will	show	the	output	being	on.

The	last	combination	gate	we	need	here	takes	five	gates	to	make,	but	what	it
ultimately	does	is	quite	simple.	Similar	to	the	OR	gate,	the	output	is	on	when
either	input	is	on,	but	in	this	version,	the	output	goes	back	off	if	both	inputs	are
on.	So	it	is	called	an	Exclusive	OR	gate,	or	XOR	gate	for	short.	The	output	is	on
if	either	OR	the	other	input	is	on,	exclusively.	Only	if	it	is	OR,	not	if	it	is	AND.
Another	way	to	look	it	at	it	is	the	output	comes	on	if	one	and	only	one	input	is
on.	Still	another	way	to	look	at	it	is	the	output	is	off	if	the	inputs	are	the	same,
and	on	if	the	inputs	are	different.



The	simplified	diagram	looks	similar	to	an	OR	gate,	but	it	has	a	double	curved
line	on	the	input	side.	The	diagram	and	chart	look	like	this:

We	now	have	four	kinds	of	gates	that	take	two	inputs	and	make	one	output.	They
are	NAND,	AND,	OR	and	XOR.	Here	is	a	chart	that	makes	it	pretty	simple:



For	the	four	possible	input	combinations	of	‘a’	and	‘b,’	each	type	of	gate	has	its
own	set	of	output	states,	and	the	names	of	the	gates	can	help	you	remember
which	is	which.

In	spite	of	the	fact	that	everything	in	the	computer	is	made	out	of	NAND	gates,
we	are	not	going	to	be	using	any	NAND	gates	by	themselves	in	this	computer!
Now	that	we	have	used	them	to	build	AND,	OR,	XOR	and	NOT	gates,	and	the
memory	bit,	we	are	done	with	the	NAND	gate.	Thank	you	Mr.	NAND	gate,	bye
bye	for	now.



Messing	with	Bytes

Individual	gates	operate	on	bits.	Two	bits	in,	one	bit	out.	But	the	RAM	stores
and	retrieves	a	byte	at	a	time.	And	the	bus	moves	a	byte	at	a	time.	Here	in	the
CPU,	we	want	to	be	able	to	work	on	a	whole	byte	at	one	time.	We	want	some
'gates'	that	affect	an	entire	byte.	In	the	chapter	on	the	bus,	we	saw	how	the
contents	of	a	byte	can	be	copied	from	one	register	to	another.	This	is	usually
referred	to	as	moving	a	byte.	Now	we	are	going	to	see	some	variations	on	this.

First	we	will	see	three	ways	that	we	can	change	the	contents	of	a	byte	as	it
moves	from	one	register	to	another.	Second,	we	will	see	four	ways	that	we	can
take	the	contents	of	two	bytes,	and	have	them	interact	with	each	other	to	create
the	contents	for	a	third	byte.	These	are	all	of	the	things	that	computers	actually
do	to	bytes.	All	things	ultimately	come	down	to	these	seven	operations.



THE	LEFT	AND	RIGHT	SHIFTERS

The	shifter	is	very	easy	to	build.	It	doesn’t	use	any	gates	at	all,	it	just	wires	up
the	bus	a	bit	oddly.	It	is	done	like	this:

This	shows	two	registers	connected	by	a	right	shifter.	The	shifter	is	just	the	wires
between	the	two	registers.	When	the	‘e’	bit	of	R1	is	turned	on,	and	the	‘s’	bit	of
R2	is	turned	on	and	then	off,	all	of	the	bits	in	R1	are	copied	into	R2,	but	they	are
shifted	over	one	position.	The	one	at	the	bottom	(shift	out)	can	be	connected	to
some	other	bit	in	the	computer,	but	is	often	connected	back	to	the	one	on	the	top
(shift	in)	and	when	that	is	done,	the	rightmost	bit	wraps	around	to	the	leftmost
bit	at	the	other	end	of	the	byte.

A	right	shifter	will	change	0100	0010,	to	0010	0001.

If	‘shift	out’	is	connected	to	‘shift	in,’	a	right	shift	will	change	0001	1001	to	1000
1100

A	left	shifter	will	change	0100	0010	to	1000	0100.	The	left	shifter	is	wired	up
like	so:



Once	again,	we	have	bus	versions	of	these	drawings.	They	each	have	an	‘i’	and
‘o’	bus,	and	also	one	input	and	output	bit,	like	this:

Now	of	what	use	is	this?	The	minds	of	programmers	have	come	up	with	all	sorts
of	things,	but	here	is	an	interesting	one.	Assume	that	you	are	using	the	binary
number	code.	You	have	the	number	0000	0110	in	R1.	That	comes	out	to	the
decimal	number	6.	Now	shift	that	code	left	into	R2.	R2	will	then	be	0000	1100.
This	comes	out	to	the	decimal	number	12.	What	do	you	know,	we	have	just
multiplied	the	number	by	2.	This	is	the	basis	of	how	multiplication	is	done	in	our
computer.	How	you	multiply	by	something	other	than	2	will	be	seen	later,	but
this	is	how	simple	it	is,	just	shift	the	bits.	This	is	similar	to	something	we	do	with
decimal	numbers.	If	you	want	to	multiply	something	by	ten,	you	just	add	a	zero
to	the	right	side,	effectively	shifting	each	digit	left	one	position.	In	the	binary
system,	this	only	results	in	multiplying	by	two	because	two	is	what	the	system	is
based	on.

So	that’s	the	shifter,	no	gates	at	all.



THE	NOTTER

This	device	connects	two	registers	with	eight	NOT	gates.	Each	bit	will	be
changed	to	its	opposite.	If	you	start	with	0110	1000,	you	will	end	up	with	1001
0111.	This	operation	is	used	for	many	purposes,	the	first	being	in	some
arithmetic	functions.	We	will	see	exactly	how	this	works	soon	after	we	describe
a	few	other	things.	Another	name	for	a	NOT	gate	is	an	"inverter,"	because	it
makes	the	opposite	of	what	you	give	it,	turns	it	up	side	down,	or	inverts	it.

Since	the	input	and	the	output	are	both	eight	wires,	we'll	simplify	by	using	our
bus	type	picture.



THE	ANDER

The	ANDer	takes	two	input	bytes,	and	ANDs	each	bit	of	those	two	into	a	third
byte.	As	you	can	see,	the	eight	bits	of	the	'a'	input	bus	are	connected	to	the	upper
side	of	eight	AND	gates.	The	eight	bits	of	the	'b'	input	bus	are	connected	to	the
lower	side	of	the	same	eight	AND	gates.	The	outputs	of	the	eight	AND	gates
form	the	bus	output	'c'	of	this	assembly.	With	this,	we	can	AND	two	bytes
together	to	form	a	third	byte.

There	are	many	uses	for	this.	For	example,	you	can	make	sure	that	an	ASCII
letter	code	is	uppercase.	If	you	have	the	code	for	the	letter	'e'	in	R0,	0110	0101,
you	could	put	the	bit	pattern	1101	1111	into	R1	and	then	AND	R1	and	R0	and
put	the	answer	back	into	R0.	All	of	the	bits	that	were	on	in	R0	will	be	copied
back	to	R0	except	for	the	third	bit.	Whether	the	third	bit	had	been	on	or	off
before,	it	will	now	be	off.	R0	will	now	contain	0100	0101,	the	ASCII	code	for
'E.'	This	works	for	all	ASCII	letter	codes	because	of	the	way	ASCII	is	designed.

Here	is	a	simpler	bus	type	picture	for	the	ANDer.



THE	ORER

The	ORer	takes	two	input	bytes,	and	ORs	each	bit	of	those	two	into	a	third	byte.
As	you	can	see,	the	eight	bits	of	the	'a'	input	bus	are	connected	to	the	upper	side
of	eight	OR	gates.	The	eight	bits	of	the	'b'	input	bus	are	connected	to	the	lower
side	of	the	same	eight	OR	gates.	The	outputs	of	the	eight	OR	gates	are	the	bus
output	'c'	of	this	assembly.	With	this,	we	can	OR	two	bytes	together	to	form	a
third	byte.

What	is	the	use	of	this?	There	are	many,	but	here	is	one	of	them.	Say	you	have
the	ASCII	code	for	the	letter	'E'	in	R0,	0100	0101.	If	you	want	to	make	this	letter
be	lowercase,	you	could	put	the	bit	pattern	0010	0000	into	R1	and	then	OR	R0
and	R1	and	put	the	answer	back	into	R0.	What	will	happen?	All	of	the	bits	of	R0
will	be	copied	back	into	R0	as	they	were	except	the	third	bit	will	now	be	on	no
matter	what	it	had	been.	R0	will	now	be	0110	0101,	the	ASCII	code	for	'e.'	This
will	work	no	matter	what	ASCII	letter	code	was	in	R0	because	of	the	way	ASCII
was	designed.

Here	is	a	simpler	bus	type	picture	for	the	ORer.



THE	EXCLUSIVE	ORER

The	XORer	takes	two	input	bytes,	and	XORs	each	bit	of	those	two	into	a	third
byte.	As	you	can	see,	the	eight	bits	of	the	'a'	input	bus	are	connected	to	the	upper
side	of	eight	XOR	gates.	The	eight	bits	of	the	'b'	input	bus	are	connected	to	the
lower	side	of	the	same	eight	XOR	gates.	The	outputs	of	the	eight	XOR	gates	are
the	bus	output	'c'	of	this	assembly.	With	this,	we	can	XOR	two	bytes	together	to
form	a	third	byte.

What	is	the	use	of	this?	Again,	imaginative	people	have	come	up	with	many	of
uses.	But	here	is	one	of	them.	Say	you	have	one	code	in	R1	and	another	code	in
R2.	You	want	to	find	out	if	those	two	codes	are	the	same.	So	you	XOR	R1	and
R2	into	R1.	If	R1	and	R2	contained	the	same	patterns,	then	R1	will	now	be	all
zeros.	It	doesn't	matter	what	pattern	of	0s	and	1s	was	in	R1,	if	R2	contained	the
same	pattern,	after	an	XOR,	R1	will	be	all	zeros.

Since	both	of	the	inputs	and	the	output	are	all	eight	wires,	we'll	simplify	by	using
our	bus	type	picture.



THE	ADDER

This	is	a	combination	of	gates	that	is	surprisingly	simple	considering	what	it
does.	In	our	binary	number	system,	we	have	numbers	in	the	range	of	0	to	255
represented	in	a	byte.	If	you	think	about	how	addition	is	done	with	two	of	our
regular	decimal	numbers,	you	start	by	adding	the	two	numbers	in	the	right
column.	Since	the	two	numbers	could	each	be	anywhere	from	0	to	9,	the	sum	of
these	two	will	be	somewhere	from	0	to	18.	If	the	answer	is	anywhere	from	0	to
9,	you	write	it	down	below	the	two	numbers.	If	the	answer	is	from	10	to	18,	you
write	down	the	right	digit,	and	carry	the	1	to	add	to	the	next	column	to	the	left.

In	the	binary	number	system,	it	is	actually	much	simpler.	If	you	do	the	same	type
of	addition	in	binary,	the	two	numbers	in	the	right	column	can	each	only	be	0	or
1.	Thus	the	only	possible	answers	for	adding	the	right	column	of	two	binary
numbers	will	be	0,	1	or	10	(zero,	one	or	two).	If	you	add	0+0,	you	get	0,	1+0	or
0+1	you	get	1,1+1	you	get	o	in	the	right	column,	and	carry	1	to	the	column	to	the
left.

The	gates	we	have	described	can	easily	do	this.	An	XOR	of	the	two	bits	will	tell
us	what	the	right	column	answer	should	be,	and	an	AND	of	the	two	bits	will	tell
us	whether	we	need	to	carry	a	1	to	the	column	on	the	left.	If	one	bit	is	on,	and	the
other	one	is	off,	that	is,	we	are	adding	a	1	and	a	0,	the	answer	for	the	right
column	will	be	1.	If	both	numbers	are	1,	or	both	numbers	are	o,	the	right	column
will	be	o.	The	AND	gate	turns	on	only	in	the	case	where	both	input	numbers	are
1.



So	we	have	added	the	right	column	easily.	Now	we	want	to	add	the	next	column
to	the	left.	Should	be	the	same,	right?	There	are	two	bits	that	could	be	0	or	1,	but
this	time	we	also	have	the	possibility	of	a	carry	from	the	previous	column.	So	it’s
not	the	same,	this	time	we	are	really	adding	three	numbers,	the	two	bits	in	this
column,	plus	the	possible	carry	from	the	previous	column.

When	adding	three	bits,	the	possible	answers	are	0,	1,	10	or	11	(zero,	one,	two	or
three.)	It	is	more	complex,	but	not	impossible.	Here	is	the	combination	that	does
it:

The	left	XOR	tells	us	if	‘a’	and	‘b’	are	different.	If	they	are,	and	‘carry	in’	is	off,
or	if	‘a’	and	‘b’	are	the	same	and	‘carry	in’	is	on,	then	the	right	XOR	will
generate	1	as	the	sum	for	the	current	column.	The	lower	AND	gate	will	turn	on
‘carry	out’	if	both	inputs	are	on.	The	upper	AND	gate	will	turn	on	‘carry	out’	if
‘carry	in’	and	one	of	the	inputs	are	on.	This	is	the	simplicity	of	how	computers
do	addition!	Now	that	we	see	that	it	works,	we	can	make	a	simpler	picture	of	it:



To	make	an	adder	that	adds	two	bytes	together,	we	need	a	one	bit	adder	for	each
bit	of	the	bytes,	with	the	carry	output	of	each	bit	connected	to	the	carry	input	of
the	next.	Notice	that	every	bit	has	a	carry	in,	even	the	first	bit	(the	right	column.)
This	is	used	when	we	want	to	add	numbers	that	can	be	larger	than	255.

And	the	simplified	picture	of	it	with	bus	inputs	and	output:

The	carry	output	bit	of	the	leftmost	(top)	column	will	turn	on	if	the	sum	of	the
two	numbers	is	greater	than	255,	and	this	bit	will	be	used	elsewhere	in	the
computer.

This	is	how	computers	do	addition,	just	five	gates	per	bit,	and	the	computer	can



do	arithmetic!



THE	COMPARATOR	AND	ZERO

All	of	the	things	we	have	described	above	take	one	or	two	bytes	as	input,	and
generate	one	byte	of	output.	The	shifters	and	the	adder	also	generate	one	extra
bit	of	output	that	is	related	to	their	output	byte.	The	comparator	only	generates
two	bits	of	output,	not	a	whole	byte.

The	comparator	is	actually	built	right	into	the	XORer	because	it	can	make	use	of
the	gates	that	are	already	there.	The	XORer	generates	its	byte	of	output,	and	the
comparator	generates	its	two	bits.	These	two	functions	are	not	really	related	to
each	other,	it	just	happens	to	be	easy	to	build	it	this	way.

What	we	want	the	comparator	to	do,	is	to	find	out	whether	the	two	bytes	on	the
input	bus	are	exactly	equal,	and	if	not,	whether	the	one	on	the	'a'	bus	is	larger
according	to	the	binary	number	system.

The	equal	thing	is	pretty	simple.	XOR	gates	turn	off	when	the	inputs	are	the
same,	so	if	all	of	the	XOR	gates	are	off,	then	the	inputs	are	equal.

To	determine	the	larger	of	two	binary	numbers	is	a	little	trickier.	You	have	to
start	with	the	two	top	bits,	and	if	one	is	on	and	the	other	is	off,	then	the	one	that
is	on	is	the	larger	number.	If	they	are	the	same,	then	you	have	to	check	the	next
lower	pair	of	bits	etc.,	until	you	find	a	pair	where	they	are	different.	But	once
you	do	find	a	pair	that	are	different,	you	don't	want	to	check	any	more	bits.	For
example,	0010	0000	(32)	is	larger	than	0001	1111	(31.)	The	first	two	bits	are	the
same	in	both	bytes.	The	third	bit	is	on	in	the	first	byte	and	off	in	the	second,	and
therefore	the	first	byte	is	larger.	Although	the	rest	of	the	bits	are	on	in	the	second
byte,	their	total	is	less	than	the	one	bit	that	is	on	in	the	first	byte.

That	is	what	we	want	to	have	happen,	and	it	takes	five	gates	times	eight
positions	to	accomplish	it.	Since	we	are	starting	with	the	XORer,	we	will	add
four	more	gates	to	each	position	as	shown	in	this	diagram.	Remember	in	the
adder,	we	had	a	carry	bit	that	passed	from	the	lowest	bit	position	up	through	to
the	highest	bit.	In	the	comparator,	we	have	two	bits	that	pass	down	from	the
highest	bit	position	to	the	lowest.

Here	is	one	bit	of	the	comparator.	You	can	see	the	original	XOR	gate,	labeled	'1',
connected	up	to	one	bit	of	each	input	bus	on	the	left,	and	generating	one	bit	for
the	output	bus	on	the	right.



If	the	output	of	gate	1	is	on,	that	means	that	'a'	and	'b'	are	different,	or	unequal.
We	add	gate	2,	which	will	turn	on	when	'a'	and	'b'	are	equal.

If	gate	2	is	on	at	every	position,	then	gate	3	will	be	on	at	every	position	as	well,
and	the	bit	that	comes	out	of	the	bottom	tells	us	that	the	two	input	bytes	are
equal.

Gate	4	turns	on	if	three	things	are	true.	1)	Bits	'a'	and	'b'	are	different.	2)	Bit	'a'	is
the	one	that	is	on.	3)	All	bits	above	this	point	have	been	equal.	When	gate	4
turns	on,	it	turns	gate	5	on,	and	that	turns	on	every	other	gate	5	below	this	point,
and	therefore	the	'a	larger'	output	of	the	comparator.

When	byte	'b'	is	the	larger	one,	both	the	'equal'	bit	and	the	'a	larger'	bit	will	be
off.

You	stack	up	eight	of	these	bit	comparators	like	the	following	diagram,	with	a	'1'
and	'0'	connected	to	the	top	one	to	get	it	started.	You	still	have	the	XOR	function
coming	out	at	'c,'	and	now	the	two	comparator	bits	at	the	bottom.



Simplifying	again,	we	will	go	back	to	the	bus-type	XOR	diagram,	and	just	add
the	two	new	output	bits	of	the	comparator.

There	is	one	more	thing	that	we	are	going	to	need	in	our	computer	that	gives	us
another	bit	of	information.	This	is	a	simple	gate	combination	that	takes	a	whole
byte	as	input,	and	generates	only	one	bit	as	output.	The	output	bit	turns	on	when
all	of	the	bits	in	the	byte	are	off.	In	other	words,	the	output	bit	tells	us	when	the
contents	of	the	byte	is	all	zeros.

It	is	simply	an	eight	input	OR	gate	and	a	NOT	gate.	When	any	of	the	inputs	to
the	OR	gate	are	on,	its	output	will	be	on,	and	the	output	of	the	NOT	gate	will	be
off.	Only	when	all	eight	inputs	of	the	OR	are	off,	and	its	output	is	therefore	off,
will	the	output	of	the	NOT	gate	be	on.	The	simpler	bus	representation	is	shown
on	the	right.



LOGIC

The	subject	of	thinking	has	been	the	object	of	much	study	and	speculation
through	the	ages.	There	was	a	man	in	ancient	Greece	named	Aristotle	who	did	a
lot	of	work	in	this	area.	He	must	have	met	a	lot	of	illogical	people	in	his	life,
because	he	invented	a	subject	that	was	supposed	to	help	people	think	more
sensibly.

One	of	his	ideas	was	that	if	you	have	two	facts,	you	may	be	able	to	derive	a	third
fact	from	the	first	two.	In	school	they	sometimes	give	tests	that	present	two	facts,
then	they	give	you	a	third	fact	and	ask	whether	the	third	fact	is	'logical'	based	on
the	first	two.	You	may	remember	questions	such	as:

If	Joe	is	older	than	Bill,	
And	Fred	is	older	than	Joe,	
Then	Fred	is	older	than	Bill.	True	or	False?	

Or

Children	like	candy.	
Jane	is	a	child.	
Therefore	Jane	likes	candy.	True	or	False?	

Aristotle	called	his	study	of	this	sort	of	thing	'Logic'

The	only	relevance	this	has	to	our	discussion	of	computers	is	this	word	'logic'
Aristotle's	logic	involved	two	facts	making	a	third	fact.	Many	of	our	computer
parts,	such	as	AND	gates,	take	two	bits	and	make	a	third	bit,	or	eight	AND	gates
take	two	bytes	and	make	a	third	byte.	And	so,	the	things	that	these	gates	do,	has
come	to	be	known	as	logic.	There	maybe	AND	logic	and	OR	logic	and	XOR
logic,	but	the	general	term	for	all	of	them	is	logic.

ANDing,	ORing	and	XORing	take	two	bytes	to	make	a	third,	so	they	fit	this
definition	of	logic	pretty	well.	Shifting	and	NOTing	have	also	come	to	be	known
as	logic	even	though	they	only	take	one	byte	of	input	to	generate	their	output.
The	ADDer,	although	it	is	has	two	inputs	and	is	also	very	logical,	somehow	is
not	known	to	be	in	the	category	of	logic,	it	is	in	its	own	category,	arithmetic.

So	all	of	the	ways	that	we	have	described	above	of	doing	things	to	bytes	come
under	the	heading	of	'arithmetic	and	logic'



THE	ARITHMETIC	AND	LOGIC	UNIT

Now	we	have	built	seven	different	devices	that	can	do	arithmetic	or	logic	on
bytes	of	data.	We	are	going	take	all	seven	of	these	devices,	put	them	together	in
one	unit,	and	provide	a	method	of	selecting	which	one	of	these	devices	we	want
to	use	at	any	given	time.	This	is	called	the	"Arithmetic	and	Logic	Unit,'	or
"ALU"	for	short.

All	seven	devices	are	connected	to	input	'a,'	the	devices	that	have	two	inputs	are
also	connected	to	input	'b.'	All	seven	devices	are	connected	to	the	inputs	at	all
times,	but	each	output	is	attached	to	one	of	those	enablers.	The	wires	that	turn



the	enablers	on,	are	connected	to	the	outputs	of	a	decoder,	thus	only	one	enabler
can	be	on	at	a	given	time.	Seven	of	the	decoder's	outputs	enable	a	single	device
to	continue	on	to	the	common	output,	'c.'	The	eighth	output	of	the	decoder	is
used	when	you	don't	want	to	select	any	device	at	all.	The	three	input	wires	to	the
decoder	are	labeled	'op,'	because	they	choose	the	desired	'operation.'	The	one
little	complication	here	is	the	carry	bits	from	the	adder,	and	the	‘shift	in’	and
‘shift	out’	bits	from	the	shifters.	These	are	used	in	very	similar	ways,	and	so
from	here	on	out	we	will	refer	to	all	of	them	as	carry	bits.	The	adder	and	both
shifters	take	carry	as	an	input,	and	generate	carry	as	an	output.	So	the	three	carry
inputs	are	connected	to	a	single	ALU	input,	and	one	of	the	three	outputs	is
selected	along	with	the	bus	output	of	its	device.	Look	at	the	rightmost	output	of
the	3X8	decoder	above,	and	see	that	it	enables	both	the	adder	bus	and	the	adder
carry	bit.

What	do	we	have	here?	It	is	a	box	that	has	two	bus	inputs,	one	bus	output	and
four	other	bits	in	and	four	other	bits	out.	Three	of	the	input	bits	select	which
“operation”	will	take	place	between	the	input	and	output	buses.	Again,	now	that
we	know	what’s	in	it	and	how	it	works,	we	don’t	need	to	show	all	of	its	parts.
Here	is	a	simplified	way	to	draw	it:

Notice	that	the	three	single	bit	inputs	labeled	“op,”	above,	can	have	eight
different	combinations.	Seven	of	those	combinations	select	one	of	the	devices
described	previously.	The	eighth	combination	does	not	select	any	output	byte,
but	the	‘a	larger’	and	‘equal’	bits	still	work,	as	they	do	at	all	times,	so	this	is	the
code	to	choose	if	you	only	want	to	do	a	comparison.

The	combination	of	bits	at	‘op’	mean	something.	That	sounds	like	another	code.
Yes,	here	is	a	three-bit	code	that	we	will	make	use	of	soon.



The	Arithmetic	and	Logic	Unit	is	the	very	center,	the	heart	of	the	computer.	This
is	where	all	of	the	action	happens.	I'll	bet	this	is	a	lot	less	complicated	than	you
thought.



MORE	OF	THE	PROCESSOR

There	is	one	more	little	device	we	need.	It	is	a	very	simple	thing,	it	has	a	bus
input,	a	bus	output	and	one	other	input	bit.	It	is	very	similar	to	an	enabler.	Seven
of	the	bits	go	through	AND	gates,	and	one	of	them	goes	through	an	OR	gate.
The	single	bit	input	determines	what	happens	when	a	byte	tries	to	pass	through
this	device.	When	the	'bus	1'	bit	is	off,	all	of	the	bits	of	the	input	bus	pass
through	to	the	output	bus	unchanged.	When	the	'bus	1'	bit	is	on,	the	input	byte	is
ignored	and	the	output	byte	will	be	0000	0001,	which	is	the	number	l	in	binary.
We	will	call	this	device	a	'bus	1'	because	it	will	place	the	number	1	on	a	bus
when	we	need	it.

Now	we	can	put	this	'bus	1'	and	the	ALU	into	the	CPU.	We	will	change	where
the	wires	go	in	and	out	of	the	ALU	so	it	fits	our	diagram	better.	The	bus	inputs
come	in	the	top,	the	bus	output	comes	out	the	bottom	and	all	of	the	input	and
output	bits	are	on	the	right.



The	output	of	the	ALU	is	connected	to	ACC.	ACC	receives,	and	temporarily
stores,	the	result	of	the	most	recent	ALU	operation.	The	output	of	ACC	is	then
connected	to	the	bus,	so	its	contents	can	be	sent	somewhere	else	as	needed.

When	we	want	to	do	a	one	input	ALU	operation,	we	have	to	set	the	three	‘op’
bits	of	the	ALU	to	the	desired	operation,	enable	the	register	we	want	onto	the
bus,	and	set	the	answer	into	ACC.

For	a	two	input	ALU	operation,	there	are	two	steps.	First	we	enable	one	of	the
registers	onto	the	bus	and	set	it	into	TMP.	Then	we	enable	the	second	register
onto	the	bus,	choose	the	ALU	operation,	and	set	the	answer	into	ACC.

As	you	can	see,	we	can	now	move	bytes	of	data	to	and	from	RAM,	to	and	from
the	Registers,	through	the	ALU	to	ACC,	and	from	there,	into	a	register	or	RAM
if	we	turn	the	appropriate	enable	and	set	bits	on	and	off	at	the	right	time.	This	is
what	happens	inside	of	computers.	That’s	not	so	complicated,	is	it?

There	is	only	one	thing	missing	here,	and	that	has	to	do	with	all	of	these	control
bits	on	the	registers,	ALU	and	RAM.	The	RAM	has	three	control	bits,	one	to	set
MAR,	one	to	set	the	currently	selected	byte	in,	one	to	enable	the	currently
selected	byte	out.	Each	of	the	registers,	R0,	R1,	R2,	R3	and	ACC	have	a	set	and
an	enable	bit,	TMP	only	has	a	set	bit,	bus	1	has	a	control	bit,	and	the	ALU	has
those	three	‘op’	bits	that	select	the	desired	operation.

We	need	something	that	will	turn	all	of	these	control	bits	on	and	off	at	the
appropriate	times	so	we	can	do	something	that	is	useful.	Now	it	is	time	to	look
into	that	box	labeled	'Control	Section.'



THE	CLOCK

We	need	to	turn	the	appropriate	control	bits	on	and	off	at	the	appropriate	times.
We	will	look	at	the	appropriate	bits	later,	first	we	will	look	at	the	appropriate
times.

Here	is	a	new	kind	of	drawing,	we	will	call	it	a	graph.	It	shows	how	one	bit
changes	over	time.	Time	starts	on	the	left	and	marches	forward	to	the	right.	The
line	on	the	graph	has	two	possible	positions,	up	means	the	bit	is	on,	and	down
means	the	bit	is	off.

This	graph	shows	bit	'X'	going	on	and	off,	on	and	off	regularly.	There	could	be	a
time	scale	on	the	bottom	to	show	how	fast	this	is	happening.	If	the	whole	width
of	the	page	represented	one	second,	then	bit	'X'	would	be	going	on	and	off	about
eight	times	per	second.	But	we	won't	need	a	time	scale	in	these	graphs,	as	we
will	only	be	concerned	with	the	relative	timing	between	two	or	more	bits.	The
speed	in	an	actual	computer	will	be	very	fast,	such	as	the	bit	going	on	and	off	a
billion	times	per	second.

When	something	repeats	some	action	regularly,	one	of	those	actions,
individually,	is	called	a	cycle.	The	graph	above	shows	about	eight	cycles.	You
can	say	that	from	one	time	the	bit	turns	on	to	the	next	time	the	bit	turns	on	is	a
cycle,	or	you	can	say	that	from	the	middle	of	the	off	time	to	the	middle	of	the
next	off	time	is	the	cycle,	as	long	as	the	cycle	starts	at	one	point	in	time	when	the
bit	is	at	some	stage	of	its	activity,	and	continues	until	the	bit	gets	back	to	the
same	stage	of	the	activity	again.	The	word	'Cycle'	comes	from	the	word	'circle,'
so	when	the	bit	comes	full	circle,	that	is	one	cycle.

There	was	a	scientist	who	lived	in	Germany	in	the	1800's	who	did	some	of	the
early	research	that	led	up	to	radio.	His	name	was	Heinrich	Hertz,	and	among
other	things,	he	studied	electricity	that	was	going	on	and	off	very	quickly.	Some
decades	after	his	death,	it	was	decided	to	use	his	name	to	describe	how	fast
electricity	was	going	on	and	off,	or	how	many	cycles	occurred	per	second.	Thus,
one	Hertz	(or	Hz	for	short)	means	that	the	electricity	is	going	on	and	off	once	per
second.	500	Hz	means	500	times	per	second.	For	faster	speeds	we	run	into	those
ancient	languages	again,	and	one	thousand	times	per	second	is	called	a	kilohertz



or	kHz	for	short.	Going	on	and	off	a	million	times	per	second	is	called	a
megahertz,	or	mHz	for	short,	and	a	billion	times	is	called	a	gigahertz,	or	gHz	for
short.

Every	computer	has	one	special	bit.	All	other	bits	in	a	computer	come	from
somewhere,	they	are	set	on	and	off	by	other	bits	or	switches.	This	one	special	bit
turns	on	and	off	all	by	itself.	But	there	is	nothing	mysterious	about	it,	it	just	goes
on	and	off	very	regularly	and	very	quickly.	This	special	bit	is	built	very	simply,
like	this:

This	seems	a	silly	thing	to	do.	Just	connect	a	NOT	gate’s	output	back	to	its
input?	What	will	this	do?	Well,	if	you	start	with	the	output	on,	the	electricity
travels	back	to	the	input,	where	it	enters	the	gate	which	turns	the	output	off,
which	travels	back	to	the	input	which	turns	the	output	on.	Yes,	this	gate	will	just
go	on	and	off	as	quickly	as	possible.	This	will	actually	be	too	fast	to	be	used	for
anything,	and	so	it	can	be	slowed	down	just	by	lengthening	the	wire	that	makes
the	loop.

The	simplified	diagram	shows	this	to	be	the	one	special	bit	in	the	computer	that
has	an	output	but	does	not	have	any	inputs.

This	bit	has	a	name.	It	is	called	the	clock.	Now	we	usually	think	of	a	clock	as	a
thing	with	a	dial	and	hands,	or	some	numbers	on	a	screen,	and	we	have	seen
such	clocks	in	the	corner	of	a	computer	screen.	Unfortunately,	someone	named
this	type	of	bit,	a	clock,	and	the	name	stuck	with	the	computer	pioneers.	It	could
have	been	called	the	drumbeat	or	the	pacesetter	or	the	heart	or	the	rhythm
section,	but	they	called	it	a	clock.	That	is	what	we	will	mean	when	we	say	clock
throughout	the	rest	of	this	book.	I	guess	it’s	a	clock	that	ticks,	but	doesn’t	have	a
dial.	If	we	want	to	talk	about	the	type	of	clock	that	tells	you	what	time	it	is,	we



will	call	it	a	‘time	of	day	clock,’	or	‘TOD	clock’	for	short.	But	the	word	‘clock’
will	mean	this	type	of	bit.

How	quickly	does	this	clock	go	on	and	off?	These	days	it	is	well	over	a	billion
times	per	second,	or	several	gigahertz.	This	is	one	of	the	main	characteristics
that	computer	companies	tell	you	about	to	show	you	how	great	their	computers
are.	When	you	see	computers	for	sale,	the	speed	that	they	advertise	is	the	speed
of	its	clock.	The	faster	a	computer	is,	the	more	expensive	it	is,	because	it	can	do
more	things	in	one	second.	It	is	the	speed	of	this	single	bit	going	on	and	off	that
sets	the	tempo	for	the	whole	computer.

To	move	data	via	the	bus,	we	need	first	to	enable	the	output	of	one	and	only	one
register,	so	that	its	electricity	can	travel	through	the	bus	to	the	inputs	of	other
registers.	Then,	while	the	data	is	on	the	bus,	we	want	to	turn	the	set	bit	of	the
destination	register	on	and	off.	Since	the	destination	register	captures	the	state	of
the	bus	at	the	instant	that	the	set	bit	goes	off,	we	want	to	make	sure	that	it	goes
off	before	we	turn	off	the	enable	bit	at	the	first	register	to	make	sure	that	there
are	no	problems.

Let	us	first	attach	a	length	of	wire	to	the	output	of	the	clock.	This	will	delay	the
electricity	slightly.	We	want	it	delayed	about	one	quarter	of	a	cycle.

If	we	show	the	original	clock	output	(clk)	and	the	delayed	clock	output	(clk	d)
on	a	graph,	they	will	look	like	this:

Now	we’re	going	to	do	something	fairly	simple.	We	will	take	the	original	clock
and	the	delayed	clock,	and	both	AND	them	and	OR	them	to	create	two	new	bits,
like	so:



One	of	the	new	bits	is	on	when	either	‘clk’	or	‘clk	d’	are	on,	and	the	other	new
bit	is	on	only	when	both	‘clk’	and	‘clk	d’	are	on.	The	graph	of	the	inputs	and
outputs	of	the	AND	and	OR	gates	is	shown	here.	They	are	both	still	going	on
and	off	regularly,	but	one	of	them	is	on	for	longer	than	it	is	off,	and	the	other	one
is	off	for	longer	than	it	is	on.	The	on	time	of	the	second	is	right	in	the	middle	of
the	on	time	of	the	first.

Notice	that	they	have	names,	‘clk	e,’	which	stands	for	clock	enable,	and	‘clk	s,’
which	stands	for	clock	set.	And	what	do	you	know,	these	two	bits	have	the
perfect	timing	to	move	a	byte	of	data	from	one	register,	across	the	bus,	and	into
another	register.	Just	connect	‘clk	e’	to	the	enable	bit	of	the	‘from’	register,	and
connect	‘clk	s’	to	the	set	bit	of	the	‘to’	register.

Here	is	a	single	on/off	cycle	of	these	two	bits.

If	you	look	at	the	timing	here,	this	meets	our	requirements	of	needing	to	first
enable	the	output	of	a	register,	and	then,	after	the	data	has	a	little	time	to	travel
down	the	bus,	to	turn	the	set	bit	of	the	destination	register	on	and	off	before
turning	the	enable	bit	off	at	the	first	register.

Of	course,	these	clock	bits	cannot	just	be	connected	directly	to	every	register.
There	must	be	other	gates	in	between,	that	only	allow	one	register	to	get	an



enable	at	any	one	time,	and	only	the	desired	register(s)	to	receive	a	set.	But	all
enables	and	sets	ultimately	come	from	these	two	bits	because	they	have	the	right
timing.

Since	we	will	use	clk,	clk	e	and	clk	s	throughout	the	computer,	this	is	the
diagram	we	will	use	to	show	the	clock:



DOING	SOMETHING	USEFUL

Let's	say	that	we	want	to	do	something	useful,	like	adding	one	number	to	another
number.	We	have	a	number	in	R0,	and	there	is	another	number	in	R1	that	we
want	to	add	to	the	number	in	R0.	The	processor	we	have	built	so	far	has	all	of
the	connections	to	do	this	addition,	but	it	will	take	more	than	one	clock	cycle	to
do	it.

In	the	first	clock	cycle,	we	can	enable	R1	onto	the	bus,	and	set	it	into	TMP.

In	the	second	cycle	we	can	enable	R0	onto	the	bus,	set	the	ALU	to	ADD,	and	set
the	answer	into	ACC.

In	the	third	cycle,	we	can	enable	ACC	onto	the	bus,	and	set	it	into	Ro.

We	now	have	the	old	value	of	R0,	plus	R1	in	R0.	Perhaps	this	doesn't	seem	very
useful,	but	it	is	one	of	the	kind	of	small	steps	that	computers	do.	Many	such
small	steps	make	the	computer	seem	to	be	able	to	do	very	complex	things.

Thus	we	see	that	for	the	processor	to	do	something	useful,	it	takes	several	steps.
It	needs	to	be	able	to	do	actions	in	a	sequence.	We	need	another	piece	inside	this
'Control	Section.'



STEP	BY	STEP

This	chapter	introduces	a	new	part	called	the	"Stepper."	First,	we	will	describe
the	completed	stepper,	showing	exactly	what	it	does.	After	that,	we	will	see
exactly	how	it	is	built.	If	you	happen	to	trust	your	author	enough	to	believe	that
such	a	stepper	can	be	built	out	of	gates,	and	you're	in	such	a	hurry	that	you	want
to	skip	the	'how	it	is	built'	part	of	the	chapter,	you	might	still	understand	the
computer.

Here	is	a	complete	stepper.

It	has	two	inputs.	One	is	called	'clk,'	because	this	is	where	we	connect	a	bit	that
is	going	on	and	off,	such	as	our	original	clock	bit.	The	other	input	is	called
'reset,'	which	is	used	to	return	the	stepper	back	to	step	one.	For	outputs,	it	has	a
number	of	bits,	each	of	which	will	come	on	for	one	complete	clock	cycle,	and
then	turn	off,	one	after	the	other.	The	output	labeled	'Step	1'	turns	on	for	one
clock	cycle,	then	'Step	2'	for	the	next	clock	cycle,	etc.	A	stepper	can	be	built	to
have	as	many	steps	as	needed	for	any	particular	task	you	want	to	do.	In	the	case
of	this	computer	that	we	are	building,	seven	steps	are	sufficient.	When	the	last
step	(7)	turns	on,	it	stays	on,	and	the	stepper	doesn't	do	anything	else	until	the
reset	bit	is	turned	on	briefly,	at	which	time	the	steps	start	over	again	beginning
with	'Step	1.'

Here	is	a	graph	of	the	input	'clk'	bit,	and	the	outputs	of	a	seven-step	stepper.



Here	is	how	the	stepper	is	built.	It	is	done	using	some	of	the	same	memory	bits
that	we	used	to	make	registers,	but	they	are	arranged	very	differently.	We	are	not
going	to	store	anything	in	these	bits,	we	are	going	to	use	them	to	create	a	series
of	steps.

The	stepper	consists	of	several	memory	bits	connected	in	a	string,	with	the
output	of	one	connected	to	the	input	of	the	next.	Here	is	a	diagram	that	shows
most	of	the	stepper:

First	look	at	the	series	of	‘M’	memory	bits	just	like	the	ones	that	we	used	earlier
in	the	book.	In	this	picture,	there	are	twelve	of	them	connected	together,	with	the
output	of	one	connected	to	the	input	of	the	next,	all	the	way	down	the	line.	The
input	to	the	first	bit	on	the	left	is	connected	to	a	place	where	the	electricity	is
always	on,	so	when	the	set	bit	of	that	‘M’	comes	on,	that	‘M’	will	receive	that	on
state,	and	pass	it	through	to	its	output.

If	you	look	at	the	set	bits	of	these	‘M’s,	you	will	see	that	the	set	bits	of	the	even
numbered	‘M’s	are	connected	to	clk,	and	the	set	bits	of	the	odd	numbered	‘M’s



are	connected	to	the	same	clock	after	it	goes	through	a	NOT	gate.	This	new	bit
that	is	made	by	passing	clk	through	a	NOT	gate	can	be	called	'not	clk,'	and	we
can	show	both	on	this	graph:

So	what	will	happen	with	this	bunch	of	gates?	If	you	assume	that	all	of	the	'M's
start	in	the	off	state,	and	then	start	'clk'	"ticking,"	here	is	what	it	will	do.

The	first	time	'clk'	comes	on,	nothing	will	happen,	because	the	set	bit	of	the	first
'M'	is	connected	to	'not	clk,'	which	is	off	when	'clk'	is	on.	When	'clk'	goes	off,
'not	clk'	turns	on,	and	the	first	'M'	will	come	on,	but	nothing	will	happen	at	the
second	'M'	because	its	'set'	bit	is	connected	to	'clk,'	which	is	now	off.	When	'clk'
comes	back	on,	the	second	'M'	will	now	come	on.	As	the	clock	ticks,	the	'on'	that
enters	the	first	memory	bit	will	step	down	the	line,	one	bit	for	each	time	the
clock	goes	on,	and	one	bit	for	each	time	the	clock	goes	off.	Thus	two	bits	come
on	for	each	clock	cycle.

Now,	turning	to	the	full	stepper	diagram	below,	step	1	comes	from	a	NOT	gate
connected	to	the	output	of	the	second	'M.'	Since	all	'M's	start	off,	step	1	will	be
on	until	the	second	'M'	comes	on,	at	which	time	step	l	will	be	over.	For	the
remaining	steps,	each	one	will	last	from	the	time	its	left	side	'M'	turns	on	until
the	time	its	right	side	'M'	turns	on.	The	AND	gates	for	steps	2-6	have	both	inputs
on	when	the	left	'M'	is	on,	and	the	right	'M'	is	off.	If	we	connect	the	output	of	one
'M'	and	the	NOT	of	the	output	of	an	'M'	two	spaces	farther	on	to	an	AND	gate,
its	output	will	be	on	for	one	complete	clock	cycle.	Each	one	comes	on	when	its
left	input	has	come	on,	but	its	right	input	has	not	yet	come	on.	This	gives	us	a
series	of	bits	that	each	come	on	for	one	clock	cycle	and	then	turn	off.

The	only	thing	missing	here	is	that	the	'M'	bits	come	on	and	stay	on.	Once	they
are	all	on,	there	is	no	more	action	despite	the	clock's	continued	ticking.	So	we
need	a	way	to	reset	them	all	off	so	we	can	start	over	again.	We	have	to	have	a
way	to	turn	off	the	input	to	the	first	'M,'	and	then	turn	on	all	of	the	set	bits	at	the
same	time.	When	that	happens,	the	'off	at	the	input	to	the	first	'M'	will	travel
through	all	of	the	'M's	as	fast	as	it	can	go.	We	will	add	a	new	input	called	'reset,'
which	will	accomplish	these	things.



When	we	turn	'reset'	on,	it	makes	the	input	to	the	first	'M'	bit	a	zero,	and	turns	on
all	of	the	'sets'	at	the	same	time	so	that	the	zero	can	travel	down	the	line	of	'M's
very	quickly.	Reset	is	also	ORed	with	step	l	so	that	step	l	turns	on	immediately.
Now	all	of	the	bits	are	off,	and	we	have	started	another	sequence.	Reset	only
needs	to	be	turned	on	for	a	fraction	of	one	clock	cycle.

To	recap,	this	is	a	stepper.	It	has	two	inputs:	a	clock	and	a	reset.	For	outputs,	it
has	a	number	of	bits,	each	of	which	will	come	on	for	one	clock	cycle.	We	can
actually	make	this	as	long	as	needed,	but	for	the	purposes	of	this	book,	a	seven
stage	stepper	will	be	sufficient.	There	will	be	only	one	stepper	in	our	computer,
we	will	represent	it	with	this	simplified	diagram.

We	have	relocated	the	Reset	bit	to	the	right	side	of	the	diagram,	and	connected	it
to	the	last	step	(7,)	so	that	the	stepper	will	automatically	reset	itself.	Step	7	will
not	be	on	for	very	long,	however,	because	it	shuts	itself	off	as	soon	as	the	zero
can	get	through	the	string	of	'M's.	This	means	that	step	7	will	not	last	long
enough	to	be	used	for	one	of	our	data	transfers	over	the	bus.	All	of	the	things	we
want	to	accomplish	will	take	place	in	steps	1	through	6.



EVERYTHING'S	UNDER	CONTROL

With	our	clock,	we	have	a	drumbeat	to	make	things	go.	It	has	a	basic	output,	and
two	more	that	are	designed	to	facilitate	the	movement	of	the	contents	of	registers
from	one	to	another.	With	the	stepper,	we	have	a	series	of	bits	that	come	on	one
after	another,	each	for	one	clock	cycle.

Remember	the	diagram	of	the	CPU	we	saw	a	few	chapters	back?	It	showed	the
bus,	the	ALU,	six	registers	and	even	the	other	half	of	the	computer	(the	RAM)
all	connected	up	pretty	neatly.	At	least	all	of	the	bus	connections	were	there.	But
all	the	registers,	the	RAM,	the	Bus	1	and	the	ALU	are	controlled	by	wires	that
come	from	that	mysterious	box	labeled	'Control	Section'	that	we	know	nothing
about	yet.	Now	it	is	time	to	look	inside	that	box.

This	drawing	is	the	beginning	of	the	control	section	of	the	computer.	At	the	top
are	the	clock	and	the	stepper.	Then	all	of	the	control	bits	from	the	registers	and
RAM	have	been	brought	here	together	in	one	place,	with	all	of	the	'enable'	bits
on	the	left,	and	all	of	the	'set'	bits	on	the	right.	Then	we	have	connected	the
output	of	an	AND	gate	to	each	'enable'	and	each	'set'	bit.	One	input	of	each	AND
gate	is	connected	to	either	'clk	e'	for	the	'enables'	on	the	left,	or	'clk	s'	for	the
'sets'	on	the	right.	Thus,	if	we	use	the	other	input	of	those	AND	gates	to	select
any	of	those	registers,	the	'enable'	bit	of	all	of	the	items	on	the	left	will	never	be
turned	on	except	during	'clk	e'	time.	Similarly	on	the	right,	the	'set'	bit	of	any	of



those	registers	will	only	be	turned	on	during	'clk	s'	time.

This	is	sort	of	a	switchboard.	Everything	we	need	to	make	the	computer	do
something	is	right	here	in	one	place.	All	we	need	to	do	is	connect	some	control
bits	to	some	steps	in	an	intelligent	manner,	and	something	useful	will	happen.



DOING	SOMETHING	USEFUL,	REVISITED

Now	that	we	have	the	beginning	of	our	control	section,	we	can	just	add	a	few
wires,	and	we	will	be	able	to	do	the	simple	addition	we	postulated	earlier,	that	of
adding	R1	to	R0.

All	we	have	to	do	to	'do	something	useful,'	like	adding	R1	to	R0,	is	to	connect	a
few	wires	in	the	middle,	as	shown	in	this	diagram	with	steps	four,	five	and	six.
Each	step	causes	something	to	happen	to	some	of	the	parts	that	are	shown	in	the
CPU	diagram.	Each	step	is	connected	to	one	'enable'	on	the	left,	and	one	'set'	on
the	right,	and	therefore	causes	one	part	to	connect	its	output	to	the	bus,	and
another	part	to	save	what	now	appears	at	its	input.	Step	four	is	wired	to	R1
'enable'	and	TMP	'set.'	Step	five	is	wired	to	R0	'enable,'	and	ACC	'set.'	The	ALU
'op'	bits	do	not	need	any	connections	since	the	'op'	code	for	ADD	is	000.	Step	six
is	wired	to	ACC	'enable'	and	R0	'set.'

During	step	four,	R1	is	enabled	and	TMP	is	set.	The	contents	of	R1	travel	across
the	bus	(in	the	CPU	diagram)	and	are	captured	by	TMP.

During	step	five,	R0	is	enabled	and	ACC	is	set.	If	we	wanted	to	do	something
other	than	ADD,	this	is	the	step	where	we	would	turn	on	the	appropriate	ALU
'op'	code	bits.

During	step	six,	ACC	is	enabled	and	R0	is	set.



Here	is	a	graph	of	the	steps,	showing	when	each	register	gets	enabled	and	set.

R0	now	contains	the	sum	of	the	original	contents	of	R0	plus	R1.

This	is	how	the	computer	makes	things	happen	in	a	tightly	controlled	ballet	of
bits	and	bytes	moving	around	inside	the	machine.

In	step	seven,	the	stepper	is	reset	to	step	1,	where	the	process	repeats.	Of	course
it	is	not	very	useful	to	just	do	this	addition	over	and	over	again,	even	if	you	start
out	with	the	number	1	in	both	R0	and	R1,	R0	will	get	up	to	255	pretty	quickly.

If	the	clock	in	our	computer	ticks	one	billion	times	every	second,	otherwise
known	as	one	gigahertz,	and	even	if	we	use	multiple	clock	cycles	to	“do
something	useful”	like	this,	that	means	that	the	computer	can	do	something	like
this	hundreds	of	millions	of	times	in	one	second.	But	we	don’t	want	to	just	add
R1	to	R0	over	and	over	again.

Perhaps	now	that	we	have	added	R1	to	R0,	we	want	to	store	that	new	number	to
a	particular	address	in	RAM,	and	R2	happens	to	have	that	address	in	it.	Again,
our	processor	has	all	of	the	connections	necessary	to	do	this,	and	again	it	will
take	more	than	one	clock	cycle	to	do	it.	In	step	4,	we	can	move	R2	across	the	bus
to	MAR.	In	step	5	we	can	move	R0	across	the	bus	to	RAM.	That's	all	that	is
needed,	just	two	clock	cycles	and	we're	done.



The	wiring	for	this	operation	is	simpler	than	the	other	one,	just	two	enables	and
two	sets.

There	are	many	combinations	of	things	that	we	can	do	with	the	RAM,	the	six
registers	and	the	ALU.	We	could	get	a	byte	from	RAM	and	move	it	to	any	of	the
four	registers,	we	could	move	any	one	or	two	of	the	registers	through	the	ALU
and	ADD	them,	AND	them,	OR	them,	XOR	them,	etc.

We	need	a	way	for	our	CPU	to	do	one	thing	one	time,	and	a	different	thing	the
next	time.	The	control	section	needs	something	to	tell	it	what	to	do	in	each
sequence.



WHAT'S	NEXT?

Now	here's	a	scary	idea.	Imagine	that	the	job	that	an	employee	does	at	a	fast
food	restaurant	gets	broken	down	into	its	individual	elements.	Walk	to	the
counter,	say	"May	I	take	your	order?"	listen	to	the	answer,	press	the
"cheeseburger"	button	on	the	cash	register,	etc.	Now	lets	say	that	there	are	256	or
less	individual	actions	involved	in	the	job	of	working	at	such	an	establishment.
You	could	then	invent	a	code	that	would	associate	one	of	the	states	of	a	byte	with
each	of	the	individual	activities	of	an	employee.	Then	you	could	express	the
sequence	of	an	employee's	actions	as	a	sequence	of	bytes.

First	we	make	up	a	code	table.	We	write	some	codes	down	the	left	side	of	the
page.	Then	we	decide	what	we	want	those	codes	to	mean,	and	write	those
meanings	next	to	the	codes.	Now	we	have	a	list	of	all	of	the	possible	actions	that
an	employee	might	take,	and	a	code	that	represents	each	one	of	them:

0000	0000	=	Walk	to	the	counter

0000	0001	=	Say	"May	I	take	your	order?"

0000	0010	=	Listen	to	the	answer

0000	0011	=	Press	the	cheeseburger	button

0000	0100	=	Press	the	fries	button.

0000	0101	=	Press	the	milk	button

0000	0110	=	Press	the	total	button

0000	0111=	Collect	the	money

0000	1000	=	Give	the	customer	the	change

0000	1001	=	Open	an	empty	bag

0000	1010	=	Place	a	cheeseburger	in	the	bag

0000	1011=	Place	fries	in	the	bag

0000	1100	=	Place	a	milk	container	in	the	bag

0000	1101=	Hand	the	bag	to	the	customer

1000	0000	=	Go	to	the	step	number	in	the	right	6	bits.

0100	0000	=	If	"yes,"	go	to	the	step	number	in	the	right	6	bits.



0001	0000	=	Go	home.

Now	if	we	want	to	describe	how	the	employee	is	supposed	to	act,	we	write	a
sequence	of	events	that	he	should	follow:

1.	0000	0000	=	Walk	to	the	counter.

2.	0000	0001	=	Say	"May	I	take	your	order?"

3.	0100	0010	=	If	customer	is	not	answering,	go	to	step	2.

4.	0000	0010	=	Listen	to	the	answer.

5.	0100	0111	=	If	customer	doesn't	say	cheeseburger,	go	to	step	7.

6.	0000	0011	=	Press	the	cheeseburger	button.

7.	0100	1001	=	If	customer	does	not	say	fries,	go	to	step	9.

8.	0000	0100	=	Press	the	fries	button.

9.	0100	1011	=	If	customer	does	not	say	milk,	go	to	step	11.

10.	0000	0101	=	Press	the	milk	button.

11.	0100	1101	=	If	the	customer	says	that's	all,	go	to	step	13.

12.	1000	0100	=	Go	back	to	step	4.

13.	0000	0110	=	Press	the	total	button.

14.	0000	0111	=	Collect	the	money.

15.	0000	1000	=	Make	change	and	give	it	to	the	customer.

16.	0000	1001	=	Open	an	empty	bag.

17.	0101	0011	=	If	order	doesn't	include	cheeseburger,	go	to	step	19.

18.	0000	1010	=	Place	a	cheeseburger	in	the	bag.

19.	0101	0110	=	If	order	does	not	include	fries,	go	to	step	22.

21.	0000	1011	=	Place	fries	in	the	bag.

22.	0101	1000	=	If	order	does	not	include	milk,	go	to	step	24.

23.	0000	1100	=	Place	a	milk	container	in	the	bag.

24.	0000	1101	=	Hand	the	bag	to	the	customer.



25.	0101	1011	=	If	it	is	quitting	time,	go	to	step	27.

26.	1000	0001	=	Go	back	to	step	1.

27.	0001	0000	=	Go	home.

I	hope	nobody	ever	tries	to	make	the	employees	of	a	fast	food	restaurant	learn	a
code	like	this.	People	don't	take	well	to	being	so	mechanized.	But	maybe
someone	will	try	to	staff	one	of	these	restaurants	with	robots	someday.	In	that
case,	the	robots	would	probably	work	better	using	this	sort	of	a	code.

And	our	computer	might	be	able	to	'understand'	a	code	like	this.



THE	FIRST	GREAT	INVENTION

What	we	need	is	some	way	to	do	different	operations	from	one	stepper	sequence
to	the	next.	How	could	we	have	it	wired	up	one	way	for	one	sequence,	and	then
a	different	way	for	the	next	sequence?	The	answer,	of	course,	is	to	use	more
gates.	The	wiring	for	one	operation	can	be	connected	or	disconnected	with	AND
gates,	and	the	wiring	for	a	different	operation	can	be	connected	or	disconnected
with	some	more	AND	gates.	And	there	could	be	a	third	and	fourth	possibility	or
more.	As	long	as	only	one	of	those	operations	is	connected	at	one	time,	this	will
work	fine.	Now	we	have	several	different	operations	that	can	be	done,	but	how
do	you	select	which	one	will	be	done?

The	title	of	this	chapter	is	"The	First	Great	Invention,"	so	what	is	the	invention?
The	invention	is	that	we	will	have	a	series	of	instructions	in	RAM	that	will	tell
the	CPU	what	to	do.	We	need	three	things	to	make	this	work.

The	first	part	of	the	invention	is,	that	we	are	going	to	add	another	register	to	the
CPU.	This	register	will	be	called	the	"Instruction	Register,"	or	"IR"	for	short.
The	bits	from	this	register	will	"instruct"	the	CPU	what	to	do.	The	IR	gets	its
input	from	the	bus,	and	its	output	goes	into	the	control	section	of	the	CPU	where
the	bits	select	one	of	several	possible	operations.

The	second	part	of	the	invention	is	another	register	in	the	CPU	called	the
"Instruction	Address	Register,"	or	"IAR"	for	short.	This	register	has	its	input	and
output	connected	to	the	bus	just	like	the	general	purpose	registers,	but	this	one
only	has	one	purpose,	and	that	is	to	store	the	RAM	address	of	the	next
instruction	that	we	want	to	move	into	the	IR.	If	the	IAR	contains	0000	1010	(10
decimal,)	then	the	next	instruction	that	will	be	moved	to	the	IR	is	the	byte
residing	at	RAM	address	ten.

The	third	part	of	the	invention	is	some	wiring	in	the	control	section	that	uses	the
stepper	to	move	the	desired	"instruction"	from	RAM	to	the	IR,	add	1	to	the
address	in	the	IAR	and	do	the	action	called	for	by	the	instruction	that	has	been
put	in	the	IR.	When	that	instruction	is	complete,	the	stepper	starts	over	again,	but
now	the	IAR	has	had	1	added	to	it,	so	when	it	gets	that	instruction	from	RAM,	it
will	be	a	different	instruction	that	was	located	at	the	following	RAM	address.

The	result	of	these	three	parts	is	a	great	invention.	This	is	what	allows	us	to
make	the	computer	do	many	different	things.	Our	bus,	ALU,	RAM	and	registers
make	many	combinations	possible.	The	contents	of	the	IR	will	determine	what
registers	are	sent	to	where,	and	what	kind	of	arithmetic	or	logic	will	be	done



upon	them.	All	we	have	to	do	is	to	place	a	series	of	bytes	in	RAM	that	represent
a	series	of	things	that	we	want	to	do,	one	after	another.

This	series	of	bytes	residing	in	RAM	that	the	CPU	is	going	to	make	use	of	is
called	a	"program."

The	basic	thing	that	happens	here	is	that	the	CPU	"fetches"	an	instruction	from
RAM,	and	then	"executes"	the	instruction.	Then	it	fetches	the	next	one	and
executes	it.	This	happens	over	and	over	and	over,	millions	or	billions	of	times
every	second.	This	is	the	simplicity	of	what	a	computer	does.	Someone	puts	a
program	in	RAM,	and	that	program,	if	intelligently	designed,	makes	the
computer	do	something	that	people	find	useful.

The	stepper	in	this	computer	has	seven	steps.	The	purpose	of	step	7	is	only	to
reset	the	stepper	back	to	step	1.	So	there	are	six	steps	during	which	the	CPU
does	small	things.	Each	step	lasts	for	one	clock	cycle.	The	six	steps	taken	as	a
whole	is	called	an	"Instruction	Cycle."	It	takes	six	steps	for	the	CPU	to	do	all	of
the	actions	necessary	to	fetch	and	execute	one	instruction.	If	we	assume	that	our
clock	ticks	at	one	gigahertz,	then	our	computer	will	be	able	to	execute
166,666,666	instructions	every	second.

Here	is	the	picture	of	the	CPU	with	the	two	new	registers	added	to	it.	There	they
are	under	the	Control	Section,	connected	to	the	bus.	The	IAR	has	a	'set'	and
'enable,'	the	IR	only	has	a	'set,'just	like	TMP	and	MAR	because	their	outputs	are
not	connected	to	the	bus,	so	we	never	need	to	turn	them	off.

Below	is	the	wiring	within	the	Control	Section	that	does	the	'fetch'	part	of	the



instruction	cycle.	It	uses	the	first	three	steps	of	the	stepper	and	is	the	same	for	all
types	of	instructions.

The	stepper's	first	three	steps	are	shown	here,	and	result	in	'fetching'	the	next
'instruction'	from	RAM.	Then	the	rest	of	the	steps	'execute'	the	'instruction.'
Exactly	what	will	be	done	in	steps	4,	5	and	6,	is	determined	by	the	contents	of
the	instruction	that	was	fetched.	Then	the	stepper	starts	over,	fetches	the	next
instruction,	and	executes	it.

The	bottom	of	this	diagram	includes	the	Instruction	Register.	Notice	that	we
have	given	numbers	to	the	individual	bits	of	the	IR,	o	at	the	left	through	7	on	the
right.	We	will	be	referring	to	the	individual	bits	soon.

Here	are	the	details	of	exactly	how	steps	1,	2	and	3	result	in	fetching	an
instruction	in	our	little	computer:

Step	1	is	the	most	complicated	because	we	actually	accomplish	two	things	at	the
same	time.	The	main	thing	we	want	to	do	is	to	get	the	address	in	IAR	over	to
MAR.	This	is	the	address	of	the	next	instruction	that	we	want	to	fetch	from
RAM.	If	you	look	at	the	wire	coming	out	of	step	1	of	the	stepper,	you	can	see
that	two	of	the	places	it	is	connected	to	are	the	'enable'	of	IAR	and	the	'set'	of
MAR.	Thus,	the	contents	of	IAR	will	be	placed	on	the	bus	during	'clk	e'	and	set
into	MAR	during	'clk	s.'	Sometime	during	the	instruction	cycle,	we	need	to	add	1
to	the	value	in	IAR,	and	since	IAR	is	already	on	the	bus,	we	might	as	well	do	it
now.	If	we	don't	send	anything	to	the	ALU's	'op'	bits,	they	will	all	be	zero,	and
since	000	is	the	code	for	ADD,	the	ALU	will	be	doing	an	ADD	operation	on



whatever	is	on	its	two	inputs,	and	presenting	the	answer	to	ACC.	One	input
comes	from	the	bus,	which	has	IAR	on	it	during	this	time.	If	we	also	turn	on	the
'bus	1'	bit	during	step	1,	the	other	input	to	the	ALU	will	be	a	byte	with	the	binary
value	of	1.	If	we	turn	on	the	'set'	of	ACC	during	'clk	s,'we	will	capture	the	sum	of
IAR	plus	1	in	ACC.	This	just	happens	to	be	the	address	of	the	instruction	that	we
will	want	to	fetch	after	we	are	done	with	the	current	one!

Step	2	enables	the	currently	selected	byte	in	RAM	onto	the	bus,	and	sets	it	into
IR.	This	is	the	instruction	that	we	will	'execute'	in	steps	4,	5	and	6	of	this
instruction	cycle.	In	the	diagram,	you	can	see	that	the	wire	coming	from	step	2	is
connected	to	the	'enable'	of	RAM	and	the	'set'	of	IR.

In	step	3,	we	need	to	finish	updating	IAR.	We	added	1	to	it	in	step	1,	but	the
answer	is	still	in	ACC.	It	needs	to	be	moved	to	IAR	before	the	beginning	of	the
next	instruction	cycle.	So	you	can	see	the	wire	coming	out	of	step	3	is	connected
to	'enable'	of	ACC	and	'set'	of	IAR.

By	the	time	we	get	to	step	4,	the	instruction	has	already	been	moved	from	RAM
to	IR,	and	now	steps	4,	5	and	6	can	then	do	whatever	is	called	for	by	the	contents
of	IR.	When	that	operation	is	done	and	the	stepper	is	reset,	the	sequence	will
start	over	again,	but	now	IAR	has	had	1	added	to	it,	so	the	instruction	at	the	next
RAM	address	will	be	fetched	and	executed.

This	idea	of	putting	a	series	of	instructions	in	RAM	and	having	the	CPU	execute
them	is	a	great	invention.



INSTRUCTIONS

We	now	have	this	new	register,	called	the	Instruction	Register,	which	contains	a
byte	that	is	going	to	tell	the	Control	Section	what	to	do.	The	patterns	that	are	put
into	this	register	have	a	meaning.	Sounds	like	another	code,	and	indeed,	it	is.
This	code	will	be	called	the	"Instruction	Code."

Since	we	are	building	this	computer	from	scratch,	we	get	to	invent	our	own
instruction	code.	We	will	take	the	256	different	codes	that	can	be	put	in	the
Instruction	Register,	and	decide	what	they	will	mean.	Then	we	have	to	design
the	wiring	inside	the	control	unit	that	will	make	these	instructions	do	what	we
said	they	would	do.

Do	you	remember	the	binary	number	code?	We	said	that	it	was	the	closest	thing
to	a	'natural'	computer	code	because	it	was	based	on	the	same	method	we	use	for
our	normal	number	system.	Then	there	was	the	ASCII	code,	which	was	just
invented	by	a	bunch	of	people	at	a	meeting.	There	is	nothing	natural	about
ASCII	at	all,	it	was	just	what	those	people	decided	it	would	be.

Now	we	have	the	Instruction	Code,	which	will	also	be	a	totally	invented	code	-
nothing	natural	about	it.	Many	different	instruction	codes	have	been	invented	for
many	different	types	of	computers.	We	will	not	study	any	of	them	here,	nor	will
you	need	to	study	any	of	them	later,	unless	you	are	going	to	go	on	to	a	highly
technical	career	where	that	is	necessary.	But	all	Instruction	Codes	are	similar,	in
that	they	are	what	make	the	computer	work.	The	only	Instruction	Code	in	this
book	will	be	one	that	we	invent	for	our	simple	computer.	The	most	important
thing	in	inventing	our	Instruction	Code,	will	be	how	simple	we	can	make	the
wiring	that	will	make	the	code	work.

How	many	different	instructions	could	there	be?	Since	the	instruction	register	is
a	byte,	there	might	be	as	many	as	256	different	instructions.	Fortunately,	we	will
only	have	nine	types	of	instructions,	and	all	256	combinations	will	fall	into	one
of	these	categories.	They	are	pretty	easy	to	describe.

All	instructions	involve	moving	bytes	across	the	bus.	The	instructions	will	cause
bytes	to	go	to	or	from	RAM,	to	or	from	registers,	and	sometimes	through	the
ALU.	In	the	following	chapters,	for	each	type	of	instruction,	we	will	look	at	the
bits	of	that	instruction,	the	gates	and	wiring	necessary	to	make	it	work,	and
another	handy	code	we	can	use	to	make	writing	programs	easier.



THE	ARITHMETIC	OR	LOGIC	INSTRUCTION

This	first	type	of	instruction	is	the	type	that	uses	the	ALU	like	our	ADD
operation	earlier.	As	you	recall,	the	ALU	has	eight	things	it	can	do,	and	for	some
of	those	things	it	uses	two	bytes	of	input,	for	other	things	it	only	uses	one	byte	of
input.	And	in	seven	of	those	cases,	it	has	one	byte	of	output.

This	type	of	instruction	will	choose	one	of	the	ALU	operations,	and	two
registers.	This	is	the	most	versatile	instruction	that	the	computer	can	do.	It
actually	has	128	variations,	since	there	are	eight	operations,	and	four	registers,
and	you	get	to	choose	twice	from	the	four	registers.	That	is	eight	times	four
times	four,	or	128	possible	ways	to	use	this	instruction.	Thus	this	is	not	just	one
instruction,	but	rather	it	is	a	whole	class	of	instructions	that	all	use	the	same
wiring	to	get	the	job	done.

Here	is	the	Instruction	Code	for	the	ALU	instruction.	If	the	first	bit	in	the
Instruction	Register	is	a	1,	then	this	is	an	ALU	instruction.	That’s	the	simplicity
of	it.	If	the	first	bit	is	on,	then	the	next	three	bits	in	the	instruction	get	sent	to	the
ALU	to	tell	it	what	to	do,	the	next	two	bits	choose	one	of	the	registers	that	will
be	used,	and	the	last	two	bits	choose	the	other	register	that	will	be	used.

Therefore,	the	ALU	Instruction	(1),	to	add	(000)	Register	2	(10)	and	Register	3
(11),	and	place	the	answer	in	Register	3,	would	be:	1000	1011.	If	you	placed	this
code	(1000	1011)	in	RAM	at	address	10,	and	set	the	IAR	to	10,	and	started	the
computer,	it	would	fetch	the	1000	1011	from	address	10,	place	it	in	IR,	and	then
the	wiring	in	the	control	section	would	do	the	addition	of	R2	and	R3.



If	you	choose	a	one	input	operation,	such	as	SHL,	SHR	or	NOT,	the	byte	will
come	from	the	Reg	A,	go	through	the	ALU,	and	the	answer	will	be	placed	in	the
Reg	B.	You	can	choose	to	go	from	one	register	to	another	such	as	R1	to	R3,	or
choose	to	go	from	one	register	back	into	the	same	one,	such	as	R2	to	R2.	When
you	do	the	latter,	the	original	contents	of	the	register	will	be	replaced.

For	two	input	operations,	Reg	A	and	Reg	B	will	be	sent	to	the	ALU,	and	the
answer	will	be	sent	to	Reg	B.	So	whatever	was	in	Reg	B,	which	was	one	of	the
inputs	to	the	operation,	will	be	replaced	by	the	answer.	You	can	also	specify	the
same	register	for	both	inputs.	This	can	be	useful,	for	instance,	if	you	want	to	put
all	zeros	in	Register	1,	just	XOR	R1	with	R1.	No	matter	what	is	in	R1	to	begin
with,	all	bit	comparisons	will	be	the	same,	which	makes	the	output	of	all	bits
zeros,	which	gets	placed	back	into	R1.

The	CMP	operation	takes	two	inputs	and	compares	them	to	see	if	they	are	equal,
and	if	not,	if	the	first	one	is	larger.	But	the	CMP	operation	does	not	store	its
output	byte.	It	does	not	replace	the	contents	of	either	input	byte.

The	wiring	in	the	Control	unit	for	the	ALU	instruction	is	pretty	simple,	but	there
is	one	extra	thing	that	will	be	used	by	many	types	of	instructions	that	we	need	to
look	at	first.	This	has	to	do	with	the	registers.	In	"Doing	Something	Useful
Revisited,"	we	used	two	registers.	To	use	them,	we	just	connected	the	AND	gate
for	each	register	to	the	desired	step	of	the	stepper.	This	was	fine,	but	in	the	ALU
instruction,	and	many	others,	there	are	bits	in	the	instruction	register	that	specify
which	register	to	use.	Therefore	we	don't	want	to	wire	up	directly	to	any	one
register,	we	need	to	be	able	to	connect	to	any	of	the	registers,	but	let	the	bits	in
the	instruction	choose	exactly	which	one.	Here	is	the	Control	Section	wiring	that
does	it:



Look	at	the	right	side	first.	When	we	want	to	set	a	general-purpose	register,	we
connect	the	proper	step	to	this	wire	that	we	will	call	'Reg	B.'	As	you	can	see,	'elk
s'	is	connected	to	all	four	AND	gates.	'Reg	B'	is	also	connected	to	all	four	AND
gates.	But	these	four	AND	gates	each	have	three	inputs.	The	third	input	to	each
AND	gate	comes	from	a	2x4	decoder.	You	remember	that	one	and	only	one
output	of	a	decoder	is	on	at	any	given	time,	so	only	one	register	will	actually	be
selected	to	have	its	'set'	bit	turned	on.	The	input	to	the	decoder	comes	from	the
last	two	bits	of	the	IR,	so	they	determine	which	one	register	will	be	set	by	this
wire	labeled	'Reg	B.'	If	you	look	back	at	the	chart	of	the	bits	of	the	ALU
Instruction	Code,	it	shows	that	the	last	two	bits	of	the	instruction	are	what
determine	which	register	you	want	to	use	for	Reg	B.

The	left	side	of	the	picture	is	very	much	like	the	right	side,	except	that	there	are
two	of	everything.	Remember	that	in	an	ALU	instruction	such	as	ADD,	we	need
to	enable	two	registers,	one	at	a	time,	for	the	inputs	to	the	ALU.	The	last	two	bits
of	the	instruction	are	also	used	for	'Reg	B'	on	the	left,	and	you	can	see	that	'elk	e,'
'Reg	B'	and	a	decoder	are	used	to	enable	one	register	during	its	proper	step.	Bits
4	and	5	of	the	IR	are	used	to	enable	'Reg	A'	during	its	proper	step,	using	a
separate	decoder	and	a	wire	called	'Reg	A'	The	outputs	of	these	two	structures
are	ORed	together	before	going	to	the	actual	register	enable	bits.	We	will	never
select	'Reg	A'	and	'Reg	B'	at	the	same	time.

What	happens	when	the	instruction	that	has	been	fetched	begins	with	a	l?	That
means	that	this	is	an	ALU	instruction,	and	we	need	to	do	three	things.	First	we



want	to	move	'Reg	B'	to	TMP.	Then	we	want	to	tell	the	ALU	which	operation	to
do,	put	'Reg	A'	on	the	bus	and	set	the	output	of	the	ALU	into	ACC.	Then	we
want	to	move	ACC	to	'Reg	B.'

Bit	o	of	the	IR	is	the	one	that	determines	if	this	is	an	ALU	instruction.	When	Bit
o	is	on,	the	things	that	Bit	o	is	wired	up	to	make	all	of	the	steps	of	an	ALU
instruction	occur.

The	next	diagram	shows	the	eight	gates	and	the	wires	that	are	added	to	the
Control	Section	that	make	steps	4,	5	and	6	of	an	ALU	instruction	do	what	we
need	them	to	do.

In	the	diagram	below,	just	above	and	to	the	left	of	the	IR,	there	are	three	AND
gates.	The	outputs	of	these	gates	go	to	the	three	'op'	wires	on	the	ALU	that	tell	it
which	operation	to	do.	Each	of	these	three	AND	gates	has	three	inputs.	One
input	of	each	gate	is	wired	to	bit	o	of	the	IR.	A	second	input	of	each	gate	is	wired
to	step	5	from	the	stepper.	The	remaining	input	of	each	gate	is	wired	to	bits	1,	2
and	3	of	the	IR.

Therefore,	the	three	wires	that	go	to	the	ALU	will	be	000	at	all	times	except
during	step	5	when	IR	bit	o	happens	to	be	a	1.	At	such	a	time,	the	wires	going	to
the	ALU	will	be	the	same	as	bits	1,	2	and	3	of	the	IR.



IR	bit	o	continues	up	the	diagram,	turns	right	and	is	connected	to	one	side	of
three	more	AND	gates.	The	other	sides	of	these	gates	are	connected	to	Steps	4,	5
and	6.

The	output	of	the	first	gate	comes	on	during	step	4,	and	you	can	see	it	going	to
two	places.	On	the	left,	it	enables	'Reg	B'	onto	the	bus,	and	on	the	right,	it	sets
the	bus	into	TMP.	This	step	is	actually	not	necessary	for	the	SHL,	SHR	and	NOT
operations,	but	it	doesn't	harm	anything,	and	it	would	be	fairly	complicated	to
get	rid	of,	so	for	simplicity's	sake	we'll	just	leave	it	this	way.

The	second	gate	comes	on	during	step	5	(the	same	step	that	the	ALU	gets	its
orders),	and	going	to	the	left	is	a	wire	that	enables	'Reg	A'	onto	the	bus.	The
ALU	now	has	one	input	in	TMP,	the	other	input	on	the	bus,	and	its	operation
specified	by	those	three	'op'	wires,	so	on	the	right	is	a	wire	that	sets	the	answer
into	ACC.

The	third	gate	turns	on	during	step	6.	The	wire	going	to	the	left	enables	ACC
onto	the	bus,	and	the	wire	going	to	the	right	sets	the	bus	into	'Reg	B.'

There	is	just	one	special	situation	in	an	ALU	instruction,	and	that	is	when	the
operation	is	CMP,	code	111.	For	a	compare	operation,	we	do	not	want	to	store
any	results	back	into	'Reg	B.'	Therefore,	there	is	a	three	input	AND	gate
connected	to	IR	bits	1,	2	and	3,	which	is	then	connected	to	a	NOT	gate,	and	then
to	a	third	input	on	the	AND	gate	that	does	step	6	of	the	ALU	instruction.	So
when	the	operation	is	111,	the	first	AND	will	come	on,	the	NOT	will	go	off,	and
the	output	of	the	Step	6	AND	gate	will	not	turn	on.

This	ALU	instruction	is	now	done.	Step	7	resets	the	stepper,	which	then	goes
through	its	steps	again,	fetching	the	next	instruction,	etc,	etc.

We	are	going	to	invent	one	more	thing	here,	and	that	is	a	shorthand	way	of
writing	CPU	instructions	on	a	piece	of	paper.	In	the	Instruction	Code,	1000	1011
means	"Add	R2	to	R3,"	but	it	takes	a	lot	of	practice	for	a	person	to	look	at	1000
1011	and	immediately	think	of	addition	and	registers.	It	also	would	take	a	lot	of
memorization	to	think	of	it	the	other	way	around,	that	is,	if	you	wanted	to	XOR
two	registers,	what	is	the	Instruction	Code	for	XOR?	It	would	be	easier	to	write
something	like	ADD	R2,R3	or	XOR	R1,R1.

This	idea	of	using	a	shorthand	has	a	name,	and	it	is	called	a	computer	language.
So	along	with	inventing	an	instruction	code,	we	will	also	invent	a	computer
language	that	represents	the	instruction	code.	The	ALU	instruction	results	in	the
first	eight	words	of	our	new	language.



When	a	person	wants	to	write	a	computer	program,	he	can	write	it	directly	in	the
instruction	code,	or	use	a	computer	language.	Of	course,	if	you	write	a	program
in	a	computer	language,	it	will	have	to	be	translated	into	the	actual	instruction
code	before	it	can	be	placed	in	RAM	and	executed.



THE	LOAD	AND	STORE	INSTRUCTIONS

The	Load	and	Store	instructions	are	pretty	simple.	They	move	a	byte	between
RAM	and	a	register.	They	are	very	similar	to	each	other	so	we	will	cover	both	of
them	in	one	chapter.

We'll	get	to	the	details	of	these	instructions	in	a	moment,	but	first	we	need	to
have	something	that	tells	us	when	we	have	a	Load	or	Store	instruction	in	the
Instruction	Register.	With	the	ALU	instruction,	all	we	needed	to	know	was	that
bit	o	was	on.	The	code	for	every	other	type	of	instruction	begins	with	bit	o	off,
so	if	we	connect	a	NOT	gate	to	bit	o,	when	that	NOT	gate	turns	on,	that	tells	us
that	we	have	some	other	type	of	instruction.	In	this	computer,	there	are	eight
types	of	instructions	that	are	not	ALU	instructions,	so	when	bit	o	is	off,	we	will
use	the	next	three	bits	of	the	IR	to	tell	us	exactly	which	type	of	instruction	we
have.

The	three	bits	that	went	to	the	ALU	in	an	ALU	instruction	also	go	to	a	3x8
decoder	here	in	the	Control	Section.	As	you	remember,	one	and	only	one	of	the
outputs	of	a	decoder	is	on	at	all	times,	so	we	will	have	AND	gates	on	the	outputs
to	prevent	any	output	from	going	anywhere	during	an	ALU	instruction.	But
when	it	is	not	an	ALU	instruction,	the	one	output	of	the	decoder	that	is	on,	will
get	through	its	AND	gate,	and	in	turn	will	be	connected	to	some	more	gates	that
make	the	appropriate	instruction	work.

In	the	diagram	below,	you	can	see	IR	bits	1,	2	and	3	going	into	a	decoder	which
has	eight	AND	gates	on	its	outputs.	IR	bit	o	has	a	NOT	gate	which	goes	to	the
other	side	of	those	eight	AND	gates.	This	decoder	is	used	for	the	rest	of	the
instructions	that	our	computer	will	have.



This	chapter	is	about	the	instructions	that	use	the	first	two	outputs	of	the
decoder,	the	ones	that	come	on	when	the	IR	starts	with	0000	or	0001.

The	first	instruction	moves	a	byte	from	RAM	to	a	register,	this	is	called	the
"Load"	instruction.	The	other	one	does	the	same	in	reverse,	it	moves	a	byte	from
a	register	to	RAM,	and	is	called	the	"Store"	instruction.



The	Instruction	Code	for	the	Load	instruction	is	0000,	and	for	the	Store
instruction	is	0001.	The	remaining	four	bits	in	both	cases	specify	two	registers,
just	like	the	ALU	instruction	did,	but	in	this	case,	one	register	will	be	used	to
select	one	of	the	locations	in	RAM,	and	the	other	register	will	either	be	loaded
from,	or	stored	to,	that	RAM	location.

Step	4	is	the	same	for	both	instructions.	One	of	the	registers	is	selected	by	IR
bits	4	and	5	and	is	enabled	onto	bus.	The	bus	is	then	set	into	MAR,	thus
selecting	one	address	in	RAM.

In	step	five,	IR	bits	6	and	7	select	another	one	of	the	CPU	registers.	For	the	Load
instruction,	RAM	is	enabled	onto	the	bus	and	the	bus	is	set	into	the	selected
register.	For	the	Store	instruction,	the	selected	register	is	enabled	onto	the	bus
and	the	bus	is	set	into	RAM.

Each	of	these	instructions	only	need	two	steps	to	complete,	step	6	will	do
nothing.

Here	are	two	new	words	for	our	computer	language:



THE	DATA	INSTRUCTION

Now	here	is	an	interesting	instruction.	All	it	does	is	load	a	byte	from	RAM	into	a
Register	like	the	Load	instruction,	above.	The	thing	that	is	different	about	it
though,	is	where	in	RAM	it	will	get	that	byte.

In	the	Data	instruction,	the	data	comes	from	where	the	next	instruction	ought	to
be.	So	you	could	consider	that	this	instruction	is	actually	two	bytes	long!	The
first	byte	is	the	instruction,	and	the	next	byte	is	some	data	that	will	be	placed	into
a	register.	This	data	is	easy	to	find,	because	by	the	time	we	have	the	instruction
in	the	IR,	the	IAR	has	already	been	updated,	and	so	it	points	right	to	this	byte.

Here	is	the	Instruction	Code	for	the	Data	instruction.	Bits	o	to	3	are	0010.	Bits	4
and	5	are	not	used.	Bits	6	and	7	select	the	register	that	will	be	loaded	with	the
data	that	is	in	the	second	byte.

All	this	instruction	needs	to	do	is,	in	step	4,	send	IAR	to	MAR,	and	in	step	5,
send	RAM	to	the	desired	CPU	register.	However,	there	is	one	more	thing	that
needs	to	happen.	Since	the	second	byte	of	the	instruction	is	just	data	that	could
be	anything,	we	do	not	want	to	execute	this	second	byte	as	an	instruction.	We
need	to	add	1	to	the	IAR	a	second	time	so	that	it	will	skip	this	byte	and	point	to
the	next	instruction.	We	will	do	this	the	same	way	that	it	is	done	in	steps	1	and	3.
In	step	4,	when	we	send	IAR	to	MAR,	we	will	take	advantage	of	the	fact	that	the
ALU	is	calculating	IAR	plus	something	at	the	same	time,	we	will	turn	on	the
'Bus	1,'	and	set	the	answer	into	ACC.	Step	5	still	moves	the	data	to	a	Register,
and	in	step	6	we	can	move	ACC	to	IAR.



Here	is	another	new	word	for	our	computer	language:



THE	SECOND	GREAT	INVENTION

The	first	great	invention	is	this	idea	of	having	a	string	of	instructions	in	RAM
that	get	executed	one	by	one	by	the	CPU.	But	our	clock	is	very	fast,	and	the
amount	of	RAM	we	have	is	limited.	What	will	happen,	in	far	less	than	a	second,
when	we	have	executed	every	instruction	in	RAM?

Fortunately,	we	will	not	have	to	answer	that	question,	because	someone	came	up
with	another	type	of	instruction	that	is	so	important	that	it	qualifies	as	the	second
great	invention	necessary	to	allow	the	computer	to	do	what	it	does.	Because	of
the	versatile	arrangement	of	our	CPU	and	its	Control	Section,	it	is	an	extremely
simple	thing	to	make	this	work,	but	its	importance	should	not	be	lost	because	of
this	simplicity.

This	new	type	of	instruction	is	called	a	Jump	instruction,	and	all	it	does	is	to
change	the	contents	of	the	IAR,	thus	changing	where	in	RAM	the	next,	and
subsequent	instructions	will	come	from.

The	exact	type	of	Jump	instruction	described	in	this	chapter	is	called	a	"Jump
Register"	instruction.	It	simply	moves	the	contents	of	Reg	B	into	the	IAR.	Here
is	the	Instruction	Code	for	it:

The	computer	is	executing	a	series	of	instructions	in	RAM,	one	after	the	other,
and	suddenly	one	of	those	instructions	changes	the	contents	of	the	IAR.	What
will	happen	then?	The	next	instruction	that	will	be	fetched	will	not	be	the	one
that	follows	the	last	one.	It	will	be	the	one	that	is	at	whatever	RAM	address	was



loaded	into	the	IAR.	And	it	will	carry	on	from	that	point	with	the	next	one,	etc.
until	it	executes	another	jump	instruction.

The	wiring	for	the	Jump	Register	instruction	only	needs	one	step.	In	step	4,	the
selected	register	is	enabled	onto	the	bus,	and	set	into	the	IAR,	and	that	is	all.	If
we	wanted	to	speed	up	our	CPU,	we	could	use	step	5	to	reset	the	stepper.	But	to
keep	our	diagram	simple,	we	won’t	bother	with	that.	Steps	5	an	6	will	do
nothing.

Here	is	another	new	word	for	our	computer	language:



ANOTHER	WAY	TO	JUMP

This	is	another	type	of	Jump	instruction.	It	is	similar	to	the	Data	instruction	in
that	it	uses	two	bytes.	It	replaces	the	IAR	with	the	byte	that	is	in	RAM
immediately	following	the	instruction	byte,	thus	changing	where	in	RAM	the
next	and	subsequent	instructions	will	come	from.	Here	is	the	Instruction	Code
for	it.	Bits	4,	5,	6	and	7	are	not	used	in	this	instruction:

This	exact	type	of	Jump	instruction	is	just	called	a	"Jump."	It	is	useful	when	you
know	the	address	that	you	are	going	to	want	to	jump	to,	when	you	are	writing
the	program.	The	Jump	Register	Instruction	is	more	useful	when	the	address	you
are	going	to	want	to	jump	to	is	calculated	as	the	program	in	running,	and	may
not	always	be	the	same.

One	of	the	things	you	can	do	with	a	Jump	instruction	is	to	create	a	loop	of
instructions	that	execute	over	and	over	again.	You	can	have	a	series	of	fifty
instructions	in	RAM,	and	the	last	instruction	"Jumps"	back	to	the	first	one.

Like	the	Data	instruction,	the	IAR	already	points	to	the	byte	we	need.	Unlike	the
Data	Instruction,	we	don't	need	to	add	1	to	the	IAR	a	second	time	because	we	are
going	to	replace	it	anyway.	So	we	only	need	two	steps.	In	step	4,	we	send	IAR	to
MAR.	In	step	5	we	move	the	selected	RAM	byte	to	the	IAR.	Step	6	will	do
nothing.

Here	is	the	wiring	that	makes	it	work:



Here	is	another	new	word	for	our	computer	language:



THE	THIRD	GREAT	INVENTION

Here	is	the	third,	and	last,	invention	that	makes	a	computer	a	computer.

This	is	just	like	the	Jump	Instruction,	but	sometimes	it	jumps,	and	sometimes	it
doesn't.	Of	course,	to	jump	or	not	to	jump	is	just	two	possibilities,	so	it	only
takes	one	bit	to	determine	which	will	happen.	Mostly	what	we	are	going	to
introduce	in	this	chapter	is	where	that	one	bit	comes	from.

Do	you	remember	the	'Carry'	bit	that	comes	out	of,	and	goes	back	into	the	ALU?
This	bit	comes	either	from	the	adder,	or	from	one	of	the	shifters.	If	you	add	two
numbers	that	result	in	an	amount	that	is	greater	than	255,	the	carry	bit	will	come
on.	If	you	left	shift	a	byte	that	has	the	left	bit	on,	or	right	shift	a	byte	that	has	the
right	bit	on,	these	situations	will	also	turn	on	the	ALU's	carry	out	bit.

There	is	also	a	bit	that	tells	us	if	the	two	inputs	to	the	ALU	are	equal,	another
one	that	tells	us	if	the	A	input	is	larger,	and	one	more	bit	that	tells	us	if	the	output
of	the	ALU	is	all	zeros.

These	bits	are	the	only	things	that	we	have	not	yet	found	a	home	for	in	the	CPU.
These	four	bits	will	be	called	the	"Flag"	bits,	and	they	will	be	used	to	make	the
decision	for	a	"Jump	If"	instruction	as	to	whether	it	will	execute	the	next
instruction	in	RAM	or	jump	to	some	other	address.

What	we	are	trying	to	get	the	computer	to	be	able	to	accomplish,	is	for	it	to	first
execute	an	ALU	instruction,	and	then	have	one	or	more	"Jump	If"	instructions
following	it.	The	"Jump	If	will	jump	or	not	depending	on	something	that
happened	during	the	ALU	instruction.

Of	course,	by	the	time	the	"Jump	If"	is	executing,	the	results	of	the	ALU
instruction	are	long	gone.	If	you	go	back	and	look	at	the	details	of	the	ALU
instruction,	it	is	only	during	step	5	that	all	of	the	proper	inputs	are	going	into	the
ALU	and	the	desired	answer	is	coming	out.	It	is	at	this	time	that	the	answer	is	set
into	ACC.	The	timing	is	the	same	for	all	four	Flag	bits,	they	are	only	valid
during	step	5	of	the	ALU	instruction.	Therefore,	we	need	a	way	to	save	the	state
of	the	Flag	bits	as	they	were	during	step	5	of	the	ALU	instruction.



Here	is	the	last	register	that	we	are	going	to	add	to	the	CPU.	This	will	be	called
the	FLAG	register,	and	we	are	only	going	to	use	four	bits	of	it,	one	for	each	of
the	flags.

The	Flag	bits	from	the	ALU	are	connected	to	the	input	of	this	register,	and	it	will
be	set	during	step	5	of	the	ALU	instruction	just	like	ACC	and	it	will	stay	set	that
way	until	the	next	time	an	ALU	instruction	is	executed.	Thus	if	you	have	an
ALU	instruction	followed	by	a	“Jump	If”	instruction,	the	“Flag”	bits	can	be	used
to	“decide”	whether	to	Jump	or	not.

Every	instruction	cycle	uses	the	ALU	in	step	1	to	add	1	to	the	address	for	the
next	instruction,	but	only	step	5	of	the	ALU	instruction	has	a	connection	that	sets
the	Flags.	(We	did	not	show	this	connection	in	the	wiring	for	the	ALU
instruction	because	we	had	not	yet	introduced	the	Flag	Reg,	but	it	will	appear	in
the	completed	Control	Section	diagram.)

This	combination	of	Flag	bits,	and	the	Jump	IF	instruction,	is	the	third	and	last
great	invention	that	makes	computers	as	we	know	them	today,	work.

Here	is	the	Instruction	Code	for	a	‘Jump	If’	instruction.	The	second	four	bits	of
the	instruction	tell	the	CPU	which	flag	or	flags	should	be	checked.	You	put	a	‘1’
in	the	instruction	bit(s)	corresponding	to	the	flag(s)	that	you	want	to	test	for.	If
any	one	of	the	Flags	that	you	test	is	on,	the	jump	will	happen.	This	arrangement
gives	us	a	number	of	ways	to	decide	whether	to	jump	or	not.	There	is	a	second
byte	that	contains	the	address	to	jump	to,	if	the	jump	is	taken.



Here	is	the	wiring	in	the	Control	Section	that	makes	the	Jump	If	instruction
work.



Step	4	moves	IAR	to	MAR	so	we	are	prepared	to	get	the	'Jump	to	Address'	that
we	will	use	IF	we	jump.	But	because	we	might	not	jump,	we	also	need	to
calculate	the	address	of	the	next	instruction	in	RAM.	And	so	step	4	also	turns	on
Bus	1	and	sets	the	answer	in	ACC.

In	step	5,	we	move	ACC	to	IAR	so	we	are	ready	to	fetch	the	next	instruction	IF
we	don't	jump.

Step	6	is	where	the	"decision"	is	made.	We	will	move	the	second	byte	of	the
instruction	from	RAM	to	IAR	IF	the	third	input	to	that	AND	gate	is	on.	That
third	input	comes	from	an	OR	gate	with	four	inputs.	Those	four	inputs	come
from	the	four	Flag	bits	after	being	ANDed	with	the	last	four	bits	of	the	Jump	If



instruction	in	IR.	If,	for	instance,	there	is	a	'1'	in	the	'Equal'	bit	of	the	instruction,
and	the	'Equal'	Flag	bit	is	on,	then	the	jump	will	occur.

Here	are	more	words	for	our	computer	language.	'J'	means	Jump,	'C	means
Carry,	A'	means	A	is	larger,	'E'	means	A	Equals	B	and	'Z'	means	that	the	answer
is	all	Zeros.	Here	are	the	words	of	the	language	that	test	a	single	Flag:

You	can	also	test	more	than	one	flag	bit	at	the	same	time	by	putting	a	1	in	more
than	one	of	the	four	bits.	Actually	since	there	are	four	bits,	there	are	16	possible
combinations,	but	the	one	with	all	four	bits	off	is	not	useful	because	it	will	never
jump.	For	the	sake	of	completeness,	here	are	the	rest	of	the	possibilities:



THE	CLEAR	FLAGS	INSTRUCTION

There	is	one	annoying	detail	that	we	need	to	have	here.	When	you	do	addition	or
shifting,	you	have	the	possibility	of	getting	the	carry	flag	turned	on	by	the
operation.	This	is	necessary,	we	use	it	for	the	Jump	If	instruction	as	in	the
previous	chapter.

The	Carry	Flag	is	also	used	as	an	input	to	the	addition	and	shift	operations.	The
purpose	of	this	is	so	you	can	add	numbers	larger	than	255	and	shift	bits	from	one
register	to	another.

The	problem	that	arises	is	that	if	you	are	just	adding	two	single-byte	numbers,
you	don't	care	about	any	previous	Carry,	but	the	Carry	Flag	may	still	be	set	from
a	previous	operation.	In	that	case,	you	might	add	2+2	and	get	5!

Bigger	computers	have	several	ways	to	do	this,	but	for	us,	we	will	just	have	a
Clear	Flags	Instruction	that	you	need	to	use	before	any	adds	or	shifts	where	an
unexpected	carry	bit	would	be	a	problem.

Here	is	the	Instruction	Code	for	this	instruction.	Bits	4,	5,	6	and	7	are	not	used.

The	wiring	for	this	is	very	simple	and	a	bit	tricky.	We	will	not	enable	anything
onto	the	bus,	thus	it	and	the	'A'	ALU	input	will	be	all	zeros.	We	will	turn	on	'Bus
1'	so	the	'B'	input	is	0000	0001.	We	won't	send	an	operation	to	the	ALU,	so	it
will	be	in	ADD	mode.	The	ALU,	therefore,	will	be	adding	0	and	1,	and	there
may	be	a	carry	input.	The	answer	then	will	be	either	0000	0001	or	0000	0010.
But	there	will	be	no	carry	output,	the	answer	is	not	zero	and	B	is	larger	than	A	so
'equal'	and	'A	larger'	will	both	be	off.	We	'set'	the	Flag	Reg	at	this	time	while	all
four	Flag	bits	are	off.



Here	is	another	word	for	our	language.



TA	DAA!

We	have	now	wired	up	the	Control	Section	of	our	CPU.	As	a	result,	we	can
place	a	series	of	instructions	in	RAM,	and	the	Clock,	Stepper,	Instruction
Register	and	wiring	will	fetch	and	execute	those	instructions.	Here	is	the	entire
control	section:



Yes,	this	looks	pretty	complicated,	but	we	have	looked	at	every	part	of	it	already.
The	only	thing	we	had	to	add	were	some	OR	gates	because	most	of	the	'enables'
and	'sets'	need	multiple	connections.	This	actually	has	a	lot	fewer	parts	than	the
RAM,	but	that	was	much	more	repetitive.	Most	of	the	mess	here	is	just	getting
the	wires	from	one	place	to	another.



The	byte	that	is	placed	in	the	Instruction	Register	causes	a	certain	activity	to
occur.	Each	possible	pattern	causes	a	different	activity.	Therefore,	we	have	a
code	where	each	of	the	256	possible	codes	represents	a	different	specific	activity.

As	mentioned,	this	is	called	the	Instruction	Code.	Another	name	for	it	is
"machine	language,"	because	this	is	the	only	language	(code)	that	the	machine
(computer)	"understands."	You	"tell"	the	machine	what	to	do	by	giving	it	a	list	of
orders	you	want	it	to	carry	out.	But	you	have	to	speak	the	only	language	that	it
"understands."	If	you	feed	it	the	right	byte-sized	patterns	of	ons	and	offs,	you
can	make	it	do	something	that	will	be	useful.

Here	are	all	of	the	Instruction	Codes	and	our	shorthand	language	brought
together	in	one	place.

Believe	it	or	not,	everything	you	have	ever	seen	a	computer	do,	is	simply	the
result	of	a	CPU	executing	a	long	series	of	instructions	such	as	the	ones	above.



A	FEW	MORE	WORDS	ON	ARITHMETIC

We	don't	want	to	spend	a	lot	of	time	on	this	subject,	but	the	only	thing	that	we
have	seen	so	far	that	looks	like	arithmetic	is	the	adder,	so	we	will	look	at	simple
examples	of	slightly	more	complex	arithmetic.	Not	to	teach	you	how	to	act	like	a
computer,	but	just	to	prove	to	you	that	it	works.

Here	is	how	you	do	subtraction.	It	is	done	with	the	adder	and	the	NOT	gates.	If
you	want	to	subtract	R1	from	R0,	first	you	NOT	R1	back	into	itself.	Then	you
add	1	to	R1,	then	you	Add	R0	to	R1.

This	shows	an	example	of	subtracting	21	from	37:

The	last	step	is	adding	37	+	235,	the	answer	of	which	should	be	272.	But	a	single
register	cannot	hold	a	number	larger	than	255.	Therefore	the	adder	turns	on	its
Carry	bit,	and	the	eight	bits	remaining	of	the	answer	are	0001	0000,	which	is	16,
the	correct	answer	for	37	minus	21.

Why	does	NOTting	and	ADDing	result	in	subtraction?	Why	do	you	have	to	add



1	after	NOTting?	Why	do	you	ignore	the	carry	bit?	We	are	not	going	to	attempt
to	answer	any	of	these	questions	in	this	book.	These	are	the	details	that	keep	a
very	few	engineers	from	getting	a	good	night's	sleep.	These	brave	people	study
these	problems	and	design	ways	for	ordinary	people	to	not	have	to	understand	it.

Here	is	how	you	do	multiplication.	When	we	do	multiplication	with	a	pencil	and
paper	in	the	decimal	system,	you	have	to	remember	your	multiplication	tables,
you	know,	3	times	8	equals	24,	6	times	9	equals	54,	etc.

In	binary,	multiplication	is	actually	much	easier	than	in	decimal.	1	times	1	equals
1,	and	for	every	other	combination,	the	answer	is	o!	It	just	couldn't	get	much
simpler	than	that!	Here's	an	example	of	multiplying	5	times	5	with	pencil	and
paper	in	binary.

If	you	look	at	what's	happening	here,	if	the	right	digit	of	the	bottom	number	is	a
1,	you	put	the	top	number	in	the	answer.	Then,	for	every	digit	to	the	left	of	that,
shift	the	top	number	left,	and	if	the	bottom	digit	is	a	1,	add	the	shifted	top
number	to	the	answer.	When	you	get	through	the	eight	bits	of	the	bottom
number,	you're	done.

So	multiplication	is	accomplished	with	the	adder	and	the	shifters.	It's	as	simple
as	that.	You	can	write	a	simple	program	like	this:

R0	contains	the	bottom	number,	R1	contains	the	top	number	and	R2	will	contain
the	answer.	R3	is	used	to	jump	out	of	the	loop	after	going	through	it	eight	times.



See	what	happens	with	the	Registers	as	this	program	goes	through	its	loop	the
first	three	times.

The	important	thing	that	has	happened	here	is	that	R1	has	been	added	to	R2



twice.	It	happened	on	the	first	time	through,	when	R1	contained	0000	0101,	and
on	the	third	time	through,	after	R1	had	been	shifted	left	twice	and	therefore
contained	0001	0100.	R2	now	contains	00011001	binary,	which	is	16+8+1,	or	25
decimal,	which	is	the	correct	answer	for	5	times	5.	The	loop	will	repeat	5	more
times	until	the	bit	in	R3	gets	shifted	out	to	the	Carry	Flag,	but	the	total	won't
increase	because	there	are	no	more	is	in	R0.

This	program	will	go	through	eight	times.	We	start	with	0000	0001	in	R3.	Near
the	end	of	the	program,	R3	gets	shifted	left.

The	first	seven	times	through,	there	will	be	no	carry,	so	the	program	will	get	to
the	'JMP	53'	and	go	back	up	to	the	third	instruction	of	the	program.	The	eighth
time	R3	gets	shifted	left,	the	one	bit	that	is	on	gets	shifted	out	of	R3	and	into	the
Carry	flag.	Therefore,	the	'JC	68'	will	jump	over	the	'JMP	53'	and	carry	on	with
whatever	instructions	come	after	this.

The	byte	in	R0	gets	shifted	right	to	test	which	bits	are	on.	The	byte	in	R1	gets
shifted	left	to	multiply	it	by	two.	When	there	was	a	bit	in	R0,	you	add	R1	to	R2.
And	that's	all	there	is	to	it.

One	thing	we	do	not	address	in	this	example	is	what	happens	if	the	answer	of	the
multiplication	is	more	than	255.	If	a	multiplication	program	multiplies	two	one-
byte	numbers,	it	ought	to	be	able	to	handle	a	two-byte	answer.	That	would	take
care	of	any	two	numbers	that	you	might	start	with.	This	would	be	accomplished
with	the	carry	flag	and	some	more	Jump	If	instructions.	We	won't	torture	the
reader	with	the	details.

Reading	a	program	like	the	one	above	is	an	entirely	different	skill	than	reading
the	diagrams	and	graphs	we	have	seen	so	far	in	the	book.	I	hope	you	were	able	to
follow	it,	but	no	one	is	expected	to	become	an	expert	at	reading	programs
because	of	this	book.

Division	also	can	be	done	by	our	computer.	There	are	several	ways	it	can	be
done,	and	we	are	not	going	to	examine	any	of	them	in	any	detail.	Just	imagine
the	following	simple	method.	Lets	say	you	want	to	divide	fifteen	by	three.	If	you
repeatedly	subtract	three	from	fifteen,	and	count	the	number	of	subtractions	you
can	accomplish	before	the	fifteen	is	all	gone,	that	count	will	be	the	answer.	Like
these	five	steps:	(1)15-3=12,	(2)12-3=9,	(3)9-3=6,	(4)6-3-3,	(5)3-3=0.	This	is
easily	turned	into	a	program.

Computers	also	have	ways	of	handling	negative	numbers	and	numbers	with
decimal	points.	The	details	are	very	tedious,	and	studying	them	would	not



enhance	our	understanding	of	how	computers	work.	It	still	comes	down	to
nothing	more	than	NAND	gates.	Our	simple	computer	could	do	all	of	these
things	with	programs.



THE	OUTSIDE	WORLD

What	we	have	described	so	far	is	the	whole	computer.	It	has	two	parts,	the	RAM
and	the	CPU.	That's	all	there	is.	These	simple	operations	are	the	most
complicated	things	that	a	computer	can	do.	The	ability	to	execute	instructions,
modify	bytes	with	the	ALU,	the	ability	to	jump	from	one	part	of	the	program	to
another,	and	most	importantly,	the	ability	to	jump	or	not	jump	based	on	the	result
of	a	calculation.	This	is	what	a	computer	is	able	to	do.	These	are	simple	things,
but	since	it	operates	so	quickly,	it	can	do	huge	numbers	of	these	operations	that
can	result	in	something	that	looks	impressive.

These	two	parts	make	it	a	computer,	but	if	all	the	computer	could	do	is	run	a
program	and	rearrange	bytes	in	RAM,	no	one	would	ever	know	what	it	was
doing.	So	there	is	one	more	thing	that	the	computer	needs	in	order	to	be	useful,
and	that	is	a	way	to	communicate	with	the	outside	world.

Dealing	with	anything	outside	of	the	computer	is	called	'Input/Output'	or	'I/O'	for
short.	Output	means	data	going	out	of	the	computer;	Input	means	data	coming
into	the	computer.	Some	things	are	input	only,	such	as	a	keyboard,	some	things
are	output	only,	like	a	display	screen,	some	things	do	both	input	and	output,	like
a	disk.

All	we	need	for	I/O	is	a	few	wires,	and	a	new	instruction.

For	the	wires,	all	we	are	going	to	do	is	to	extend	the	CPU	bus	outside	of	the
computer	and	add	four	more	wires	to	go	with	it.	This	combination	of	12	wires
will	be	called	the	I/O	Bus.	Everything	that	is	connected	to	the	computer	is
attached	to	this	one	I/O	bus.

The	devices	that	are	connected	to	the	I/O	bus	are	called	'peripherals,'	because
they	are	not	inside	the	computer,	they	are	outside	of	the	computer,	on	its
periphery	(the	area	around	it.)

More	than	one	thing	can	be	attached	to	the	I/O	bus,	but	the	computer	controls	the
process,	and	only	one	of	these	things	is	active	at	a	time.

Each	thing	attached	to	the	I/O	bus	has	to	have	its	own	unique	I/O	address.	This
is	not	the	same	as	the	addresses	of	the	bytes	in	RAM,	it	is	just	some	‘number’
that	the	peripheral	will	recognize	when	placed	on	the	bus.

Here	is	what	the	I/O	bus	looks	like	in	the	CPU,	there	at	the	bottom	right	of	the
drawing.



In	the	diagram	below	are	the	wires	of	the	I/O	Bus.	The	CPU	Bus	is	the	same
eight-wire	bundle	that	goes	everywhere	else.	The	‘Input/Output’	wire	determines
which	direction	data	will	be	moving	on	the	CPU	bus,	either	in	or	out.	The
‘Data/Address’	wire	tells	us	whether	we	will	be	transferring	a	byte	of	data,	or	an
I/O	Address	that	selects	one	of	the	many	devices	that	could	be	attached	to	the
I/O	bus.	‘I/O	Clk	e’	and	‘I/O	Clk	s’	are	used	to	enable	and	set	registers	so	that
bytes	can	be	moved	back	and	forth.

Here	is	the	control	section	wiring	for	the	new	instruction	that	controls	the	I/O
bus.	This	shows	where	the	four	new	wires	for	the	I/O	bus	come	from.	They	are
at	the	bottom	right	of	the	drawing.	They	were	also	shown	on	the	full	control
section	diagram	a	few	chapters	back.	Sorry	if	that	was	confusing,	but	having	that
diagram	in	the	book	once	was	enough.



IR	bits	4	and	5	are	placed	on	the	I/O	bus	at	all	times.	To	make	the	I/O	operation
happen,	only	one	step	is	needed.	For	Output,	Reg	B	is	enabled,	and	I/O	Clk	s	is
turned	on	and	off	during	step	4.	Steps	5	and	6	do	nothing.	For	Input,	I/O	Clk	e	is
enabled,	and	Reg	B	is	set	during	step	5.	Steps	4	and	6	do	nothing.

Here	is	the	Instruction	Code	for	the	I/O	instruction:



This	one	instruction	can	be	used	in	four	different	ways	depending	on	IR	bits	4
and	5,	and	therefore	there	are	four	new	words	for	our	language.

Each	I/O	device	has	its	own	unique	characteristics,	and	therefore	needs	unique
parts	and	wiring	to	connect	it	to	the	I/O	bus.	The	collection	of	parts	that	connects
the	device	to	the	bus	is	called	a	"device	adapter."	Each	type	of	adapter	has	a
specific	name	such	as	the	'keyboard	adapter'	or	the	'disk	adapter.'

The	adapter	does	nothing	unless	its	address	appears	on	the	bus.	When	it	does,
then	the	adapter	will	respond	to	the	commands	that	the	computer	sends	to	it.

With	an	'OUT	Addr'	instruction,	the	computer	turns	on	the	address	wire,	and	puts
the	address	of	the	device	it	wants	to	talk	to,	on	the	CPU	bus.	The	peripheral
recognizes	its	address	and	comes	to	life.	Every	other	peripheral	has	some	other
address,	so	they	won't	respond.

We	are	not	going	to	describe	every	gate	in	the	I/O	system.	By	this	time,	you
should	believe	that	bytes	of	information	can	be	transferred	over	a	bus	with	a	few
control	wires.	The	message	of	this	chapter	is	only	the	simplicity	of	the	I/O



system.	The	CPU	and	the	RAM	are	the	computer.	Everything	else,	disks,
printers,	keyboards,	the	mouse,	the	display	screen,	the	things	that	make	sound,
the	things	that	connect	to	the	internet,	all	these	things	are	peripherals,	and	all
they	are	capable	of	doing	is	accepting	bytes	of	data	from	the	computer	or
sending	bytes	of	data	to	the	computer.	The	adapters	for	different	devices	have
different	capabilities,	different	numbers	of	registers,	and	different	requirements
as	far	as	what	the	program	running	in	the	CPU	must	do	to	operate	the	device
properly.	But	they	don't	do	anything	fancier	than	that.	The	computer	controls	the
process	with	a	very	few	simple	I/O	commands	that	are	executed	by	the	CPU.



THE	KEYBOARD

A	keyboard	is	one	of	the	simplest	peripherals	connected	to	the	I/O	bus.	It	is	an
input	only	device,	and	just	presents	one	byte	at	a	time	to	the	CPU.

The	keyboard	has	eight	wires	inside,	its	own	little	bus	as	shown	on	the	right.
When	you	press	a	key,	it	simply	connects	electricity	to	the	wires	necessary	to
create	the	ASCII	code	corresponding	to	the	key	that	was	pressed.	That	little	box
that	says	‘Control,’	is	also	notified	when	a	key	is	pressed,	and	sets	the	ASCII
code	into	the	Keycode	Register.

After	pressing	a	key,	there	will	be	an	ASCII	code	waiting	in	the	Keycode
Register.	Here’s	how	the	CPU	gets	that	code	into	one	of	its	registers.

AND	gate	#1	has	eight	inputs.	They	are	connected	to	the	CPU	bus,	four	of	them
through	NOT	gates.	Thus	this	AND	gate	will	turn	on	any	time	the	bus	contains
0000	1111.	This	is	the	I/O	address	of	this	keyboard	adapter.

AND	gate	#2	comes	on	only	during	‘clk	s’	time	of	an	OUT	Addr	instruction.	It
operates	the	‘set’	input	of	a	Memory	bit.	If	the	bus	contains	0000	1111	at	this
time,	the	‘i’	input	will	be	on,	and	the	Memory	bit	will	turn	on.	When	this
Memory	bit	is	on,	it	means	that	the	keyboard	adapter	is	active.



AND	gate	#3	comes	on	during	'elk	e'	time	of	an	IN	Data	instruction.	If	the
Memory	bit	is	on,	AND	gate	#4	will	come	on	and	the	Keycode	Register	will	be
enabled	onto	the	bus,	which	will	be	set	into	Reg	B	in	the	CPU.

Every	adapter	that	is	connected	to	the	I/O	bus	needs	to	have	the	type	of	circuitry
we	see	in	gates	#1	and	#2	and	the	memory	bit	above.	Each	adapter	will	have	a
different	combination	that	turns	gate	#1	on;	this	is	what	allows	the	CPU	to	select
each	adapter	individually.

Here	is	a	little	program	that	moves	the	current	keypress	into	Reg	3	in	the	CPU.

That	little	'Control'	box	clears	the	Keycode	Register	after	it	has	been	sent	to	the
CPU.

The	program	running	in	the	CPU	will	check	the	keyboard	adapter	on	a	regular
basis,	and	if	the	byte	that	it	receives	is	all	zeros,	then	no	key	has	been	pressed.	If
the	byte	has	one	or	more	bits	on,	then	the	program	will	do	whatever	the	program
has	been	designed	to	do	with	a	keystroke	at	that	time.

Again,	we	are	not	going	to	go	through	every	gate	in	the	Keyboard	adapter.	All
device	adapters	have	the	same	sorts	of	circuitry	in	order	to	be	able	to	respond
when	they	are	addressed,	and	send	or	receive	bytes	of	information	as	needed.
But	it	is	no	more	complicated	than	that.	That	is	all	that	I/O	devices	and	adapters
do.



THE	DISPLAY	SCREEN

Television	and	computer	display	screens	work	the	same	way,	the	main	difference
between	them	is	only	what	they	display.	This	is	not	actually	computer
technology,	because	you	don't	need	a	display	screen	to	have	a	computer,	but
most	computers	do	have	a	screen,	and	the	computer	spends	a	lot	of	its	time
making	the	screen	look	like	something,	so	we	need	to	know	a	little	bit	about	how
it	works.

Television	appears	to	give	you	moving	pictures	with	sound.	The	pictures	and
sound	are	done	separately,	and	in	this	chapter,	we	are	only	concerned	with	how
the	picture	works.

The	first	thing	to	know	is	that	although	the	picture	appears	to	be	moving,	it	is
actually	a	series	of	still	pictures	presented	so	quickly	that	the	eye	doesn't	notice
it.	You	probably	already	knew	that,	but	here's	the	next	thing.	You	have	seen
motion	picture	film.	It	is	a	series	of	pictures.	To	watch	a	movie,	you	put	the	film
in	a	projector,	which	shines	light	through	one	picture,	then	moves	the	film	to	the
next	picture,	shines	light	through	it,	etc.	It	usually	runs	at	24	pictures	per	second,
which	is	fast	enough	to	give	the	illusion	of	a	constantly	moving	picture.

Television	goes	a	bit	faster,	about	30	pictures	per	second,	but	there	is	another,
much	bigger	difference	between	film	and	television.	With	the	movie	film,	each
still	picture	is	shown	all	at	once.	Each	picture	is	complete,	when	you	shine	the
light	through	it,	every	part	of	the	picture	appears	on	the	screen	simultaneously.
Television	is	not	capable	of	doing	this.	It	does	not	have	a	whole	picture	to	put	on
the	screen	all	at	once.

All	that	a	television	can	do	at	one	instant	in	time,	is	to	light	up	one	single	dot	on
the	screen.	It	lights	up	one	dot,	then	another	dot,	then	another,	very	quickly	until
one	whole	picture's	worth	of	dots	has	been	lit.	This	whole	screen's	worth	of	dots
makes	up	one	still	picture,	thus	it	has	to	light	up	all	of	the	dots	within	one
thirtieth	of	a	second,	and	then	do	it	all	over	again	with	the	next	picture,	etc.	until
it	has	placed	30	picture's	worth	of	dots	on	the	screen	in	one	second.	So	the	TV	is
very	busy	lighting	up	individual	dots,	30	times	the	number	of	dots	on	the	screen,
every	second.

Usually,	the	top	left	dot	is	lit	first,	then	the	one	to	its	right,	and	so	on	across	the
top	of	the	screen	to	the	top	right	corner.	Then	it	starts	with	the	second	line	of
dots,	going	across	the	screen	again,	the	third	line,	etc.	until	it	has	scanned	the
entire	screen.	The	brightness	of	each	dot	is	high	or	low	so	that	each	part	on	the



screen	gets	lit	up	to	the	proper	brightness	to	make	the	screen	look	like	the
intended	image.

At	any	one	instant	in	time,	the	television	is	only	dealing	with	one	single	solitary
dot	on	the	screen.	So	with	television,	there	are	two	illusions	-	the	illusion	of
motion	coming	from	a	series	of	still	pictures,	as	well	as	the	illusion	of	complete
still	pictures	that	are	actually	drawn	one	dot	at	a	time.	This	second	illusion	is
aided	by	what	the	screen	in	made	of,	each	dot	only	gets	lit	up	for	a	tiny	fraction
of	a	second,	and	it	starts	to	fade	away	immediately.	Fortunately,	whatever	the
screen	is	made	of	that	glows,	continues	to	glow	to	some	degree	between	one
time	when	the	dot	is	lit	up	and	1/30th	of	a	second	later	when	that	same	dot	gets
lit	up	again.

To	the	eye,	you	just	see	a	moving	picture,	but	there	are	a	lot	of	things	going	on	to
make	it	appear	that	way.

In	a	computer,	a	single	dot	on	the	screen	is	called	a	'picture	element,'	or	'pixel'
for	short.

Computer	screens	work	just	like	televisions.	They	also	have	to	scan	the	entire
screen	30	times	a	second	to	light	up	each	individual	pixel	and	thereby	make	an
image	appear.	Even	if	the	content	of	the	screen	is	not	changing,	something	in	the
computer	has	to	scan	that	unchanging	image	onto	the	screen	30	times	every
second.	No	scanning,	no	picture	-	that's	just	the	way	it	works.

We're	not	going	to	go	into	the	same	amount	of	detail	here	that	we	did	with	the
CPU	and	the	RAM,	those	two	are	what	make	it	a	computer,	but	if	we	want	to
know	how	our	computer	is	able	to	put	something	on	the	screen	that	we	can	read,
we	need	to	have	the	basic	idea	of	how	it	works.

In	this	chapter	we	will	look	at	the	simplest	kind	of	screen,	the	kind	that	is	black
and	white,	and	whose	pixels	can	only	either	be	fully	on	or	fully	off.	This	type	of
screen	can	display	characters	and	the	type	of	pictures	that	are	made	of	line
drawings.	Later	in	the	book	we	will	see	the	few	simple	changes	that	enable	a
screen	to	display	things	like	color	photographs.

The	major	parts	are	three.	First	there	is	the	computer,	we	have	seen	how	that
works.	It	has	an	I/O	Bus	that	can	move	bytes	to	and	from	things	outside	of	the
computer.	Second	is	the	screen.	The	screen	is	just	a	large	grid	of	pixels,	each	of
which	can	be	selected,	one	at	a	time,	and	while	selected,	can	either	be	turned	on,
or	not.	The	third	item	is	the	'display	adapter.'	The	display	adapter	is	connected	to
the	I/O	Bus	on	one	side,	and	to	the	screen	on	the	other	side.



The	heart	of	a	display	adapter	is	some	RAM.	The	display	adapter	needs	its	own
RAM	so	it	can	"remember"	which	pixels	should	be	on,	and	which	pixels	should
be	off.	In	the	type	of	screen	we	are	going	to	describe	here,	there	needs	to	be	one
bit	in	RAM	for	each	pixel	on	the	screen.

In	order	to	make	the	screen	scan	every	pixel	30	times	every	second,	the	Display
Adapter	needs	its	own	clock	that	ticks	at	a	speed	that	is	30	times	the	number	of
pixels	on	the	screen.	At	each	tick	of	the	clock,	one	pixel	is	selected	and	it	is
turned	on	or	not	by	the	corresponding	bit	from	the	RAM.

As	an	example,	lets	use	an	old	type	of	screen.	It	is	a	black	and	white	screen	that
displays	320	pixels	across	the	screen	and	200	pixels	down.	That	comes	out	to
64,000	individual	pixels	on	the	screen.	Each	pixel	on	the	screen	has	a	unique
address	consisting	of	two	numbers,	the	first	being	the	left-right	or	horizontal
position,	and	the	other	being	the	up-down	or	vertical	position.	The	address	of	the
top	left	pixel	is	0,0	and	the	bottom	right	pixel	is	319,199

64,000	pixels	times	30	pictures	per	second	means	that	this	Display	Adapter's
clock	needs	to	tick	1,920,000	times	per	second.	And	since	there	are	eight	bits	in
a	byte,	we	will	need	8,000	bytes	of	display	RAM	to	tell	each	of	the	64,000
screen	pixels	whether	to	be	on	or	off.

The	display	adapter	has	a	register	that	sets	the	horizontal	position	of	the	current
pixel.	The	display	adapter	adds	1	to	this	register	at	every	tick	of	the	clock.	It
starts	at	zero,	and	when	the	number	in	it	gets	to	319,	the	next	step	resets	it	back
to	zero.	So	it	goes	from	zero	to	319	over	and	over	again.	There	is	also	a	register
that	sets	the	vertical	position	of	the	current	pixel.	Every	time	the	horizontal
register	gets	reset	to	zero,	the	display	adapter	adds	1	to	the	vertical	register.
When	the	vertical	register	reaches	199,	the	next	step	will	reset	it	to	zero.	So	as
the	horizontal	register	goes	from	zero	to	319	200	times,	the	vertical	register	goes
from	zero	to	199	once.

The	currently	selected	screen	pixel	is	controlled	by	these	registers,	so	as	the
horizontal	register	goes	from	o	to	319,	the	current	pixel	goes	across	the	screen
once.	Then	the	vertical	register	has	one	added	to	it,	and	the	current	pixel	moves
down	to	the	first	pixel	on	the	next	line.

Thus,	the	clock	and	the	horizontal	and	vertical	registers	select	each	pixel	on	the
screen,	one	at	a	time,	going	left	to	right	in	one	row,	then	selecting	each	pixel	in
the	next	row	down,	then	the	next,	etc.	until	every	pixel	on	the	screen	has	been
selected	one	time.	Then	it	starts	all	over	again.

At	the	same	time,	there	is	another	register	that	contains	a	display	RAM	address.



This	register	also	gets	stepped	through,	although	we	only	need	one	new	byte	for
every	eight	pixels.	The	bits	of	each	byte,	one	at	a	time,	are	sent	to	the	screen	at
eight	consecutive	pixels	to	turn	them	on	or	off.	After	every	eight	pixels,	the
RAM	address	register	has	1	added	to	it.	By	the	time	all	of	the	pixels	have	been
stepped	through,	the	entire	RAM	has	also	been	stepped	through,	and	one	entire
picture	has	been	drawn.	When	the	horizontal	and	vertical	registers	have	both
reached	their	maximums,	and	are	reset	to	zero,	the	RAM	address	is	also	reset	to
zero.

The	display	adapter	spends	most	of	its	time	painting	the	screen.	The	only	other
thing	it	has	to	do	is	to	accept	commands	from	the	I/O	Bus	that	will	change	the
contents	of	the	display	adapter	RAM.	When	the	program	running	in	the	CPU
needs	to	change	what's	on	the	screen,	it	will	use	the	I/O	OUT	command	to	select
the	display	adapter,	and	then	send	a	display	adapter	RAM	address	and	then	a
byte	of	data	to	store	at	that	address.	Then	as	the	adapter	continues	to	repaint	the
screen,	the	new	data	will	appear	on	the	screen	at	the	appropriate	spot.

The	display	adapter	RAM	is	built	differently	than	the	RAM	in	our	computer.	It
keeps	the	input	and	output	functions	separate.	The	inputs	of	all	storage	locations
are	connected	to	the	input	bus,	and	the	outputs	of	all	storage	locations	are
connected	to	the	output	bus,	but	the	input	bus	and	the	output	bus	are	kept
separate.	Then	there	are	two	separate	memory	address	registers,	one	for	input
and	one	for	output.	The	input	MAR	has	a	grid	that	only	selects	which	byte	will
be	'set,'	and	the	output	MAR	has	a	separate	grid	that	only	selects	which	byte	will
be	'enabled.'

With	this	setup,	the	screen	and	the	display	RAM	can	both	be	continuously
scanned	using	only	the	output	MAR	and	the	enable	bit.	When	the	I/O	Bus	is
used	to	write	into	the	display	RAM,	it	uses	only	the	input	MAR	and	the	set	bit.



This	is	how	the	display	adapter	creates	an	image	on	the	screen.	Because	of	the
way	it	works,	there	is	an	interesting	relationship	between	which	bits	in	the
display	RAM	correspond	to	which	pixels	on	the	screen.	As	it	scans	the	first	eight
pixels	of	the	top	line,	it	uses	the	individual	bits	of	byte	o	of	its	RAM	to	turn	the
pixels	on	or	off.	As	it	scans	the	second	eight	pixels,	it	uses	the	individual	bits	of
byte	1	of	its	RAM,	etc.	It	takes	40	bytes	of	RAM	to	draw	the	first	line,	and	so	the
last	eight	pixels,	which	are	numbered	312	through	319,	come	from	RAM	byte
39.	The	second	row	uses	byte	40	to	draw	its	first	8	pixels,	etc.

If	you	want	to	write	letters	and	numbers	on	the	screen,	how	do	you	do	it?	If	you
put	the	ASCII	code	for	'A'	into	a	byte	in	the	display	RAM,	you	will	just	get	eight
pixels	in	a	row	where	one	is	off,	then	one	is	on,	then	five	are	off	and	the	last	one
is	on.	That's	not	what	an	'A'	should	look	like.

There	is	a	solution	for	this,	and	it	involves...



ANOTHER	CODE

When	you	want	to	print	or	display	written	language,	you	need	to	translate	the
ASCII	code	into	something	that	is	readable	by	a	live	person.	We	have	a	code,
0100	0101,	that	appears	on	the	ASCII	code	table	next	to	the	letter	'E.'	But	how
does	the	computer	turn	0100	0101	into	a	readable	'E'?

We	have	a	display	screen,	but	the	screen	is	a	just	a	grid	of	pixels,	there	are	no
human	readable	'E's	in	anything	we	have	described	so	far.	In	order	to	get	an	'E'
on	the	screen,	there	has	to	be	something	that	makes	that	shape	that	we	recognize
as	a	letter	of	the	alphabet.

Therefore,	we	need	another	code.	This	code	is	really	about	little	pictures	made
out	of	dots.	For	each	character	that	we	want	to	be	able	to	draw	on	the	screen,	we
need	a	little	picture	of	that	character.	If	you	take	a	grid	8	pixels	wide	and	8	pixels
high,	you	could	decide	which	pixels	had	to	be	on	to	make	a	little	picture	that
looks	like	the	character	that	you	want	to	draw	on	the	screen,	like	this:

If	you	turn	this	picture	into	ons	and	offs,	you	could	store	it	in	eight	bytes.	If	there
are	100	different	characters	that	you	want	to	be	able	to	display	on	the	screen,
then	you'd	need	100	different	little	pictures	like	this,	and	it	would	require	800
bytes	of	RAM	to	store	it.	Our	little	computer	only	has	a	256	byte	RAM,	so	this
would	be	a	good	time	to	imagine	that	larger	version	that	we	described	earlier.

These	800	bytes	are	a	type	of	code	known	as	a	"font."

If	you	want	to	make	a	character	appear	in	a	certain	place	on	the	screen,	you	need
to	choose	the	correct	little	picture	from	the	font,	and	then	use	I/O	instructions	to
copy	the	eight	bytes	of	the	picture	to	the	proper	bytes	in	the	display	adapter's
RAM.



If	the	pictures	in	our	font	are	arranged	in	the	same	order	as	the	ASCII	code	table,
then	we	can	use	the	numeric	value	of	an	ASCII	code	to	find	the	corresponding
picture	within	the	font.	The	ASCII	code	for	'E'	is	0100	0101.	If	you	apply	the
binary	number	code	to	the	same	pattern	of	ones	and	zeros,	you	get	the	decimal
number	69.	'E'	then,	is	the	69th	code	in	ASCII,	and	the	picture	of	an	'E'	will	be
the	69th	picture	within	the	font.	Since	there	are	eight	bytes	in	each	picture,	you
multiply	the	69	by	8,	and	that	tells	you	that	the	picture	for	'E'	will	be	the	eight
bytes	starting	at	address	552.

Now	we	need	to	know	where	to	copy	these	bytes	to	in	the	display	RAM.	Lets
say	that	we	want	to	display	an	'E'	at	the	very	top	left	of	the	screen.	Where	are	the
bits	that	turn	on	the	pixels	that	we	are	interested	in?	Well,	the	first	line	is	easy,	it
is	the	first	eight	bits	of	the	display	RAM,	Address	o.	So	we	use	a	series	of	OUT
instructions	to	copy	RAM	address	552	to	display	RAM	address	o.	Now,	where	is
the	second	line	in	the	display	RAM?	The	display	paints	all	320	bits	of	the	top
row	before	it	moves	down	to	the	second	row.	That	means	that	it	uses	40	bytes	on
each	row,	so	the	top	row	uses	bytes	0-39.	That	means	that	the	second	byte	of	the
picture	of	'E'	at	RAM	address	553	needs	to	be	written	at	address	40	in	the
display	RAM.	Similarly,	the	third	through	eighth	bytes	get	written	at	bytes	80,
120,	160,	200,	240	and	280.	When	you	have	done	all	of	that,	you	would	then	see
a	complete	'E'	on	the	screen.	If	you	wanted	to	write	an	'X'	on	the	screen	right
next	to	the	'E',	you	would	locate	the	eight	bytes	in	the	font	for	'X'	and	copy	them
into	display	RAM	bytes	1,	41,	81,	121,	161,	201,	241	and	281.	If	you	need	27
'E's	on	your	screen,	you	just	copy	the	one	'E'	in	your	font	to	27	different	places	in
the	display	RAM.

Of	course,	this	seems	like	a	lot	of	work	just	to	make	a	single	letter	appear	on	the
screen.	The	program	that	does	this	would	need	a	loop	of	instructions	that
calculates	the	first	'from'	and	'to'	addresses,	then	issues	the	appropriate	OUT



instructions	to	copy	the	first	byte	to	the	display	RAM.	Then	the	loop	would
repeat,	updating	both	addresses	each	time,	until	all	eight	bytes	had	been	copied
to	the	appropriate	places.	We're	not	going	to	write	this	program,	but	it	could
easily	be	a	50	instruction	program	that	has	to	loop	around	eight	times	before	it's
finished.	That	means	that	it	could	take	400	instruction	cycles	just	to	put	one
character	on	the	screen!	If	you	drew	1000	characters	on	the	screen,	that	might
take	400,000	instruction	cycles.	On	the	other	hand,	that's	still	only	about	one
quarter	of	one	percent	of	what	this	computer	can	do	in	one	second.

This	just	goes	to	show	you	why	computers	need	to	be	so	fast.	The	individual
things	that	they	do	are	so	small,	that	it	takes	a	huge	number	of	steps	to	get
anything	done	at	all.



THE	FINAL	WORD	ON	CODES

We	have	seen	several	codes	used	in	our	computer.	Each	one	was	designed	for	a
specific	purpose.	Individual	coded	messages	are	put	in	bytes,	and	moved	around
and	used	to	get	things	done.

The	bytes	do	not	'know'	which	code	was	used	to	choose	the	pattern	that	they
contain.	There	is	nothing	in	the	byte	itself	that	tells	you	which	code	it	is
supposed	to	be.

Certain	parts	of	the	computer	are	built	with	various	codes	in	mind.	In	the	ALU,
the	adder	and	comparator	are	built	to	treat	bytes	as	though	they	contain	values
encoded	with	the	binary	number	code.	So	are	the	Memory	Address	Register	and
the	Instruction	Address	Register.

The	Instruction	Register	is	built	to	treat	its	contents	as	though	it	contains	values
encoded	with	the	Instruction	Code.

The	Display	adapter	RAM	bits	are	just	ons	or	offs	for	individual	pixels.	Pictures
and	fonts	are	strings	of	bytes	that	will	result	in	something	that	can	be	recognized
by	a	person	when	it	is	organized,	and	the	brightnesses	are	set,	by	the	wiring	of	a
display	adapter	and	screen.

The	ASCII	code	table	does	not	appear	anywhere	inside	the	computer	because
there	is	no	way	to	represent	a	letter	of	the	alphabet	except	by	using	a	code.

The	only	places	where	ASCII	gets	converted	between	characters	and	the	code
for	the	character,	are	in	the	peripherals.	When	you	press	'E'	on	the	keyboard,	you
get	the	ASCII	code	for	an	'E.'	When	you	send	the	ASCII	code	for	an	'E'	to	a
printer,	it	prints	the	letter	'E.'	The	people	who	build	these	peripherals	have	an
ASCII	code	table	in	front	of	them,	and	when	they	build	a	keyboard,	the	switch
under	the	fourth	button	in	the	second	row,	which	has	the	letter	'E'	printed	on	it,	is
wired	up	to	the	proper	bus	wires	to	produce	the	code	that	appears	next	to	the
letter	'E'	on	the	ASCII	code	table.

An	'E'	is	the	fifth	letter	of	an	alphabet	used	by	people	to	represent	sounds	and
words	in	the	process	of	writing	down	their	spoken	language.	The	only	'E's	in	the
computer	are	the	one	on	the	keyboard	and	the	ones	that	appear	on	the	screen.	All
the	'E's	that	are	in	bytes	are	just	the	code	that	appears	next	to	the	'E'	on	an	ASCII
code	table.	They	are	not	'E's,	there	is	no	way	to	put	an	'E'	in	a	computer.	Even	if
you	put	a	picture	of	an	'E'	in	a	computer,	it	isn't	actually	an	'E'	until	it	is
displayed	on	the	screen.	That's	when	a	person	can	look	at	it	and	say	"That's	an



E."

Bytes	are	dumb.	They	just	contain	patterns	of	ons	and	offs.	If	a	byte	contains
0100	0101,	and	you	send	it	to	the	printer,	it	will	print	the	letter	'E.'	If	you	send	it
to	the	Instruction	Register,	the	computer	will	execute	a	Jump	instruction.	If	you
send	it	to	the	Memory	Address	Register,	it	will	select	byte	number	69	of	the
RAM.	If	you	send	it	to	one	side	of	the	Adder,	it	will	add	69	to	whatever	is	on	the
other	side	of	the	Adder.	If	you	send	it	to	the	display	screen,	it	will	set	three
pixels	on	and	five	pixels	off.

Each	of	these	pieces	of	the	computer	is	designed	with	a	code	in	mind,	but	once	it
is	built,	the	mind	is	gone	and	even	the	code	is	gone.	It	just	does	what	it	was
designed	to	do.

There	is	no	limit	to	the	codes	that	can	be	invented	and	used	in	a	computer.
Programmers	invent	new	codes	all	the	time.	Like	the	cash	register	in	the	fast
food	restaurant	mentioned	earlier,	somewhere	in	that	machine	is	a	bit	that	means
'include	French	fries.'



THE	DISK

Most	computers	have	a	disk.	This	is	simply	another	peripheral	that	is	attached	to
the	I/O	bus.	The	disk's	mission	is	very	simple;	it	can	do	two	things.	You	can	send
it	bytes,	which	it	will	store,	or	you	can	tell	it	to	send	back	some	bytes,	which
were	stored	previously.

There	are	two	reasons	that	most	computers	have	a	disk.	First,	they	have	the
ability	to	store	a	huge	number	of	bytes,	many	times	greater	than	the	Computer's
RAM.	The	CPU	can	only	execute	programs	that	are	in	RAM,	it	can	only
manipulate	bytes	that	are	in	RAM.	But	there	is	never	enough	RAM	to	store	all	of
the	things	that	you	may	want	to	do	with	your	computer.	And	so	a	disk	will	hold
everything,	and	when	you	want	to	do	one	thing,	the	bytes	on	the	disk	for	that	one
thing	will	be	copied	into	RAM	and	used.	Then	when	you	want	to	do	something
different,	the	bytes	for	the	new	activity	will	be	copied	from	the	disk	into	the
same	area	of	RAM	that	had	been	used	for	the	first	activity.

The	second	reason	that	computers	have	disks,	is	that	the	bytes	stored	on	the	disk
do	not	disappear	when	you	turn	the	power	off.	The	RAM	loses	its	settings	when
you	turn	the	computer	off,	when	you	turn	it	back	on,	all	bytes	are	0000	0000,	but
the	disk	retains	everything	that	has	been	written	on	it.

A	computer	bit	has	been	defined	so	far	as	a	place	where	there	is	or	is	not	some
electricity.	But	prior	to	that,	we	defined	it	as	a	place	that	can	be	in	one	of	two
different	states.	On	a	disk,	the	electric	bits	are	transformed	into	places	on	the
surface	of	the	disk	that	have	been	magnetized	one	way	or	the	other.	Since
magnets	have	north	and	south	poles,	the	spot	on	the	disk	can	be	magnetized
either	north-south	or	south-north.	One	direction	would	represent	a	zero,	and	the
other	direction,	a	one.	Once	a	spot	is	magnetized,	it	stays	that	way	unless	the
same	spot	gets	magnetized	the	other	way.	Turning	the	power	off	has	no	effect	on
the	magnetized	spots.

A	disk,	as	its	name	implies,	is	a	round	thing,	that	spins	around	quickly.	It	is
coated	with	a	material	that	can	be	magnetized	easily.	Do	you	remember	the
telegraph?	At	the	receiving	end,	there	is	a	piece	of	metal	with	a	wire	wrapped
around	it.	That	piece	of	metal	turns	into	a	magnet	when	electricity	moves
through	the	wire.	The	disk	has	a	tiny	version	of	this	called	a	‘head’	mounted	on
an	arm.	The	arm	holds	the	head	very	close	to	the	surface	of	the	spinning	disk,
and	the	arm	can	swing	back	and	forth,	so	that	the	head	can	reach	any	point	on
the	surface	of	the	disk.	If	you	put	electricity	through	the	head,	it	can	magnetize



the	surface	of	the	disk.	Also,	it	works	the	other	way	around;	when	the	head
passes	over	a	magnetized	area,	it	makes	electricity	appear	in	the	wires	wrapped
around	the	head.	Thus,	the	head	can	either	write	on	the	disk	or	read	what	has
been	previously	written	on	the	disk.	The	bits	of	the	bytes	are	written	one	after
another	on	the	disk	surface.

The	surface	of	the	disk	is	divided	into	a	series	of	rings,	called	tracks,	very	close
to	each	other.	The	head	can	move	across	the	surface	and	stop	on	any	one	of	the
tracks.	Each	circular	track	is	usually	divided	into	short	pieces	called	sectors.
Since	a	disk	has	two	sides,	usually	both	sides	are	coated	with	the	magnetic
material	and	there	is	a	head	on	each	side.

In	RAM,	every	byte	has	its	own	address.	On	a	disk,	there	is	also	a	way	to	locate
bytes,	but	it	is	very	different.	You	have	to	specify	which	head,	which	track	and
which	sector	at	which	a	block	of	bytes	is	located.	That	is	the	type	of	“address”
that	the	data	on	a	disk	has,	like	“Head	0,	Track	57,	Sector	15.”	And	at	that
address,	there	is	not	just	one	byte,	but	a	block	of	bytes,	typically	several
thousand.	For	the	examples	in	our	book,	since	our	RAM	is	so	small,	we	will	talk
about	a	disk	that	stores	blocks	of	100	bytes.

When	a	disk	is	read	or	written,	there	is	no	way	to	access	an	individual	byte	in	the
block	of	bytes.	The	whole	block	has	to	be	transferred	to	RAM,	worked	on	in
RAM,	and	then	the	whole	block	has	to	be	written	back	to	the	disk.

The	disk	spins	quickly,	faster	than	that	fan	on	your	desk;	many	popular	disks



spin	7200	times	a	minute,	which	is	120	times	per	second.	That's	pretty	fast,	but
compared	to	the	CPU,	it	is	still	pretty	slow.	In	the	time	that	the	disk	spins	around
one	time,	the	Clock	will	tick	over	eight	million	times,	and	our	CPU	will	execute
well	over	a	million	instructions.

The	disk,	like	every	peripheral,	is	connected	to	its	own	adapter,	which	in	turn	is
connected	to	the	I/O	bus.	The	disk	adapter	does	a	few	things.	It	accepts
commands	to	select	a	head,	select	a	track	and	select	a	sector.	It	accepts
commands	to	read	from	or	write	to,	the	block	of	bytes	at	the	currently	selected
head,	track	and	sector.	There	will	also	probably	be	a	command	where	the	CPU
can	check	the	current	position	of	the	arm	and	the	disk.

The	command	to	select	a	head	can	be	completed	immediately,	but	when	it	gets	a
command	to	select	a	track,	it	has	to	move	the	head	to	that	track,	which	takes	a
long	time	in	terms	of	instruction	cycles.	When	it	gets	a	command	to	select	a
sector,	it	has	to	wait	for	that	sector	to	spin	around	to	where	the	head	is,	which
also	takes	a	long	time	in	terms	of	instruction	cycles.	When	the	CPU	has
determined	that	the	head	has	arrived	at	the	desired	track	and	sector,	then	the	I/O
commands	for	reading	or	writing	can	be	executed,	and	one	byte	at	a	time	will	be
transferred	over	the	I/O	bus.	A	program	that	reads	or	writes	a	block	of	bytes	has
to	continue	the	process	until	the	whole	block	of	bytes	is	complete.	With	our
simple	I/O	system,	the	individual	bytes	move	between	the	disk	and	a	CPU
register.	The	program	that	is	running	has	to	move	these	bytes	to	or	from	RAM,
usually	in	consecutive	locations.

This	is	all	that	a	disk	does.	You	have	probably	used	a	computer	that	had	a	disk,
and	didn't	need	to	know	anything	about	heads,	tracks	and	sectors.	And	that	is	a
good	thing,	because	it	is	pretty	annoying	to	have	to	deal	with	a	disk	at	that	level
of	detail.	We	will	look	at	how	a	disk	is	normally	used	later	in	the	book.

Another	language	note:	There	are	several	words	that	mean	virtually	the	same
thing,	but	for	some	reason	certain	words	go	with	certain	technologies.

If	you	want	to	send	someone	a	letter,	first	you	write	it	on	a	piece	of	paper,	then
when	the	recipient	gets	the	letter,	he	reads	it.

In	the	days	of	tape	recorders,	you	would	start	with	a	blank	tape.	Then	you	would
record	some	music	on	the	tape.	When	you	wanted	to	hear	the	music	again	you
would	play	the	tape.

When	it	comes	to	computer	disks,	putting	something	on	the	disk	is	called
writing.	Getting	something	off	the	disk	is	called	reading.



Putting	something	into	RAM	is	called	writing	or	storing.	Getting	something	out
of	RAM	is	called	reading	or	retrieving.

Putting	something	into	a	CPU	register	is	usually	called	loading.

Putting	music	on	a	disk	is	sometimes	called	recording,	sometimes	burning.
Listening	to	a	disk	is	still	usually	called	playing,	but	if	you	are	copying	it	onto
your	computer,	then	it	is	called	ripping.

Writing,	recording,	storing,	loading	and	burning	all	mean	pretty	much	the	same
thing.	Reading,	retrieving,	playing	and	ripping	are	also	very	similar.	They	mean
the	same	things,	it's	just	a	difference	of	words.



EXCUSE	ME	MA'AM

There	is	one	other	thing	that	most	computers	have	as	part	of	their	Input/Output
system.	A	computer	doesn't	need	one	of	these	to	be	called	a	computer,	so	we	will
not	go	through	every	gate	needed	to	build	it.	But	it	is	a	very	common	thing,	so
we	will	describe	how	it	works.

You	know	if	Mom	is	in	the	kitchen	stirring	a	pot	of	soup,	and	little	Joey	comes
running	in	and	says	"I	want	a	glass	of	milk,"	Mom	will	put	down	the	spoon,	go
over	to	the	cabinet,	get	a	glass,	go	to	the	refrigerator,	pour	the	milk,	hand	it	to
Joey,	and	then	she	will	go	back	to	the	stove,	pick	up	the	spoon	and	resume
stirring	the	soup.	The	soup	stirring	was	interrupted	by	getting	a	glass	of	milk,
and	then	the	soup	stirring	resumed.

This	thing	that	most	computers	have,	is	called	an	"Interrupt,"	and	it	works	very
much	like	what	happened	with	Mom	and	Joey.

An	interrupt	starts	with	one	more	wire	added	to	the	I/O	Bus.	This	wire	is	used	by
certain	device	adapters	to	let	the	CPU	know	that	it's	a	good	time	for	the	CPU	to
do	an	I/O	operation,	like	right	after	someone	presses	a	key	on	the	keyboard.
When	a	device	adapter	turns	the	Interrupt	bit	on,	the	next	time	the	stepper	gets
back	to	step	1,	the	next	instruction	cycle	will	not	do	the	usual	fetch	and	execute,
but	rather	it	will	do	of	the	following:

The	result	of	this	sequence	is	that	the	current	IAR	and	Flags	are	saved	to	RAM
addresses	o	and	1,	and	they	are	replaced	with	the	contents	of	RAM	bytes
addresses	2	and	3.	Then	the	CPU	returns	to	its	normal	fetch	and	execute
operation.	But	the	IAR	has	been	replaced!	So	the	next	instruction	will	be	fetched



from	whatever	address	was	in	RAM	byte	2.

In	other	words,	what	the	CPU	had	been	doing	is	saved,	and	the	CPU	is	sent	off
to	do	something	else.	If	at	the	end	of	this	new	activity,	the	program	puts	RAM
bytes	o	and	l	back	into	the	IAR	and	Flags,	the	CPU	will	pick	up	from	exactly
where	it	left	off,	before	it	was	interrupted.

This	system	is	very	useful	for	dealing	with	I/O	operations.	Without	interrupts,
the	program	running	in	the	CPU	would	have	to	make	sure	to	check	all	of	the
devices	on	the	I/O	Bus	on	a	regular	basis.	With	interrupts,	the	program	can	just
do	whatever	it	is	designed	to	do,	and	the	program	that	deals	with	things	like
keyboard	input	will	be	called	automatically	as	needed	by	the	interrupt	system.

We	have	not	included	this	in	our	CPU	because	it	would	just	make	our	Control
Section	wiring	diagram	too	big.	It	would	need	to	add	the	following:	two	more
steps	to	the	stepper,	wiring	to	do	the	above	8	steps	in	place	of	the	normal
instruction	cycle,	paths	for	the	Flags	register	to	get	to	and	from	the	bus,	a
method	of	sending	a	binary	o,	1,	2	or	3	to	MAR,	and	an	instruction	that	restores
RAM	bytes	o	and	1	to	the	IAR	and	Flags	register.

And	that	is	an	Interrupt	system.	As	far	as	the	language	is	concerned,	the
computer	designers	took	an	existing	verb,	'interrupt,'	and	used	it	in	three	ways:	It
is	a	verb	in	"the	keyboard	interrupted	the	program,"	it	is	an	adjective	in	"This	is
the	Interrupt	system,"	and	it	is	a	noun	in	"the	CPU	executed	an	interrupt."



THAT'S	ALL	FOLKS

Yes,	this	is	the	end	of	our	description	of	a	computer.	This	is	all	there	is.
Everything	you	see	a	computer	do	is	a	long	concatenation	of	these	very	simple
operations,	the	ADDing,	NOTting,	Shifting,	ANDing,	ORing,	XORing	of	bytes,
Storing,	Loading,	Jumping	and	I/O	operations,	via	the	execution	of	the
instruction	code	from	RAM.	This	is	what	makes	a	computer	a	computer.	This	is
the	sum	total	of	the	smarts	in	a	computer.	This	is	all	the	thinking	that	a	computer
is	capable	of.	It	is	a	machine	that	does	exactly	what	it	is	designed	to	do,	and
nothing	more.	Like	a	hammer,	it	is	a	tool	devised	by	man	to	do	tasks	defined	by
man.	It	does	its	task	exactly	as	designed.	Also	like	a	hammer,	if	it	is	thrown
indiscriminately	it	can	do	something	unpredictable	and	destructive.

The	variety	of	things	the	computer	can	be	made	do	is	limited	only	by	the
imagination	and	cleverness	of	the	people	who	create	the	programs	for	them	to
run.	The	people	who	build	the	computers	keep	making	them	faster,	smaller,
cheaper	and	more	reliable.

When	we	think	of	a	computer,	we	probably	think	of	that	box	that	sits	on	a	desk
and	has	a	keyboard,	mouse,	screen	and	printer	attached	to	it.	But	computers	are
used	in	many	places.	There	is	a	computer	in	your	car	that	controls	the	engine.
There	is	a	computer	in	your	cell	phone.	There	is	a	computer	in	most	cable	or
satellite	television	boxes.	The	things	that	they	all	have	in	common	are	that	they
all	have	a	CPU	and	RAM.	The	differences	are	all	in	the	peripherals.	A	cell	phone
has	a	small	keyboard	and	screen,	a	microphone	and	a	speaker,	and	a	two-way
radio	for	peripherals.	Your	car	has	various	sensors	and	controls	on	the	engine,
and	the	dials	of	the	dashboard	for	peripherals.	The	cash	register	in	a	fast	food
restaurant	has	a	funny	keyboard,	a	small	display	screen	and	a	small	printer	for
receipts.	There	are	computers	in	some	traffic	lights	that	change	the	lights	based
on	the	time	of	day	and	the	amount	of	traffic	that	crosses	the	sensors	embedded	in
the	roadway.	But	the	CPU	and	RAM	make	it	a	computer,	the	peripherals	can	be
very	different.

For	the	rest	of	the	book	we	will	look	at	miscellaneous	subjects	related	to
understanding	how	computers	are	used,	a	few	interesting	words	that	are	related
to	computers,	some	of	their	frailties	and	a	few	other	loose	ends.



HARDWARE	AND	SOFTWARE

You've	heard	of	hardware.	That	word	has	been	around	for	a	long	time.	There
have	been	hardware	stores	for	a	century	or	more.	I	think	that	a	hardware	store
originally	sold	things	that	were	hard,	like	pots	and	pans,	screwdrivers,	shovels,
hammers,	nails,	plows,	etc.	Perhaps	'hardware'	meant	things	that	were	made	out
of	metal.	Today,	some	hardware	stores	no	longer	sell	pots	and	pans,	but	they	sell
huge	variety	of	hard	things,	like	bolts	and	lawnmowers,	also	lumber	and	a	lot	of
soft	things	too,	like	carpet,	wallpaper,	paint,	etc.	But	these	soft	things	are	not
called	software.

The	word	'software'	was	invented	somewhere	in	the	early	days	of	the	computer
industry	to	differentiate	the	computer	itself	from	the	state	of	the	bits	within	it.
Software	means	the	way	the	bits	are	set	on	or	off	in	a	computer	as	opposed	to	the
computer	itself.	Remember	that	bits	can	be	either	on	or	off.	The	bit	has	a
location	in	space,	it	is	made	of	something,	it	exists	in	space,	it	can	be	seen.	The
bit	is	hardware.	Whether	the	bit	is	on	or	off	is	important,	but	it's	not	a	separate
part	that	you	bolt	into	the	computer,	it	is	the	thing	in	the	computer	that	is
changeable,	the	thing	that	can	be	molded,	it	is	'soft'	in	that	it	can	change,	but	you
can't	pick	it	up	in	your	hand	all	by	itself.	This	thing	is	called	software.

Think	of	a	blank	videotape.	Then	record	a	movie	on	it.	What	is	the	difference
between	the	blank	videotape	and	the	same	videotape	with	a	movie	on	it?	It	looks
the	same,	it	weighs	the	same,	you	can't	see	any	difference	on	the	surface	of	the
tape.	That	surface	is	coated	with	very	fine	particles	that	can	be	magnetized.	In
the	blank	tape,	the	entire	surface	of	the	tape	is	magnetized	in	random	directions.
After	recording	the	movie	on	the	tape,	some	little	places	on	the	tape	are
magnetized	in	one	direction	and	other	little	places	are	magnetized	in	the	other
direction.	Nothing	is	added	to	or	taken	away	from	the	tape,	it's	just	the	way	the
magnetic	particles	are	magnetized.	When	you	put	the	tape	into	a	VCR	it	plays	a
movie.	The	tape	is	hardware,	the	pattern	of	the	directions	of	magnetization	on
the	tape	is	software.

In	a	computer,	there	are	a	great	many	bits.	As	we	have	seen,	a	lot	of	bits	have	to
be	set	in	certain	ways	in	order	to	make	the	computer	do	something	useful.	The
bits	in	the	computer	are	always	there.	If	you	want	the	computer	to	do	a	certain
thing,	you	set	those	bits	on	or	off	according	to	the	pattern	that	will	make	the
computer	do	what	you	want	it	to	do.	This	pattern	is	called	software.	It	is	not	a
physical	thing,	it	is	just	the	pattern	in	which	the	bits	are	set.



So	the	difference	between	hardware	and	software	isn't	like	metal	versus	rubber.
Both	metal	and	rubber	are	hardware	as	far	as	the	computer	definition	is
concerned.	Hardware	is	something	you	can	pick	up,	see,	handle.	Software	is	the
way	the	hardware	is	set.	When	you	buy	software,	it	is	recorded	on	something,
usually	some	kind	of	disk.	The	disk	is	hardware,	the	specific	pattern	recorded	on
that	disk	is	software.	Another	disk	may	look	just	like	it,	but	have	completely
different	software	written	on	it.

Another	way	to	see	the	difference	between	hardware	and	software	is	how	easy	it
is	to	send	it	across	a	distance.	If	you	have	a	vase	that	you	want	to	send	to	your
aunt	Millie	for	her	birthday,	you	have	to	pack	the	vase	in	a	box	and	have	a	truck
take	it	from	your	house	to	her	house.	But	if	you	want	to	give	her	the	present	of
music,	you	might	go	to	the	store,	buy	her	a	disk	and	mail	it,	but	you	might	also
buy	her	a	gift	certificate	on	the	Internet,	send	her	an	e-mail,	and	have	her
download	the	music.	In	that	case,	the	music	will	get	to	her	house	without	a	truck
having	to	go	there.	The	music	will	be	transported	solely	by	the	pattern	of
electricity	that	comes	over	the	Internet	connection	to	her	house.

Another	way	to	see	the	difference	between	hardware	and	software	is	how	easy	it
is	to	make	a	copy	of	the	item.	If	you	have	a	lawnmower,	and	want	a	second
lawnmower,	there	is	no	machine	that	will	copy	the	lawnmower.	You	could
photograph	the	lawnmower,	but	you'd	only	have	a	flat	photograph	of	a
lawnmower.	You	couldn't	mow	any	lawns	with	the	photo.	To	get	a	real	second
lawnmower,	you'd	have	to	go	back	to	the	lawnmower	factory	and	build	another
one	out	of	iron	and	plastic	and	rope	and	whatever	else	lawnmowers	are	made	out
of.	This	is	hardware.

Software	can	be	copied	easily	by	machine.	All	you	need	is	something	that	can
read	the	disk	or	whatever	it	is	recorded	on,	and	something	else	to	write	it	onto	a
new	disk.	The	new	one	will	be	just	like	the	original,	it	will	do	all	the	same
things.	If	the	original	is	your	favorite	movie,	the	copy	will	also	be	your	favorite
movie.	If	the	original	is	a	program	that	will	prepare	your	tax	papers,	so	will	the
copy.

Software	is	not	a	physical	thing,	it	is	just	how	the	physical	things	are	set.

By	far	the	most	commonly	used	definition	of	'software'	is	to	refer	to	a	package	of
computer	instruction	code.	I	think	that	the	way	it	got	this	name	is	that	once	you
have	built	a	device	as	versatile	as	a	computer,	there	are	many	different	things
that	it	can	be	made	to	do.	But	when	there	are	no	instructions	in	it,	it	can't	do
anything.	So	the	software	is	an	absolutely	necessary	part	of	a	computer	that	is



doing	some	task.	It	is	a	vital	part	of	the	total	machine,	yet	it	isn't	like	any	other
part	in	the	machine.	You	can't	weigh	it	or	measure	it	or	pick	it	up	with	a	pair	of
pliers.	So	it	is	part	of	the	'ware,'	but	it	isn't	hardware.	The	only	thing	left	to	call	it
is	'software.'



Programs

As	mentioned	earlier,	a	series	of	instructions	in	RAM	are	called	a	program.

Programs	come	in	many	sizes.	Generally,	a	program	is	a	piece	of	software	that
has	everything	needed	to	do	a	specific	task.	A	system	would	be	something	larger,
made	up	of	several	programs.	A	program	might	be	made	up	of	several	smaller
parts	known	as	'routines.'	Routines	in	turn	may	be	made	up	of	subroutines.

There	are	no	hard	and	fast	definitions	that	differentiate	between	system,
program,	routine	and	sub-routine.	Program	is	the	general	term	for	all	of	them,
the	only	difference	is	their	size	and	the	way	they	are	used.

There	is	another	distinction	between	two	types	of	programs	that	is	not	related	to
their	size.	Most	home	and	business	computers	have	a	number	of	programs
installed	on	them.	Most	of	these	programs	are	used	to	do	something	that	the
owner	wants	to	do.	These	are	called	application	programs	because	they	are
written	to	apply	the	computer	to	a	problem	that	needs	to	be	solved.	There	is	one
program	on	most	computers	that	is	not	an	application.	Its	job	is	to	deal	with	the
computer	itself	and	to	assist	the	application	programs.	This	one	program	that	is
not	an	application	is	called	the	Operating	System.



THE	OPERATING	SYSTEM

An	"Operating	System,"	or	"OS"	for	short,	is	a	large	program	that	has	many
parts	and	several	objectives.

Its	first	job	is	to	get	the	computer	up	and	running	when	you	first	turn	the
computer	on.

Another	one	of	its	jobs	is	to	start	and	end	application	programs	and	give	each
one	time	to	run.	It	is	the	'boss'	of	every	other	program	on	that	computer.	When
more	than	one	program	is	in	RAM,	it	is	the	operating	system	that	switches
between	them.	It	lets	one	program	run	for	a	small	fraction	of	a	second,	then
another	program,	then	another	program.	If	there	are	ten	programs	in	RAM,	and
each	one	gets	to	run	for	one	hundredth	of	a	second	at	a	time,	each	program
would	be	able	to	execute	millions	of	instructions	in	that	time,	several	times	per
second.	It	would	appear	that	all	ten	programs	were	running	simultaneously
because	each	one	gets	to	do	something,	faster	than	the	eye	can	see.

An	Operating	system	also	provides	services	to	application	programs.	When	an
application	program	needs	to	read	from,	or	write	to	the	disk,	or	draw	letters	on
the	screen,	it	does	not	have	to	do	all	of	the	complicated	I/O	instructions
necessary	to	accomplish	the	task.	The	OS	has	a	number	of	small	routines	that	it
keeps	in	RAM	at	all	times	for	such	purposes.

All	an	application	needs	to	do	to	use	one	of	these	routines	is	to	load	up	some
information	in	the	registers,	and	then	jump	to	the	address	of	the	proper	OS
routine.	Here's	an	example	of	how	it	might	be	done.	Lets	say	you	want	to	draw	a
character	on	the	screen.	First,	put	the	ASCII	code	of	the	desired	character	into
R0.	Then	put	row	and	column	numbers	of	where	you	want	it	to	appear	on	the
screen	into	R1	and	R2.	And	here's	the	tricky	part:	You	put	the	address	of	the	next
instruction	of	your	application	program,	into	R3.	Now	just	jump	to	the	OS
routine.	The	routine	will	take	care	of	all	of	the	details	of	drawing	the	character
on	the	screen,	and	then	its	last	instruction	will	be	JMPR	R3.	Thus,	these	routines
can	be	'called'	from	any	application,	and	when	done,	the	routine	will	jump	back
to	the	next	instruction	in	the	application	that	called	it.

There	are	several	reasons	for	having	the	OS	do	all	of	the	I/O	functions.	One	is
that	it	makes	it	easier	to	write	application	programs,	the	programmer	does	not
even	need	to	know	how	the	peripherals	actually	work.	Another	reason	is	that	it
would	waste	a	lot	of	RAM	if	every	application	had	its	own	copy	of	all	of	the	I/O
routines.	One	of	the	most	important	reasons	is	that	the	OS	can	check	to	see



whether	the	program	should	be	allowed	to	do	what	it	is	asking	to	do.	This	is	part
of	the	OS's	other	job	of	being	the	boss.

The	heart	of	the	OS	is	basically	a	loop	of	instructions	that	asks	the	following
questions:	Do	I	need	to	input	anything?	Do	I	need	to	output	anything?	Do	I	need
to	let	any	program	run?	Then	it	starts	over	again.	If	the	answers	to	all	of	these
questions	is	no,	the	CPU	just	executes	the	instructions	in	this	loop	over	and	over,
millions	of	times	per	second.	When	there	is	something	to	do,	it	jumps	to	the
beginning	of	the	program	that	takes	care	of	it,	and	when	that	is	done,	it	jumps
back	to	this	loop	where	the	OS	'waits'	for	something	else	to	do.

Here	is	a	diagram	of	our	larger	RAM	version,	showing	what	parts	of	RAM	might
be	occupied	by	an	Operating	System	and	several	other	programs.



Within	each	program's	RAM,	there	is	all	of	the	instruction	code	that	makes	the
program	work.	Each	program	maybe	divided	up	into	its	own	main	loop,	and
many	routines	that	are	used	for	the	various	tasks	that	it	needs	to	do.	As
mentioned,	the	OS	also	has	routines	that	can	be	called	by	other	programs.

Each	program	also	uses	part	of	its	'address	space'	for	the	data	that	it	is	working
on.	The	calculator,	for	example,	needs	to	have	a	few	bytes	where	it	stores	the
numbers	that	the	user	enters	into	it.	Solitaire	needs	some	bytes	that	specify
which	cards	are	in	which	positions.	The	word	processor	needs	some	RAM	for	all
of	the	ASCII	codes	that	make	up	the	document	you	are	working	on.	The	OS	also
needs	bytes	where	it	can	store	fonts,	keep	track	of	where	application	programs
have	been	loaded,	receive	the	data	that	it	reads	from	the	disk,	and	for	many	other
purposes.

And	so	this	is	what	goes	on	inside	your	average	computer.	There	are	many
different	programs	and	data	areas	in	RAM.	The	OS	jumps	to	a	program,	the
program	jumps	to	a	routine,	the	routine	jumps	to	a	sub-routine.	Each	program
works	on	its	data	or	calculates	something	or	does	an	I/O	operation.	As	each	one
finishes,	it	jumps	back	to	where	it	came	from.	The	CPU	executes	one	instruction
from	one	program	at	a	time,	and	if	they	are	written	intelligently,	each	program
will	get	its	job	done	piece	by	piece,	without	interfering	with	the	rest.

If	our	computer	had	included	an	'interrupt	system'	like	we	described	a	few
chapters	back,	every	time	someone	pressed	a	key	on	the	keyboard	or	moved	the
mouse,	there	would	be	an	interrupt	that	would	call	a	part	of	the	OS	that
determines	which	I/O	device	caused	the	interrupt,	and	then	calls	the	proper
routine	to	take	care	of	whatever	it	was.	When	that	was	done,	the	CPU	would
continue	on	with	the	next	instruction	of	whatever	program	had	been	running
when	the	interrupt	happened.

This	can	all	seem	very	complex,	with	so	many	millions	and	billions	of
instructions	being	executed	in	the	blink	of	an	eye.	There	are	ways	of	organizing
programs	and	good	programming	practices	that	can	make	it	much	more
understandable.	A	study	of	these	would	simplify	software	in	the	same	manner
that	I	hope	this	book	has	simplified	the	hardware.	But	that	would	be	the	subject
for	another	entire	book.



LANGUAGES

Writing	programs	is	very	hard	to	do	when	you're	just	writing	ones	and	zeros,	but
that	is	the	only	code	that	the	CPU	'understands.'

What	is	a	language?	A	spoken	language,	such	as	English,	is	a	way	to	represent
objects,	actions	and	ideas	with	sounds.	A	written	language	is	a	way	to	represent
the	sounds	of	a	spoken	language	with	symbols	on	paper.	Sounds	like	another
code,	and	a	code	representing	a	code.	We	just	can't	get	away	from	these	things!

Do	you	remember	that	shorthand	we	used	when	we	were	looking	at	the	CPU
instruction	code	and	the	wiring	in	the	Control	Section?	Well,	that	is	actually
something	more	than	just	a	handy	tool	that	was	invented	for	this	book.	It	is	a
computer	language.	Here	are	a	few	lines	of	it:

A	computer	language	is	a	way	to	represent	the	instruction	code.	Its	purpose	is	to
make	it	easier	to	write	computer	programs.

In	order	to	use	this	language,	you	write	the	program	you	want	with	ASCII
characters,	and	save	it	into	a	file.	Then	you	load	a	special	program	called	a
'compiler'	into	RAM	and	jump	to	its	first	instruction.	The	compiler	will	read	the
ASCII	file,	translate	each	line	into	the	Instruction	Code	that	it	represents,	and
write	all	of	the	Instruction	Code	bytes	into	a	second	file.	The	second	file	may
then	be	loaded	into	RAM,	and	when	the	CPU	jumps	to	its	first	instruction,	the
program	you	wrote	in	ASCII	will	hopefully	do	what	you	intended	it	to	do.

Of	course,	when	computers	were	first	invented,	all	programs	had	to	be	written
directly	in	ones	and	zeros.	Then	somebody	got	tired	of	the	tedium	of
programming	that	way,	and	decided	to	write	the	first	compiler.	Then	ever	after,
programs	were	written	in	this	easier	language,	and	then	translated	into
Instruction	Code	by	the	compiler.	With	the	original	compiler,	you	could	even
write	a	better	compiler.

So	in	order	for	a	computer	language	to	exist,	you	need	two	things,	a	set	of	words



that	make	up	the	language	(another	code,)	and	a	compiler	that	compiles	the
written	language	into	computer	instruction	code.

The	language	that	we	have	seen	in	this	book	has	only	about	20	words	in	it.	Each
word	correlates	directly	to	one	of	the	instructions	of	which	this	computer	is
capable.	Each	line	you	write	results	in	one	computer	instruction.	When	you	write
an	87	line	program	in	this	language,	the	instruction	code	file	that	the	compiler
generates	will	have	87	instructions	in	it.

Then	someone	invented	a	"higher	level"	language	where	one	line	of	the	language
could	result	in	multiple	computer	instructions.	For	example,	our	computer	does
not	have	an	instruction	that	does	subtraction.	But	the	compiler	could	be	designed
so	that	it	would	recognize	a	new	word	in	the	language	like	'SUB	RA,	RB'	and
then	generate	however	many	machine	instructions	were	necessary	to	make	the
subtraction	happen.	If	you	can	figure	out	how	to	do	something	fancy	with	47
instructions,	you	can	have	a	word	in	your	language	that	means	that	fancy	thing.

Then	someone	invented	an	even	higher	level	language	where	the	words	that
make	up	the	language	don't	even	resemble	the	CPU's	actual	instructions.	The
compiler	has	a	lot	more	work	to	do,	but	still	generates	instruction	code	that	does
the	things	that	the	words	in	that	language	mean.	A	few	lines	from	a	higher	level
language	might	look	like	this:

Balance	=	2,000	
Interest	Rate	=	.034	
Print	"Hello	Joe,	your	interest	this	year	is:	$"	
Print	Balance	X	Interest	Rate	

The	compiler	for	this	language	would	read	this	four-line	program,	and	generate	a
file	that	could	easily	contain	hundreds	of	bytes	of	instruction	code.	When	that
instruction	code	was	loaded	into	RAM	and	run,	it	would	print:

Hello	Joe,	your	interest	this	year	is:	$68

Writing	software	in	higher	level	languages	can	result	in	getting	a	lot	more	done
in	a	shorter	amount	of	time,	and	the	programmer	no	longer	needs	to	know
exactly	how	the	computer	actually	works.

There	are	many	computer	languages.	Some	languages	are	designed	to	do
scientific	work,	some	are	designed	for	business	purposes,	others	are	more
general	purpose.	Lower	level	languages	are	still	the	best	for	certain	purposes.



THE	FILE	SYSTEM

As	we	saw	earlier,	the	way	a	disk	actually	works	is	pretty	foreign	to	most	people
who	use	a	computer.

To	make	things	easier,	someone	invented	an	idea	called	a	"file."	A	file	is
supposed	to	be	similar	to	the	kind	of	paper	files	that	people	use	in	offices.	A
paper	file	is	a	sheet	of	cardboard	folded	in	half	and	placed	in	a	file	cabinet.	This
folder	has	a	tab	on	it	where	you	can	write	some	sort	of	name	for	the	folder,	and
then	you	can	put	one	or	many	pieces	of	paper	in	the	folder.

A	computer	file	is	a	string	of	bytes	that	can	be	any	length,	from	one	byte	up	to
all	of	the	bytes	available	on	the	disk.	A	file	also	has	a	name.	A	disk	may	have
many	files	on	it,	each	with	its	own	name.

Of	course,	these	files	are	just	an	idea.	To	make	a	file	system	work,	the	operating
system	provides	a	bunch	of	software	that	makes	the	disk	appear	to	be	like	a
filing	cabinet	instead	of	having	heads,	tracks,	sectors	and	blocks	of	bytes.

This	file	system	gives	application	programs	an	easy	way	of	using	the	disk.
Applications	can	ask	the	OS	to	create,	read,	write	or	erase	something	called	a
file.	All	the	application	needs	to	know	is	the	name	of	the	file.	You	open	it,
request	bytes,	send	it	bytes,	make	it	bigger	or	smaller,	close	the	file.

The	OS	uses	part	of	the	disk	to	maintain	a	list	of	file	names,	along	with	the
length	of	each	file	and	the	disk	address	(head,	track,	sector)	of	the	first	sector	of
the	data.	If	the	file	is	smaller	than	a	disk	sector,	that's	all	you	need,	but	if	the	file
is	larger	than	one	sector,	then	there	is	also	a	list	which	contains	as	many	disk-
type	addresses	as	needed	to	hold	the	file.

The	application	program	says	create	a	file	with	the	name	"letter	to	Jane."	Then
the	user	types	the	letter	to	Jane	and	saves	it.	The	program	tells	the	OS	where	the
letter	is	in	RAM	and	how	long	it	is,	and	the	OS	writes	it	to	disk	in	the	proper
sector	or	sectors	and	updates	the	file	length	and	any	necessary	lists	of	disk-type
addresses.

To	use	the	file	system,	there	will	be	some	sort	of	rules	that	the	application
program	needs	to	follow.	If	you	want	to	write	some	bytes	to	the	disk,	you	would
need	to	tell	the	OS	the	name	of	the	file,	the	RAM	address	of	the	bytes	that	you
want	to	write,	and	how	many	bytes	to	write.	Typically,	you	would	put	all	of	this
information	in	a	series	of	bytes	somewhere	in	RAM,	and	then	put	the	RAM
address	of	the	first	byte	of	this	information	in	one	of	the	registers,	and	then



execute	a	Jump	instruction	that	jumps	to	a	routine	within	the	Operating	System
that	writes	files	to	the	disk.	All	of	the	details	are	taken	care	of	by	this	routine,
which	is	part	of	the	OS.

If	you	ask	the	OS	to	look	at	your	disk,	it	will	show	you	a	list	of	all	the	file
names,	and	usually	their	sizes	and	the	date	and	time	when	they	were	last	written
to.

You	can	store	all	sorts	of	things	in	files.	Files	usually	have	names	that	are	made
up	of	two	parts	separated	by	a	period	like	"xxxx.yyy."	The	part	before	the	period
is	some	sort	of	a	name	like	"letter	to	Jane,"	and	the	part	after	the	dot	is	some	sort
of	a	type	like	"doc"	which	is	short	for	"document."	The	part	before	the	period
tells	you	something	about	what	is	in	the	file.	The	part	after	the	dot	tells	you	what
type	of	data	is	contained	in	this	file,	in	other	words,	what	code	it	uses.

The	type	of	the	file	tells	both	you	and	the	OS	what	code	the	data	in	the	file	uses.
In	one	popular	operating	system	".txt"	means	text,	which	means	that	the	file
contains	ASCII.	A	".bmp"	means	BitMaP,	which	is	a	picture.	A	".exe"	means
executable,	which	means	it	is	a	program	and	therefore	contains	Instruction	Code.

If	you	ask	the	OS	what	programs	are	available	to	execute,	it	will	show	you	a	list
of	the	files	that	end	with	".exe".	If	you	ask	for	a	list	of	pictures	that	you	can	look
at,	it	will	show	you	a	list	of	files	that	end	with	".bmp".

There	are	many	possible	file	types,	any	program	can	invent	its	own	type,	and	use
any	code	or	combination	of	codes.



ERRORS

The	computer	is	a	fairly	complex	machine	that	does	a	series	of	simple	things	one
after	another	very	quickly.	What	sorts	of	things	could	go	wrong	here?

In	the	early	days	of	computing,	when	each	gate	in	the	computer	was	relatively
expensive	to	build,	sometimes	there	were	components	that	actually	had	moving
parts	to	make	electrical	connections.	Two	pieces	of	metal	had	to	touch	to	make
the	electricity	go	to	where	the	builders	wanted	it	to	go.	Sometimes	when	the
machine	stopped	working	correctly,	the	fixit	guy	would	look	inside	to	find	out
what	was	wrong,	and	he	would	find	that	a	spider	had	crawled	inside	the	machine
and	had	gotten	itself	wedged	in	between	two	of	these	pieces	of	metal	that	were
supposed	to	touch	each	other.	Then	when	one	piece	of	metal	moved	to	touch	the
other,	the	spider	was	in	the	way	and	they	wouldn't	touch.	So	the	electricity
wouldn't	get	to	where	it	needed	to	go,	and	the	machine	would	not	operate
correctly	anymore.	The	fixit	guy	would	remove	the	bug,	clean	up	the	contacts,
and	report	"There	was	a	bug	in	the	computer."	And	he	literally	meant	a	bug.

Over	time,	whenever	a	computer	appeared	to	be	operating	incorrectly,	people
would	say	that	the	computer	had	a	bug.	There	are	two	main	classes	of	computer
bugs:	hardware	and	software.

A	hardware	bug	actually	means	that	the	computer	is	broken.	This	could	be	as
serious	as	you	turn	the	computer	on,	and	it	catches	fire,	to	there	is	one	byte	in	the
RAM	where	one	bit	is	always	off.

Now	one	bit	in	RAM	that	refuses	to	change	maybe	a	problem	or	it	may	not.	If
the	byte	where	that	bit	is	located	somehow	never	gets	used,	then	the	computer
will	work	just	fine.	If	that	byte	is	part	of	a	place	where	a	name	is	stored,	then	the
name	may	get	changed	from	"Joe"	to	"Jod."	If	that	byte	has	some	program
instructions	in	it,	you	may	get	an	XOR	instruction	changed	to	a	JMP	instruction.
Then	when	the	program	gets	to	that	instruction,	it	will	not	do	the	XOR	like	it	is
supposed	to,	but	rather	it	will	jump	somewhere	else	and	start	executing	whatever
is	at	the	new	location	as	though	it	was	a	series	of	instructions.	The	contents	of
those	bytes	will	determine	what	happens	next,	but	it	will	almost	certainly	be	as
wrong	as	a	train	falling	off	its	track.

If	a	gate	is	broken	in	the	stepper,	for	instance,	so	that	step	4	never	comes	on,	then
the	computer	will	not	really	be	able	to	operate	at	all.	It	would	still	be	able	to
fetch	instructions	in	steps	1,	2	and	3,	but	every	instruction	would	execute
incorrectly.	Certainly	the	program	would	make	a	mess	of	things	after	‘executing’



just	a	few	instructions.

Software	bugs	can	take	many	forms,	but	they	are	all	ultimately	programmer
mistakes.	There	are	probably	many	more	ways	to	write	a	program	incorrectly
than	correctly.	Some	errors	just	create	some	kind	of	incorrect	results,	and	other
errors	cause	the	computer	to	“crash.”

One	of	my	favorite	stupid	programmer	stories	is	this:	Someone	bought	a	car	on
credit.	He	got	a	coupon	book	with	the	loan,	one	coupon	to	be	sent	in	with	each
payment.	But	when	he	made	his	first	payment,	he	accidentally	used	the	last
coupon	in	the	book	instead	of	the	first	one.	A	few	weeks	later,	he	received	a
computer-generated	letter	from	the	loan	company	saying,	“Thank	you	for	paying
off	your	loan	in	full,	next	time	you	need	a	loan	please	use	us	again.”	Obviously,
the	program	just	checked	the	coupon	number	and	if	it	was	equal	to	the	highest
number	coupon	in	the	book,	jump	to	the	routine	for	a	paid-in-full	loan.	It	should
have	at	least	checked	the	balance	remaining	on	the	loan	before	deciding	that	it
was	paid	off.	This	is	a	subtle	error,	it	might	not	be	caught	by	the	loan	company
until	they	audited	their	books	months	later.	The	computer	did	exactly	what	it	was
told	to	do,	and	most	of	the	time	it	was	adequate,	but	the	program	was	not	written
to	anticipate	all	of	the	situations	that	sometimes	occur	in	the	real	world.

One	of	the	worst	software	bugs	is	getting	stuck	in	a	loop.	The	program	executes
a	series	of	instructions,	and	then	jumps	back	to	the	beginning	of	the	series	and
executes	it	over	and	over	again.	Of	course,	loops	are	used	all	the	time	in
programming,	but	they	are	used	to	do	something	that	has	a	finite	number	of
similar	steps.	It	may	repeat	until	50	bytes	have	been	moved	somewhere,	or	keep
checking	for	the	user	to	press	a	key	on	the	keyboard.	But	the	computer	will	exit
the	loop	at	some	point	and	continue	on	to	its	next	task.	But	if	there	is	some	sort
of	programming	error	where	there	is	a	loop	that	has	no	way	out,	the	computer
will	appear	to	be	completely	stuck.	This	is	sometimes	called	being	'hung,'	the
whole	computer	may	need	to	be	turned	off	and	restarted	to	get	out	of	the	loop
and	back	into	useful	operation.

There	are	all	sorts	of	errors	that	end	up	with	the	CPU	trying	to	execute
something	other	than	instruction	code.	Lets	say	you	have	your	program	residing
at	address	10	through	150,	and	you	have	some	ASCII	data	such	as	names	and
phone	numbers	at	addresses	151	through	210.	If	the	program	is	written
incorrectly	so	that	under	certain	conditions	it	will	jump	to	address	180,	it	will
just	continue	fetching	and	executing	the	bytes	starting	at	address	180.	If	180-189
was	filled	with	the	ASCII	for	"Jane	Smith,"	the	"program"	will	now	be	executing
complete	garbage,	a	series	of	bytes	that	were	not	designed	to	be	Instruction



Code.	It	may	put	itself	into	a	loop,	or	jump	back	somewhere	into	the	program,	or
issue	the	command	to	erase	the	disk	drive.	And	it	will	be	doing	garbage	at	its
usual	high	speed.	If	you	looked	at	the	patterns	in	the	bytes,	you	could	see	what	it
would	do,	but	it	could	be	just	about	anything.	If	the	name	at	address	180	was
"Bill	Jones",	it	would	do	something	completely	different.	Since	it	is	not	designed
to	be	useful,	most	likely	it	will	just	keep	making	a	bigger	mess	out	of	what	is	in
memory	until	the	computer	will	have	to	be	powered	off	to	get	it	to	stop.

Another	type	of	error	could	occur	if	a	program	accidentally	wrote	"John	Smith"
into	the	place	where	a	font	was	stored.	In	that	case,	every	letter	"E"	that	got
drawn	on	the	screen	thereafter	would	look	like	this:	

The	computer	executes	hundreds	of	millions	of	instructions	every	second,	and	it
only	takes	one	wrong	instruction	to	bring	the	whole	thing	to	a	screeching	halt.
Therefore,	the	subject	of	programming	computers	in	a	manner	that	will	be
completely	'bug	free'	is	something	that	gets	a	lot	of	attention.	Almost	all
programming	is	done	with	languages,	and	the	compilers	for	these	languages	are
designed	to	generate	Instruction	Code	that	avoids	the	most	serious	types	of
errors,	and	to	warn	the	programmer	if	certain	good	programming	practices	are
violated.	Still,	compilers	can	have	errors,	and	they	will	never	be	able	to	spot	an
error	like	the	one	above	with	the	car	loan.

As	you	can	see,	the	computer	and	its	software	are	pretty	fragile	things.	Every
gate	has	to	work	every	time,	and	every	instruction	that	gets	executed	has	to	be
correct.	When	you	consider	all	of	the	things	that	could	go	wrong,	the	high
percentage	of	things	that	normally	go	right	is	actually	quite	impressive.



COMPUTER	DISEASES?

Another	place	where	human	characteristics	get	assigned	to	computers	is
something	called	a	computer	virus.	This	implies	that	computers	can	come	down
with	a	disease	and	get	sick.	Are	they	going	to	start	coughing	and	sneezing?	Will
they	catch	a	cold	or	the	chicken	pox?	What	exactly	is	a	computer	virus?

A	computer	virus	is	a	program	written	by	someone	who	wants	to	do	something
bad	to	you	and	your	computer.	It	is	a	program	that	will	do	some	sort	of	mischief
to	your	computer	when	it	runs.	The	motivation	of	people	who	write	virus
programs	ranges	from	the	simple	technical	challenge	of	seeing	whether	one	is
capable	of	doing	it,	to	a	desire	to	bring	down	the	economy	of	the	whole	world.	In
any	case,	the	people	who	do	such	things	do	not	have	your	best	interests	in	mind.

How	does	a	computer	'catch'	a	virus?	A	virus	program	has	to	be	placed	in	your
RAM,	and	your	computer	has	to	jump	to	the	virus	program	and	run	it.	When	it
runs,	it	locates	a	file	that	is	already	on	your	hard	disk,	that	contains	a	program
that	gets	run	on	a	regular	basis	by	your	computer,	like	some	part	of	the	operating
system.	After	the	virus	program	locates	this	file,	it	copies	the	virus	program	to
the	end	of	this	file,	and	inserts	a	jump	instruction	at	the	beginning	of	the	file	that
causes	a	jump	to	where	the	virus	program	is.	Now	your	computer	has	a	virus.

When	a	computer	with	a	virus	is	running,	it	does	all	of	the	things	it	is	supposed
to	do,	but	whenever	it	runs	the	program	that	contains	the	virus,	the	inserted	jump
instruction	causes	the	virus	program	to	be	run	instead.	Now	the	virus	usually	will
do	something	simple,	like	check	for	a	predetermined	date,	and	if	it	is	not	a
match,	then	the	virus	program	will	jump	back	to	the	beginning	of	the	file	where
the	operating	system	program	still	exists.

Thus,	your	computer	will	appear	totally	normal,	there	are	just	a	few	extra
instructions	being	executed	during	its	regular	operations.	The	virus	is	considered
dormant	at	this	point.	But	when	that	date	arrives,	and	the	virus	'decides'	to	do
whatever	is	in	the	rest	of	its	program,	it	can	be	anything.	When	the	virus
program	is	running,	it	can	do	whatever	mischief	the	person	who	wrote	it	could
think	of.	It	can	erase	files	on	your	disk,	or	send	them	somewhere	else	via	the
internet.	One	humorous	virus	would,	every	once	in	a	while,	make	the	letters	on
the	screen	appear	to	come	loose	and	fall	into	a	pile	at	the	bottom	of	the	screen.

Here's	an	example	of	how	to	catch	a	virus.	Let's	say	that	you	have	a	friend	who
finds	a	funny	movie	on	the	Internet.	It	makes	him	laugh,	and	he	thinks	that	you
will	enjoy	it	too,	so	he	emails	the	movie	file	to	you.	You	receive	the	movie	file



and	play	it,	and	you	do	enjoy	it.

There	are	two	different	things	that	could	have	occurred	here.	If	your	friend	sent
you	a	file	named	"funny.mov,"	and	your	OS	includes	a	program	that	plays	'.mov'
files,	then	the	OS	will	load	that	program	into	RAM,	and	that	program	will	read
the	pictures	in	the	"funny.mov"	file	and	display	them	on	your	screen.	This	is
fine,	the	program	that	ran	was	something	that	was	already	on	your	computer.
The	"funny.mov"	file	just	provided	a	series	of	pictures	that	were	displayed	on
your	screen.

But	if	your	friend	sent	you	a	file	named	"funny.exe,"	then	when	you	ask	the	OS
to	play	the	movie,	it	will	load	"funny.exe"	into	RAM	and	jump	to	its	first
instruction.	Now	you	have	a	program	running	in	your	computer	that	came	from
somewhere	else.	If	it	is	a	virus	program,	it	will	probably	play	the	movie	for	you
so	that	you	don't	suspect	anything,	but	it	can	do	anything	else	that	it	wants,	to	the
files	on	your	disk	while	you	are	watching	the	movie.	It	will	probably	install	itself
and	go	into	a	dormant	state	for	days	or	weeks,	and	you	won't	even	know	that
your	computer	is	'infected.'	But	sooner	or	later	it	will	come	alive	and	do
whatever	damage	it	was	designed	to	do.

This	sort	of	malicious	program	is	called	a	virus	because	the	way	it	works	is
similar	to	the	way	that	real	viruses	infect	living	things.	A	real	virus	is	a	thing	that
is	smaller	than	a	one	celled	animal.	It	doesn't	quite	qualify	as	being	alive	because
the	virus	by	itself	cannot	reproduce.	They	do	reproduce,	however,	by	invading	a
cell	of	something	that	is	alive.	Once	in	the	cell,	the	virus	uses	the	mechanisms	of
that	cell	to	make	copies	of	itself,	which	can	then	go	on	and	infect	other	cells.

The	computer	virus	also	cannot	reproduce	or	do	anything	else	by	itself.	It	needs
to	get	into	a	computer,	and	somehow	get	itself	executed	one	time	by	that	CPU.
When	it	runs	that	first	time,	it	inserts	itself	somewhere	into	the	operating	system
so	that	it	will	thereafter	get	executed	on	a	regular	basis.	Those	instructions	will
do	whatever	damage	they	are	designed	to	do	to	the	computer	on	which	they	are
running,	and	they	will	also	usually	do	something	that	is	designed	to	spread	the
virus	to	other	computers.



FIRMWARE

Of	course,	RAM	is	an	essential	part	of	any	computer.	The	ability	to	write	bytes
into	RAM,	and	read	them	back	out	again	is	an	integral	part	of	how	the	machine
works.

But	in	some	computers,	there	are	sections	of	the	RAM	that	only	get	written	to
when	the	computer	starts	up,	and	thereafter	these	sections	remain	unchanged	as
the	computer	operates.	This	could	be	true	in	any	computer	that	always	runs	the
same	program.	Perhaps	half	of	the	RAM	is	used	to	contain	the	program,	and	the
other	half	of	the	RAM	is	used	to	contain	the	data	that	the	program	is	working	on.
The	half	with	the	program	has	to	be	loaded	at	some	point,	but	after	that,	the	CPU
only	has	to	read	the	bytes	of	the	program	in	order	to	fetch	and	execute	them.

When	you	have	this	sort	of	situation,	you	can	build	half	of	your	computer's
RAM	the	normal	way,	and	with	the	other	half,	you	skip	the	NAND	gates,	and
just	wire	each	bit	directly	to	an	on	or	an	off	in	the	pattern	of	your	program.

Of	course,	you	can't	write	into	the	pre-wired	RAM,	but	you	can	read	from	it	just
fine.	This	type	of	RAM	was	given	the	name	Read	Only	Memory,	or	ROM	for
short.	You	use	it	the	same	way	you	use	RAM,	but	you	only	read	from	it.

There	are	two	advantages	to	ROM.	In	the	early	days	of	computers,	when	RAM
was	very	expensive,	ROM	was	a	lot	less	expensive	than	RAM.

The	other	advantage	is	that	you	no	longer	have	to	load	the	program	into	RAM
when	you	first	turn	the	computer	on.	It	is	already	there	in	ROM,	ready	to	be
executed	by	the	CPU.

The	point	here	is	a	new	word.	Since	software	was	named	'soft'	because	it	is
changeable,	when	it	comes	to	ROM,	you	still	have	a	pattern	in	the	bits,	but
they're	not	so	soft	anymore.	You	can't	write	into	a	ROM,	you	can't	change	the
bits.	And	so	this	type	of	memory	came	to	be	known	as	'firmware.'	It	is	software
that	is	permanently	written	into	hardware.

But	that	isn't	the	end	of	the	story.	The	ROM	described	above	had	to	be	built	that
way	at	the	factory.	Over	the	years,	this	idea	was	improved	and	made	easier	to
use.

The	next	advance	was	when	someone	had	the	bright	idea	of	making	ROM	where
every	bit	was	set	on	at	the	factory,	but	there	was	a	way	of	writing	to	it	with	a	lot
of	power	that	could	burn	out	individual	connections,	changing	individual	bits	to



an	off.	Thus	this	ROM	could	be	programmed	after	leaving	the	factory.	This	was
called	'Programmable	ROM'	or	'PROM'	for	short.

Then	someone	figured	out	how	to	make	a	PROM	that	would	repair	all	of	those
broken	connections	if	it	were	exposed	to	ultraviolet	light	for	a	half	an	hour.	This
was	called	an	'Erasable	PROM',	or	'EPROM'	for	short.

Then	someone	figured	out	how	to	build	an	EPROM	that	could	be	erased	by
using	extra	power	on	a	special	wire	built	into	the	EPROM.	This	was	called
'Electrically	Erasable	PROM',	or	'EEPROM'	for	short.	One	particular	type	of
EEPROM	has	the	name	'Flash	memory.'

So	there	is	RAM,	ROM,	PROM,	EPROM,	EEPROM	and	Flash.	These	are	all
types	of	computer	memory.	The	thing	they	have	in	common	is	that	they	all	allow
random	access.	They	all	work	the	same	way	when	it	comes	to	addressing	bytes
and	reading	out	the	data	that	is	in	them.	The	big	difference	is	that	RAM	loses	its
settings	when	the	power	goes	off.	When	the	power	comes	back	on,	RAM	is	full
of	all	zeros.	The	rest	of	them	all	still	have	their	data	after	power	off	and	back	on.

You	may	ask	then,	"Why	don't	computers	use	EEPROM	for	their	RAM?	Then
the	program	would	stay	in	RAM	when	the	computer	was	off."	The	answer	is	that
it	takes	much	longer	to	write	into	EEPROM	than	RAM.	It	would	slow	the
computer	down	tremendously.	If	someone	figures	out	how	to	make	an	EEPROM
that	is	as	fast	and	as	cheap	and	uses	the	same	or	less	power	as	RAM,	I'm	sure	it
will	be	done.

By	the	way,	the	word	ROM	has	also	come	to	be	used	to	mean	any	type	of
storage	that	is	permanently	set,	such	as	a	pre	recorded	disk,	as	in	'CD	ROM,'	but
its	original	definition	only	applied	to	something	that	worked	just	like	RAM.



BOOTS

What	do	boots	have	to	do	with	computers?	Well,	there	is	an	old	phrase	that	goes
"pull	yourself	up	by	your	own	bootstraps."	It	is	kind	of	a	joke,	it	literally	refers
to	the	straps	that	are	sewn	into	many	boots	that	are	used	to	help	pull	the	boots
onto	your	feet.	The	joke	is	that	if	you	are	wearing	such	a	pair	of	boots,	and	want
to	get	up	off	the	ground,	instead	of	getting	a	ladder	or	climbing	a	rope,	you	can
get	yourself	off	the	ground	by	simply	pulling	hard	enough	on	those	bootstraps.
Of	course	this	would	only	work	in	a	cartoon,	but	the	phrase	has	come	to	mean
doing	something	when	there	is	no	apparent	way	to	do	it,	or	doing	something
without	the	tools	that	would	normally	be	used,	or	accomplishing	something	by
yourself	without	help	from	anyone	else.

In	a	computer,	there	is	a	problem	that	is	similar	to	needing	to	get	off	the	ground
and	having	no	tools	available	to	accomplish	it.	When	a	computer	is	operating,
the	memory	is	full	of	programs	that	are	doing	something,	and	when	the	operator
of	the	computer	enters	a	command	to	start	another	program,	the	operating
system	locates	the	program	on	disk,	loads	it	into	memory,	and	jumps	to	the	first
instruction	of	the	program.	Now	that	program	is	running.

But	when	you	first	turn	on	a	computer,	how	do	you	get	the	operating	system	into
memory?	It	takes	a	program	running	in	memory	to	tell	the	disk	drive	to	send
over	some	instruction	code,	and	the	program	needs	to	write	that	code	into
memory	at	an	appropriate	place,	and	then	jump	to	its	first	instruction	to	get	the
new	program	running.	But	when	you	turn	the	computer	on,	every	byte	in
memory	is	all	zeros.	There	are	no	instructions	in	memory	at	all.	This	is	the
impossible	situation,	you	need	a	program	in	memory	to	get	a	program	in
memory,	but	there	is	nothing	there.	So	in	order	for	the	computer	to	get	going	in
the	first	place,	the	computer	has	to	do	something	impossible.	It	has	to	pull	itself
up	by	its	bootstraps!

A	long	time	ago,	in	the	early	days	of	computers,	the	machine	had	switches	and
push	buttons	on	the	front	panel	that	allowed	the	operator	to	enter	bytes	of	data
directly	into	the	registers,	and	from	there,	into	RAM.	You	could	manually	enter	a
short	program	this	way,	and	start	it	running.	This	program,	called	a	"bootstrap
loader,"	would	be	the	smallest	possible	program	you	could	write	that	would
instruct	the	computer	to	read	bytes	from	a	peripheral,	store	them	in	RAM,	and
then	jump	to	the	first	instruction.	When	the	bootstrap	loader	executes,	it	loads	a
much	larger	program	into	memory,	such	as	the	beginnings	of	an	operating
system,	and	then	the	computer	will	become	usable.



Nowadays,	there	are	much	easier	ways	of	loading	the	first	program	into	the
computer,	in	fact	it	happens	automatically	immediately	after	the	computer	gets
turned	on.	But	this	process	still	happens,	and	the	first	step	is	called	"booting"	or
"booting	up"	and	it	only	means	getting	the	first	program	into	memory	and
beginning	to	execute	it.

The	most	common	solution	to	this	problem	has	three	parts.	First,	the	IAR	is
designed	so	that	when	the	power	is	first	turned	on,	instead	of	all	of	its	bits	being
zero,	its	last	bit	will	be	zero,	but	the	rest	of	its	bits	will	be	ones.	Thus	for	our
little	computer,	the	first	instruction	to	be	fetched	will	be	at	address	mi	mo.
Second,	something	like	the	last	32	bytes	of	the	RAM	(235-256)	will	be	ROM
instead,	hardwired	with	a	simple	program	that	accesses	the	disk	drive,	selects
head	o,	track	o,	sector	o,	reads	this	sector	into	RAM,	and	then	jumps	to	the	first
byte	of	it.	The	third	part	then,	had	better	be	that	there	is	a	program	written	on
that	first	sector	of	the	disk.	This	sector,	by	the	way,	is	called	the	'boot	record.'

This	word	'boot'	has	become	a	verb	in	computer	talk.	It	means	to	load	a	program
into	RAM	where	there	are	no	programs.	Sometimes	people	use	it	to	mean
loading	any	program	into	RAM,	but	its	original	meaning	only	applied	to	loading
the	first	program	into	an	otherwise	blank	RAM.



DIGITAL	VS.	ANALOG

You've	no	doubt	heard	these	terms	bandied	about.	It	seems	that	anything
associated	with	computers	is	digital,	and	everything	else	is	not.	But	that's	not
quite	close	enough	to	the	truth.

What	they	mean	is	quite	simple,	but	where	they	came	from	and	how	they	ended
up	in	their	current	usage	is	not	so	straightforward.

The	word	'digital'	comes	from	digit,	which	means	fingers	and	toes	in	some
ancient	language,	and	since	fingers	and	toes	have	been	used	for	counting,	digital
means	having	to	do	with	numbers.	Today,	the	individual	symbols	that	we	use	to
write	numbers	(o,	1,	2,	3,	etc.)	are	called	digits.	In	the	computer,	we	represent
numbers	with	bits	and	bytes.	One	of	the	qualities	of	bits	and	bytes	is	their
unambiguous	nature.	A	bit	is	either	on	or	off;	there	is	no	gray	area	in	between.	A
byte	is	always	in	one	of	its	256	states;	there	is	no	state	between	two	numbers	like
123	and	124.	The	fact	that	these	states	change	in	steps	is	what	we	are	referring	to
when	we	say	digital.

The	word	'analog'	comes	from	the	same	place	as	'analogy'	and	'analogous,'	thus	it
has	to	do	with	the	similarity	between	two	things.	In	the	real	world,	most	things
change	gradually	and	continuously,	not	in	steps.	A	voice	can	be	a	shout	or	a
whisper	or	absolutely	anywhere	in	between.	When	a	telephone	converts	a	voice
into	an	electrical	equivalent	so	that	it	can	travel	through	a	wire	to	another
telephone,	that	electricity	can	also	vary	everywhere	between	being	fully	on	and
fully	off.	Sound	and	electricity	are	two	very	different	things,	but	the	essence	of
the	voice	has	been	duplicated	with	electricity.	Since	they	are	similar	in	that
respect,	we	can	say	that	the	electrical	pattern	is	an	'analog'	of	the	voice.
Although	the	meaning	of	'analog'	comes	from	this	'similarity'	factor,	when	you
make	an	analog,	you	are	usually	making	an	analog	of	something	that	is
continuously	variable.	This	idea	of	something	being	continuously	variable	has
come	to	be	the	definition	of	analog	when	you	are	comparing	digital	and	analog.
Something	that	is	analog	can	be	anywhere	within	the	entirety	of	some	range,
there	are	no	steps.

Digital	means	change	by	steps	and	analog	means	change	in	a	smooth	continuous
manner.	Another	way	to	say	it	is	that	digital	means	that	the	elements	that	make
up	a	whole	come	from	a	finite	number	of	choices,	whereas	analog	means	that	a
thing	is	made	of	parts	that	can	be	selected	from	an	unlimited	number	of	choices.
A	few	non-computer	examples	may	help	to	clarify	this.



If	you	have	a	platform	that	is	three	feet	above	the	floor,	you	can	either	build
stairs	for	people	to	climb	up	to	it,	or	a	ramp.	On	the	ramp,	you	can	climb	to	any
level	between	the	floor	and	the	platform;	on	the	stairs,	you	only	have	as	many
choices	as	there	are	steps.	The	ramp	is	analog,	the	stairs	are	digital.

Let's	say	that	you	want	to	build	a	walkway	in	your	garden.	You	have	a	choice	of
making	the	walkway	out	of	concrete	or	out	of	bricks.	If	the	bricks	are	three
inches	wide,	then	you	can	make	a	brick	walk	that	is	30	inches	wide,	or	33	inches
wide,	but	not	31	or	32.	If	you	make	the	walk	out	of	concrete,	you	can	pour	it	to
any	width	you	want.	The	bricks	are	digital,	the	concrete	is	analog.

If	you	have	an	old	book	and	an	old	oil	painting,	and	you	want	to	make	a	copy	of
each,	you	will	have	a	much	easier	time	making	a	copy	of	the	book.	Even	if	the
pages	of	the	book	are	yellowed,	and	the	corners	are	dog-eared,	and	there	are	dirt
smudges	and	worm	holes	inside,	as	long	as	you	can	read	every	letter	in	the	book,
you	could	re-type	the	entire	text,	exactly	as	the	author	intended	it.	With	the	oil
painting,	the	original	colors	may	have	faded	and	are	obscured	by	dirt.	The	exact
placement	of	each	bristle	in	each	brush	stroke,	the	thickness	of	the	paint	at	every
spot,	the	way	adjacent	colors	mix,	could	all	be	copied	in	great	detail,	but	there
would	inevitably	be	some	slight	differences.	Each	letter	in	the	book	comes	from
a	list	of	a	specific	number	of	possibilities;	the	variations	of	paint	colors	and	their
positions	on	the	canvas	are	limitless.	The	book	is	digital,	the	painting	is	analog.

So	there	you	have	the	difference	between	analog	and	digital.	The	world	around
us	is	mostly	analog.	Most	old	technologies	were	analog,	like	the	telephone,
phonograph,	radio,	television,	tape	recorders	and	videocassettes.	Oddly	enough
though,	one	of	the	oldest	devices,	the	telegraph,	was	digital.	Now	that	digital
technology	has	become	highly	developed	and	inexpensive,	the	analog	devices
are	being	replaced	one	by	one	with	digital	versions	that	accomplish	the	same
things.

Sound	is	an	analog	thing.	An	old	fashioned	telephone	is	an	analog	machine	that
converts	analog	sound	into	an	electrical	pattern	that	is	an	analog	of	the	sound,
which	then	travels	through	a	wire	to	another	phone.	A	new	digital	telephone
takes	the	analog	sound,	and	converts	it	into	a	digital	code.	Then	the	digital	code
travels	to	another	digital	phone	where	the	digital	code	is	converted	back	into
analog	sound.

Why	would	anyone	go	to	the	trouble	of	inventing	a	digital	phone	when	the
analog	phone	worked	just	fine?	The	answer,	of	course,	is	that	although	the
analog	phone	worked,	it	was	not	perfect.	When	an	analog	electrical	pattern



travels	over	long	distances,	many	things	can	happen	to	it	along	the	way.	It	gets
smaller	and	smaller	as	it	travels,	so	it	has	to	be	amplified,	which	introduces
noise,	and	when	it	gets	close	to	other	electrical	equipment,	some	of	the	pattern
from	the	other	equipment	can	get	mixed	in	to	the	conversation.	The	farther	the
sound	goes,	the	more	noise	and	distortion	are	introduced.	Every	change	to	the
analog	of	your	voice	becomes	a	part	of	the	sound	that	comes	out	at	the	other	end.

Enter	digital	technology	to	the	rescue.	When	you	send	a	digital	code	over	long
distances,	the	individual	bits	are	subjected	to	the	same	types	of	distortion	and
noise,	and	they	do	change	slightly.	However,	it	doesn't	matter	if	a	bit	is	only	97%
on	instead	of	100%.	A	gate's	input	only	needs	to	'know'	whether	the	bit	is	on	or
off,	it	has	to	'decide'	between	those	two	choices	only.	As	long	as	a	bit	is	still
more	than	halfway	on,	the	gate	that	it	goes	into	will	act	in	exactly	the	same	way
as	if	the	bit	had	been	fully	on.	Therefore,	the	digital	pattern	at	the	end	is	just	as
good	as	it	was	at	the	beginning,	and	when	it	is	converted	back	to	analog,	there	is
no	noise	or	distortion	at	all,	it	sounds	like	the	person	is	right	next-door.

There	are	advantages	and	disadvantages	to	each	method,	but	in	general,	the
benefits	of	digital	technology	far	outweigh	its	shortcomings.

Probably	the	biggest	advantage	of	digital	has	to	do	with	the	making	of	copies.
When	you	make	a	copy	of	something	like	a	vinyl	record,	you	could	record	it	to	a
tape	recorder,	or	I	guess	you	could	even	get	all	of	the	equipment	to	cut	a	new
vinyl	record.	But	there	will	be	some	degree	of	difference	between	the	original
and	the	copy.	In	the	first	place,	all	machinery	has	accuracy	limitations.	A	copy	of
any	physical	object	can	be	very	close	to	the	original,	but	never	quite	exact.
Second,	if	there	are	any	scratches	or	particles	of	dust	on	the	original,	the	copy
will	then	have	duplicates	of	these	defects.	Third,	friction	between	the	record	and
the	needle	actually	wears	away	a	tiny	amount	of	vinyl	every	time	you	play	it.	If
you	use	a	tape	recorder,	there	is	always	a	low	level	of	'hiss'	added	to	the	sound.	If
you	make	a	copy	of	a	copy,	and	a	copy	of	that,	etc.	the	changes	will	get	larger
and	larger	at	each	stage.

When	it	comes	to	something	that	is	digital,	as	long	as	every	bit	that	was	on	in	the
original	is	also	on	in	the	copy,	we	get	an	exact	copy	every	time.	You	can	make	a
copy	of	the	copy,	and	a	copy	of	that,	etc.,	and	every	one	of	them	will	be	exactly
the	same	as	the	original.	Digital	is	definitely	the	way	to	go	if	you	want	to	be	able
to	make	an	unlimited	number	of	copies	and	preserve	something	for	all	time.

The	computer	and	peripherals	we	have	built	are	entirely	digital	so	far.	And	if	all
we	ever	wanted	to	do	with	them	were	digital	things	such	as	arithmetic	and



written	language,	we	could	leave	it	that	way.	However,	if	we	want	our	computer
to	play	music	and	work	with	color	photographs,	there	is	one	more	thing	we	need
to	look	at.



I	LIED	-	SORT	OF

There	is	one	piece	of	hardware	in	a	computer	that	is	not	made	completely	out	of
NAND	gates.	This	thing	is	not	really	necessary	to	make	a	computer	a	computer,
but	most	computers	have	a	few	of	them.	They	are	used	to	change	from
something	that	is	analog	to	something	that	is	digital,	or	digital	to	analog.

Human	eyes	and	ears	respond	to	analog	things.	Things	that	we	hear	can	be	loud
or	soft,	things	that	we	see	can	be	bright	or	dark	and	be	any	of	a	multitude	of
colors.

The	computer	display	screen	that	we	described	above	had	320	x	200	or	64,000
pixels.	But	each	pixel	only	had	one	bit	to	tell	it	what	to	do,	to	be	on	or	off.	This
is	fine	for	displaying	written	language	on	the	screen,	or	it	could	be	used	to	make
line	drawings,	anything	that	only	has	two	levels	of	brightness.	But	we	have	all
seen	photographs	on	computer	screens.

First	of	all,	there	needs	to	be	a	way	to	put	different	colors	on	the	screen.	If	you
get	out	a	magnifying	glass	and	look	at	a	color	computer	or	television	screen,	you
will	see	that	the	screen	is	actually	made	up	of	little	dots	of	three	different	colors,
blue,	red,	and	green.	Each	pixel	has	three	parts	to	it,	one	for	each	color.	When
the	display	adapter	scans	the	screen,	it	selects	all	three	colors	of	each	pixel	at	the
same	time.

For	a	computer	to	have	a	color	screen,	it	needs	to	have	three	bits	for	each	pixel,
so	it	would	have	to	have	three	times	the	RAM	in	order	to	be	able	to	control	the
three	colors	in	each	pixel	individually.	With	three	bits,	each	color	could	be	fully
on	or	off,	and	each	pixel	would	therefore	have	eight	possible	states:	black,	green,
red,	blue,	green	and	red	(yellow,)	green	and	blue	(cyan,)	blue	and	red	(magenta)
and	green,	blue	and	red	(white.)

But	this	is	still	not	enough	to	display	a	photograph.	To	do	that,	we	need	to	be
able	to	control	the	brightness	of	each	color	throughout	the	range	between	fully
on	and	fully	off.	To	do	this,	we	need	a	new	type	of	part	that	we	will	describe
shortly,	and	we	need	more	bits	in	the	display	RAM.	Instead	of	one	bit	for	each
color	in	each	pixel,	we	could	have	a	whole	byte	for	each	color	in	each	pixel.
That’s	three	bytes	per	pixel,	for	a	total	of	192,000	bytes	of	RAM	just	for	this
small	display	screen.

With	these	bytes,	using	the	binary	number	code,	you	could	specify	256	levels	of
brightness	for	each	color	in	each	pixel.	This	would	amount	to	16,777,216



different	states	(or	colors)	for	each	pixel.	This	is	enough	variety	to	display	a
reasonably	good-looking	photograph.

In	order	to	make	this	work	–	a	number	specifying	256	different	levels	of
brightness	–	you	need	a	thing	called	a	“digital	to	analog	converter”	or	“DAC”	for
short.	A	DAC	has	eight	digital	inputs,	and	one	analog	output.	The	way	it	works
is	that	it	is	wired	up	to	treat	the	input	as	a	binary	number,	and	the	output	has	256
levels	between	off	and	on.	The	output	has	256	gradations	between	off	and	on,
and	it	goes	to	the	level	that	the	input	number	specifies.	If	the	input	is	a	128,	the
output	will	be	halfway	on.	For	a	64	the	output	will	be	one	quarter	on.	For	0,	the
output	will	be	fully	off.

In	order	to	make	this	color	screen	work,	the	display	adapter	needs	to	access	three
bytes	at	a	time,	connect	them	to	three	DACs,	and	connect	the	outputs	of	the
DACs	to	the	three	colors	in	the	current	pixel	being	painted.	That’s	how	a	color
screen	works.

When	we	defined	‘analog’	in	the	last	chapter,	we	said	that	it	was	something	that
was	continuously	variable	from	fully	off	to	fully	on.	But	our	DAC	really	only
has	256	different	levels	at	its	‘analog’	output.	It’s	a	lot	closer	to	being	analog
than	a	bit,	but	it	still	has	steps.	What	the	computer	is	doing	is	approximating	an
analog	thing	in	steps	small	enough	to	fool	the	intended	audience.	When	it	comes
to	the	eye,	256	different	levels	of	brightness	is	sufficient.

If	something	requires	smaller	steps	to	fool	the	intended	audience,	you	can	make
a	DAC	that	has	16	bits	on	the	digital	side.	Thus	you	can	present	the	digital	input
with	a	number	anywhere	from	o	to	65535.	The	analog	side	can	still	only	vary
from	fully	off	to	fully	on,	but	the	size	of	the	steps	will	be	much	smaller	since
there	are	now	65536	of	them.

When	it	comes	to	the	ear,	it	can	hear	very	small	differences,	and	so	a	16	bit	DAC
is	required	for	high	quality	sound.



All	sounds,	from	music	to	speech	to	thunder	crashes	are	vibrations	of	the	air.
They	vary	in	how	fast	the	air	vibrates,	and	in	exactly	how	it	vibrates.	The	human
ear	can	hear	vibrations	from	about	20	Hz	at	the	low	end	to	20,000	Hz	(20	kHz)
at	the	high	end,	so	this	is	the	range	of	vibrations	that	computers	are	designed	to
deal	with.	For	any	electronic	machine	to	make	sounds,	there	is	a	device	called	a
speaker.	All	that	a	speaker	does	is	move	back	and	forth	in	the	air,	making	the	air
vibrate.	If	it	makes	the	air	vibrate	in	precisely	the	same	way	as	the	original	thing
that	was	recorded,	it	will	sound	just	like	the	original.

In	order	to	store	a	sound	in	a	computer,	the	position	of	the	speaker	is	divided	into
65536	possible	positions.	Then	a	second	is	divided	into	44,100	parts.	At	each
one	of	those	parts	of	a	second,	the	desired	position	of	the	speaker	is	stored	as	a
two-byte	number.	This	is	enough	information	to	reproduce	sound	with	very	high
quality.

To	play	top	quality	stereo	music,	a	computer	would	need	a	'sound	peripheral.'
This	would	have	two	16	bit	DACs	with	their	analog	outputs	connected	to
speakers.	It	would	also	have	its	own	clock	that	ticks	at	44,100	Hz.	At	each	tick,
it	would	get	the	next	two	two-byte	numbers,	and	connect	them	to	the	digital	side
of	the	DACs.

As	far	as	speed	goes,	this	would	be	176,400	bytes	per	second.	Certainly	that	is
fast,	but	remember	that	our	computer	clock	ticks	a	billion	times	per	second.	That
means	that	the	computer	can	send	four	bytes	to	the	sound	peripheral,	and	go	off
and	execute	about	4000	instructions	on	some	other	task	before	it	needs	to	send
the	next	four.

For	going	the	other	way,	there	is	an	“Analog	to	Digital	Converter,”	or	“ADC”	for
short.	This	is	used	to	convert	the	sound	from	a	microphone	into	a	series	of	bytes,
or	for	a	camera	to	convert	a	picture	into	a	series	of	bytes.	The	input	has	one	wire
that	can	be	anywhere	from	all	the	way	off	to	all	the	way	on.	The	ADC	makes	its
outputs	into	a	number	from	0-255	for	an	8-bit	ADC	or	from	0-65,535	for	a	16-bit
ADC.	This	number	represents	how	much	the	input	is	on	or	off.	Half	on	is	128	or
32,768,	one	quarter	on	is	64	or	16,384,	etc.	This	process	is	just	the	reverse	of
what	a	DAC	does.



DACs	and	ADCs	are	not	made	out	of	NAND	gates,	they	have	electronic	parts
like	radios	have.	How	they	do	what	they	do	is	not	a	proper	subject	for	this	book.
So	maybe	I	lied	when	I	said	that	everything	in	a	computer	is	made	out	of	NAND
gates?	Well,	not	really,	because	DACs	and	ADCs	are	only	used	in	certain	types
of	peripherals,	not	in	the	computer	itself.



FULL	DISCLOSURE

We	have	built	a	very	small	computer	here.	It	is	about	the	smallest	computer	that
could	be	invented	that	does	everything	necessary	to	be	worthy	of	the	name
computer.	I	don't	think	that	anyone	has	built	such	a	small	computer	since	about
1952,	and	no	one	has	ever	built	this	exact	computer	in	the	real	world.

If	a	real	computer	designer	ever	read	this	book,	I'm	sure	he'd	be	pulling	his	hair
out	over	all	of	the	opportunities	that	have	been	missed	here	to	make	a	better
machine.	But	again,	the	goal	has	been	to	illustrate	computer	principles	as	simply
as	possible.

This	is	an	eight-bit	computer.	That	means	that	the	registers	in	the	processor	are
eight	bits,	the	bus	is	eight	bits,	and	in	this	machine,	even	the	Memory	Address
Register	is	eight	bits.

With	most	of	the	computers	that	actually	get	built,	while	the	individual	bytes	in
RAM	remain	8	bits,	everything	else	is	expanded	to	16	bits,	32	bits	or	64	bits	or	a
combination	of	these	in	different	parts	of	the	machine.

Our	RAM	only	has	256	bytes,	which	is	ridiculously	small,	but	that's	all	you	can
have	with	an	eight-bit	Memory	Address	Register.	If	you	use	16	bits,	you	can
have	65,536	bytes	of	RAM	(that's	64kb),	if	you	use	24	bits	you	can	have	16mb,
if	you	use	32	bits	you	can	have	4	gigabytes	of	RAM.

Real	computers	have	things	that	this	one	does	not,	but	they	are	not	capable	of
doing	things	that	this	computer	cannot	do.

In	our	computer,	if	you	want	to	shift	a	byte	three	bits	to	the	left,	you	would	put
three	shift	left	instructions	in	your	program.	In	most	real	computers,	they	have
shifters	that	will	shift	any	number	of	bits	in	one	instruction.	But	the	result	is	the
same,	your	byte	ends	up	looking	the	same	in	either	case,	the	real	computer	just
gets	the	job	done	faster.

In	our	computer,	the	adder	can	add	two	eight-bit	numbers.	If	you	want	to	add	16
bit	numbers,	you	have	to	employ	some	software	to	do	it.	In	most	computers,	the
adder	can	add	16	or	32	bit	numbers	in	one	instruction.	Again,	the	results	are	the
same,	one	is	just	faster	than	the	other.

The	stepper	in	our	computer	is	a	simplification	of	something	that	most
computers	have,	called	a	'state	machine.'	State	machines	provide	steps,	but	start
the	next	instruction	as	soon	as	possible,	do	what	is	necessary	for	an	interrupt



system,	can	create	more	complex	instructions,	etc.	Since	all	we	needed	was	six
consecutive	steps,	we	built	a	simpler	thing	and	just	made	up	the	term	'stepper.'

So	yes,	our	computer	is	a	simple,	small,	relatively	slow	computer,	but	it	can	do
everything	that	more	complicated	machines	can	do.	The	things	that	make	a
bigger	machine	bigger,	are	designed	to	get	the	job	done	faster,	do	it	in	fewer
clock	cycles,	do	the	same	task	with	fewer	instructions,	operate	on	several	bytes
at	the	same	time.	But	the	nature	of	what	the	machines	do	is	exactly	the	same.
Every	task	they	can	do	comes	down	to	shifting,	ANDing,	ORing,	XORing,
ADDing	and	NOTing	bytes.	There	are	no	other	fancy	types	of	operations	that
have	been	left	out	of	this	book.

In	a	bigger	machine,	you	can	do	addition,	subtraction,	multiplication	and
division	in	a	single	instruction.	That	is	because	they	have	huge	numbers	of	gates
arranged	into	things	like	a	'hardware	multiplier.'	There	is	no	reason	to	show	you
the	details	of	how	you	construct	one	of	these,	it	is	a	very	complicated	job	for	the
few	people	who	need	to	build	one.	It	is	understandable,	and	it	all	ultimately
comes	down	to	NAND	gates	just	like	everything	else.	But	we	have	seen	how	to
do	all	the	math	operations	there	are	with	just	an	adder,	shifter,	NOT	gates	and
some	software.	The	hardware	multiplier	gets	there	faster,	but	the	results	are
exactly	the	same.

Bigger	machines	have	more	registers,	the	registers	are	each	multiple	bytes,	they
have	adders	that	can	add	three	numbers	at	the	same	time,	but	still	the	instructions
come	down	to	the	same	simple	operations.	Your	understanding	of	computers	is
not	small	because	we	have	looked	at	a	small	computer.



PHILOSOPHY

Why	do	we	have	a	chapter	called	"Philosophy"	in	a	book	about	computers?	The
only	thing	in	this	book	that	even	comes	close	to	being	a	philosophical	question	is
its	title,	"But	How	do	it	Know?"	We	will	attempt	to	answer	this	question	a	little
later	on.

This	book	has	been	about	the	computers	that	we	have	today.	But	what	about	the
future?	As	computers	and	software	continue	to	advance,	how	soon	if	ever,	will
the	day	come	when	there	are	walking	talking	computerized	robots	that	look	and
act	just	like	people?	Will	the	day	come	when	we	have	to	decide	whether	or	not	to
give	these	robots	the	same	legal	rights	as	people?	Will	computers	eventually	take
over	the	world	and	replace	people	altogether?

To	answer	these	sorts	of	questions,	people	often	refer	to	a	major	question	that
has	been	outstanding	in	the	field	of	philosophy	for	many	years.

The	question	is,	whether	man	is	composed	solely	of	the	structural	body	that	we
can	see	and	dissect,	or	whether	there	is	an	integral	spiritual	component	to	every
human	being	which	accounts	for	the	qualities	of	consciousness,	love,	honor,
happiness,	pain,	etc.

That	question	is	far	beyond	the	scope	of	this	book,	and	it	remains
unconvincingly	answered	despite	many	books	arguing	each	viewpoint.	There	are
people	in	the	sciences	who	say	that	we	are	on	track	to	building	conscious
computers,	and	it	will	happen.	There	are	people	in	the	humanities	who	say	that	it
is	impossible	because	you	can't	manufacture	a	spirit.	Each	side	has	been	unable
to	sway	the	other.

If	we	define	the	brain	as	that	funny	looking	chunk	of	gray	meat	enclosed	by	the
skull,	and	define	the	mind	as	whatever	it	is	that	is	responsible	for	consciousness,
memory,	creativity,	thinking,	and	everything	else	that	we	notice	going	on	in	our
heads,	then	we	can	restate	the	big	philosophic	question	as:	"Are	the	brain	and	the
mind	one	and	the	same	thing?"

Then	when	it	comes	to	the	question	about	building	a	convincing	human	robot,
there	would	be	two	possibilities.

If	the	brain	and	the	mind	are	the	same	thing,	you	might	not	be	able	to	build	a
synthetic	person	today,	but	as	time	went	on,	eventually	you	could	understand
every	structure	and	function	in	the	brain,	and	build	something	of	equal
complexity	that	would	generate	true	consciousness,	and	that	really	should	act



just	like	any	other	person.

If	the	brain	and	the	mind	are	not	the	same	thing,	then	building	a	robot	buddy	will
always	be	about	simulating	humanity,	not	building	something	of	equal	quality
and	value.

Restating	the	question	doesn't	make	it	any	easier	to	answer,	but	this	idea	of
separating	what	we	know	about	minds	from	what	we	know	about	brains	may	be
useful.	Early	on,	we	said	that	we	were	going	to	show	how	computers	work	so
that	we	could	see	what	they	were	capable	of	doing,	and	also	what	they	were	not
capable	of	doing.	We	are	going	to	take	what	we	know	about	brains	and	what	we
know	about	minds	and	compare	each	individually	to	our	new	knowledge	about
computers.	In	doing	so	we	can	look	for	differences	and	similarities,	and	we
maybe	able	to	answer	a	few	less	controversial	questions.

Computers	do	certain	things	with	great	ease,	such	as	adding	up	columns	of
numbers.	A	computer	can	do	millions	of	additions	in	a	single	second.	The	mind
can	barely	remember	two	numbers	at	the	same	time,	never	mind	adding	them	up
without	a	pencil	and	paper.

The	mind	seems	to	have	the	ability	to	look	at	and	consider	relatively	large
amounts	of	data	at	the	same	time.	When	I	think	of	my	favorite	cat,	I	can	re-
experience	seeing	what	he	looks	like,	hearing	the	sounds	of	his	purring	and
mewing,	feeling	the	softness	of	his	fur	and	his	weight	when	picked	up.	These	are
some	of	the	ways	that	I	know	my	pet.

What	would	it	mean	for	our	computer	to	think	about	a	cat?	It	could	have	pictures
of	the	cat	and	sounds	of	the	cat	encoded	in	files	on	a	spinning	disk	or	in	RAM.	Is
that	thinking?	If	you	ran	the	bytes	of	these	files	one	by	one	through	the	ALU,
would	that	be	thinking?	If	you	put	the	picture	on	the	screen,	would	that	be
thinking?	If	you	played	the	sounds	to	the	speakers,	would	that	be	thinking?

The	sounds	and	pictures	encoded	in	the	computer	are	just	byte	patterns	sitting
where	they	are.	They	don't	look	like	anything	or	sound	like	anything	unless	they
are	sent	to	the	peripherals	for	which	they	were	designed.	And	if	they	are	sent	to
the	screen	and	speakers,	the	computer	doesn't	see	them	or	hear	them.	Of	course,
your	computer	could	have	a	camera	pointing	at	the	screen,	and	a	microphone
listening	to	the	sounds,	but	the	computer	still	wouldn't	see	a	picture	or	hear	a
sound,	it	would	just	collect	more	strings	of	bytes	very	similar	to	the	ones	sent	to
the	screen	and	speakers	in	the	first	place.



There	could	be	programs	that	perform	mathematical	operations	on	the	picture
files	in	order	to	discover	patterns,	and	store	the	results	of	these	calculations	in
other	files.	There	could	be	files	that	relate	one	picture	file	to	other	similar	picture
files,	and	pictures	to	sounds,	etc.,	creating	more	files.

But	no	matter	how	much	programming	is	applied	to	the	picture	files,	there	is
something	that	the	mind	can	do	that	the	computer	simply	doesn't	have	any
facility	for.

The	mind	can	consider	the	whole	of	some	thing	all	at	the	same	time.	You	can
think	of	the	whole	of	the	cat	all	at	once.	Its	sort	of	like	the	difference	between
the	movie	film	and	the	TV	screen.	The	movie	film	has	whole	pictures,	the	TV
screen	only	has	one	pixel	at	a	time.	You	could	say	that	your	mind	works	so
quickly	that	you	don't	notice	the	details,	it	gets	integrated	into	a	whole	just	like
the	pixels	get	integrated	into	an	entire	picture.	But	what	does	the	integrating?
And	when	it's	integrated,	what	is	it	and	where	is	it?	And	what	looks	at	the
integrated	whole?

We've	just	seen	everything	that's	in	a	computer.	The	computer	moves	one	byte	at
a	time	over	the	bus.	The	fanciest	thing	it	does	is	to	add	two	bytes	into	one.
Everything	else	it	'does'	amounts	to	nothing	more	than	the	simple	warehousing
of	bytes.	A	stored	byte	doesn't	do	anything	beyond	maintaining	its	own	current
setting.	A	computer	just	doesn't	have	any	facilities	that	integrate	the	elements	of
a	picture	into	anything	else,	nowhere	to	store	that	something	else,	and	nothing
with	which	to	look	at	it.

I'm	not	saying	that	something	couldn't	be	built	that	would	perform	these
functions,	I'm	just	saying	that	computers	as	we	know	them	today	don't	currently
include	any	such	device.

Here	is	another	question.	If	a	brain	works	like	a	computer,	then	it	needs	to	have	a
program	for	the	CPU	to	run.	Where	would	this	program	come	from?

Although	the	brain	has	trillions	of	cells,	the	entire	human	body	starts	with	one
fertilized	egg	cell.	So	any	program	that	the	brain	has,	would	have	to	be	present
in	this	single	cell,	presumably	in	the	DNA.

Scientists	have	now	decoded	the	entire	DNA	sequence	of	humans.	DNA	is
interesting	in	that	it	is	a	long	string	of	only	four	types	of	things.	It's	digital!	A	lot
of	the	pieces	of	this	string	are	used	for	making	chemical	reactions	take	place	to
make	proteins,	etc.	but	the	majority	of	it	is	called	'junk	DNA	because	no	one
knows	what	its	purpose	is.	But	even	if	you	consider	that	the	entirety	of	the	DNA



is	devoted	to	computer	software,	then	there	could	be	about	a	billion	instructions
in	this	program.	Now	that's	a	lot	of	software,	but	the	average	home	computer
probably	has	that	much	software	loaded	onto	it's	hard	drive,	and	that	wouldn't	be
anywhere	near	enough	to	run	a	human	being.

Some	have	said	that	the	human	computer	programs	itself.	As	a	programmer
myself,	I	just	can't	imagine	how	this	would	work.	While	it's	true	that	a	program
can	accumulate	data	and	modify	the	way	it	works	based	on	the	collected	data,
this	is	not	the	same	thing	as	writing	a	new	program.	If	someone	ever	writes	this
program	that	can	write	any	new	needed	program,	there	will	be	a	huge	number	of
computer	programmers	put	out	of	work	forever.

Then	there	are	the	kinds	of	errors	that	computers	make	versus	the	kind	that
people	make.	If	a	computer	gets	stuck	in	a	loop,	it	appears	to	have	stopped
completely.	Have	you	ever	seen	a	person	walking	down	the	street	suddenly	stop
working?	All	functions	just	cease.	The	person	would	just	fall	down	until
somehow	his	computer	re-booted.	People	do	collapse	from	time	to	time,	but	it	is
usually	because	some	other	part	broke,	like	having	a	heart	attack,	and	you	can
see	the	person	recognize	the	pain	as	it	takes	them	down.	But	if	the	human
computer	got	stuck	in	a	loop,	there	would	be	an	instant	loss	of	consciousness	and
the	body	would	just	fall	completely	limp	with	no	struggle.	I	have	never	seen	that,
but	if	the	brain	operated	just	like	a	computer,	you	would	expect	to	see	it	on	a
fairly	regular	basis.

Then	there	is	the	matter	of	speed.	As	we	have	seen,	a	simple	computer	can	do	a
billion	things	in	a	second.	When	it	comes	to	the	brain,	it	has	nerves	that	have
some	similarity	to	the	wires	in	computers.	Nerves	can	also	carry	electricity	from
place	to	place.	In	a	computer,	wires	come	out	of	gates	and	go	into	other	gates.	In
the	brain,	nerves	are	connected	together	by	"synapses."	These	synapses	are
spaces	between	nerves	where	the	electricity	in	one	nerve	creates	a	chemical
reaction,	which	then	causes	the	next	nerve	to	create	its	own	electricity.	These
chemical	reactions	are	painfully	slow.

No	one	has	shown	that	these	nerves	are	connected	up	anything	like	the	wires	in	a
computer,	but	their	lack	of	speed	makes	it	very	unlikely	that	it	would	do	much
good	even	if	the	connections	were	similar.	After	the	electricity	travels	quickly
through	the	nerve	cell,	it	reaches	the	synapse,	where	the	chemical	reaction	takes
about	one	five	hundredth	of	a	second	to	complete.	That	means	that	our	simple
computer	built	out	of	NAND	gates	could	do	two	million	things	in	the	same	time



that	only	one	thing	could	be	done	by	a	computer	built	out	of	nerves	and
synapses.

Another	area	where	the	difference	between	the	mind	and	computers	is	quite
obvious,	is	in	the	area	of	recognizing	faces.	The	mind	is	very	good	at	it.	If	you
walk	into	a	party	with	fifty	people	present,	you	will	know	in	a	matter	of	seconds
whether	you	are	among	a	group	of	friends	or	of	strangers.	A	lot	of	research	has
been	done	into	how	people	accomplish	this	feat,	and	a	lot	of	very	interesting
information	has	been	uncovered.

There	is	also	a	lot	of	speculation,	and	there	are	many	fascinating	theories	about
the	underlying	principles	and	mechanisms.	But	the	complete	and	exact	structures
and	functions	have	not	been	uncovered.

If	you	give	a	computer	a	picture	file	of	a	person,	and	then	give	it	the	same	file
again,	it	can	compare	the	two	files	byte	by	byte	and	see	that	each	byte	in	one	file
is	exactly	equal	to	the	corresponding	byte	in	the	other	file.	But	if	you	give	the
computer	two	pictures	of	the	same	person	that	were	taken	at	different	times,	or
from	different	angles,	or	with	different	lighting,	or	at	different	ages,	then	the
bytes	of	the	two	files	will	not	match	up	byte	by	byte.	For	the	computer	to
determine	that	these	two	files	represent	the	same	person	is	a	huge	task.	It	has	to
run	very	complex	programs	that	perform	advanced	mathematical	functions	on
the	files	to	find	patterns	in	them,	then	figure	out	what	those	patterns	might	look
like	from	different	angles,	then	compare	those	things	to	every	other	face	it	has
ever	stored	on	its	disk,	pick	the	closest	match,	then	determine	if	it's	close	enough
to	be	the	person	or	just	someone	that	looks	similar.

The	point	is	that	computers	have	a	method	of	dealing	with	pictures	based	on	the
principles	on	which	computers	work.	Using	these	principles	alone	has	not	yet
yielded	computers	or	software	that	can	recognize	a	face	with	anywhere	near	the
speed	and	accuracy	of	any	ordinary	person.

Voice	recognition	by	computers	is	another	technology	that	has	come	a	long	way,
but	has	much	further	to	go	to	rival	what	the	mind	does	easily.

So	in	comparing	a	computer	to	a	brain,	it	just	doesn't	look	very	likely	that	they
operate	on	the	same	principles.	The	brain	is	very	slow,	there	isn't	any	place	to	get
the	software	to	run	it,	and	we	don't	see	the	types	of	problems	we	would	expect
with	computer	software	errors.

In	comparing	a	computer	to	the	mind,	the	computer	is	vastly	better	at	math,	but



the	mind	is	better	at	dealing	with	faces	and	voices,	and	can	contemplate	the
entirety	of	some	entity	that	it	has	previously	experienced.

Science	fiction	books	and	movies	are	full	of	machines	that	read	minds	or	implant
ideas	into	them,	space	ships	with	built-in	talking	computers	and	lifelike	robots
and	androids.	These	machines	have	varying	capabilities	and	some	of	the	plots
deal	with	the	robot	wrestling	with	consciousness,	self-realization,	emotions,	etc.
These	machines	seem	to	feel	less	than	complete	because	they	are	just	machines,
and	want	desperately	to	become	fully	human.	It's	sort	of	a	grown-up	version	of
the	children's	classic	"Pinocchio,"	the	story	about	a	marionette	who	wants	to
become	a	real	boy.

But	would	it	be	possible	to	build	such	machines	with	a	vastly	expanded	version
of	the	technology	that	we	used	to	build	our	simple	computer?

Optimism	is	a	great	thing,	and	it	should	not	be	squashed,	but	a	problem	will	not
be	susceptible	to	solution	if	you	are	using	a	methodology	or	technology	that
doesn't	measure	up	to	that	problem.	In	the	field	of	medicine,	some	diseases	have
been	wiped	out	by	antibiotics,	others	can	be	prevented	by	inoculations,	but
others	still	plague	humanity	despite	the	best	of	care	and	decades	of	research.
And	let's	not	even	look	into	subjects	like	politics.	Maybe	more	time	is	all	that's
needed,	but	you	also	have	to	look	at	the	possibility	that	these	problems	either	are
unsolvable,	or	that	the	research	has	been	looking	in	the	wrong	places	for	the
answer.

As	an	example,	many	visions	of	the	future	have	included	people	traveling
around	in	flying	cars.	Actually,	several	types	of	flying	cars	have	been	built.	But
they	are	expensive,	inefficient,	noisy	and	very	dangerous.	They	work	on	the
same	basic	principles	as	helicopters.	If	two	flying	cars	have	any	sort	of	a	minor
accident,	everyone	will	die	when	both	cars	crash	to	the	Earth.	So	today's	aviation
technology	just	won't	result	in	a	satisfactory	flying	car.	Unless	and	until	someone
invents	a	cheap	and	reliable	anti-gravity	device,	there	will	not	be	a	mass	market
for	flying	cars	and	traffic	on	the	roads	will	not	be	relieved.

If	you	want	to	build	a	machine	that	works	just	like	a	person,	certainly	the	best
way	to	do	it	would	be	to	find	out	how	the	person	works	and	then	build	a	machine
that	works	on	the	same	principles,	has	parts	that	do	the	same	things,	and	is	wired
up	in	the	same	way	as	a	person.

When	Thomas	Edison	invented	the	phonograph,	he	was	dealing	with	the	subject
of	sound.	Sound	is	a	vibration	of	the	air.	So	he	invented	an	apparatus	that
captured	the	vibrations	in	the	air	and	transformed	them	into	a	vibrating	groove



on	the	surface	of	a	wax	cylinder.	The	sound	could	then	be	recreated	by
transferring	the	vibrations	in	the	groove	back	into	the	air.	The	point	is,	that	in
order	to	recreate	sound,	he	found	out	how	sound	worked,	and	then	made	a
machine	that	worked	on	the	same	principle.	Sound	is	a	vibration,	the	groove	in	a
phonograph	is	a	vibration.

A	lot	of	research	has	been	done	on	the	subject	of	what	makes	people	tick.	A	lot
of	research	has	been	done	on	the	subject	of	how	to	make	computers	do	the	things
that	people	do.	A	lot	of	things	have	been	discovered	and	a	lot	of	things	have
been	invented.	I	do	not	want	to	minimize	any	of	the	work	done,	or	results
achieved	in	these	areas.

But	there	are	many	things	that	have	not	yet	been	discovered	or	invented.

Many	dead	brains	have	been	dissected	and	their	parts	have	been	studied	and
classified.	The	brain	does	contain	nerve	cells	which	move	electricity	from	one
place	to	another.	This	is	a	similarity	between	brains	and	computers.	But	research
into	the	actual	operation	of	living	human	brains	is	necessarily	limited.	Most
observations	have	been	made	during	surgeries	that	were	necessitated	by	accident
or	disease.	Many	observations	have	been	made	of	changes	to	behavior	after	an
injury	or	disease	has	disabled	certain	parts	of	the	brain.	From	this	research,	it	has
been	possible	to	associate	certain	functions	with	certain	areas	of	the	brain.

But	no	one	has	discovered	a	bus,	a	clock,	any	registers,	an	ALU	or	RAM.	The
exact	mechanism	of	memory	in	the	brain	remains	a	mystery.	It	has	been	shown
that	nerves	grow	new	connections	over	time,	and	it	is	assumed	that	this	is	the
mechanism	of	learning,	but	no	one	has	been	able	to	say	that	this	particular	nerve
does	this	exact	function,	as	we	can	do	with	the	individual	wires	in	a	computer.

Everything	that	goes	into	a	computer	gets	turned	into	one	code	or	another.	The
keyboard	generates	one	byte	of	ASCII	per	keystroke,	a	microphone	generates
44,100	binary	numbers	per	second,	a	color	camera	generates	three	binary
numbers	per	pixel,	30	times	a	second,	and	so	on.	No	one	has	isolated	the	use	of
any	codes	like	ASCII,	binary	numbers,	fonts	or	an	instruction	code	in	the	brain.
They	maybe	there,	but	they	have	not	been	isolated.	No	one	has	traced	a	thought
or	located	a	memory	in	the	same	way	that	we	could	follow	the	operation	of	a
program	in	a	computer.

It	is	widely	assumed	that	the	brain	works	in	some	much	more	spread	out	way
than	a	single	computer,	that	there	are	thousands	or	billions	of	computer	elements
that	cooperate	and	share	the	work.	But	such	elements	have	not	yet	been	located.
In	the	world	of	computing,	this	idea	is	called	'parallel	processing'	and	computers



with	dozens	or	hundreds	of	CPUs	have	been	built.	But	these	computers	still
haven't	resulted	in	a	human	substitute.

Think	of	it	all	as	a	puzzle.	How	people	work	is	one	side	of	the	puzzle.	Making
computers	do	things	that	people	do	is	the	other	side	of	the	puzzle.	Pieces	of	the
puzzle	are	being	assembled	on	both	sides.	The	problem	is	that	as	progress	is
being	made	on	both	sides,	it	looks	more	and	more	like	these	are	two	different
puzzles,	they	are	not	coming	together	in	the	middle.	They	are	not	converging
into	a	single	picture.

The	researchers	are	very	aware	of	these	developments.	But	when	it	comes	to	pop
culture,	people	hear	about	new	inventions	all	the	time,	and	see	the	future
portrayed	in	science	fiction	films,	and	the	logical	conclusion	seems	to	be	that
research	will	continue	to	solve	the	problems	one	by	one	until	in	10	or	20	or	30
years	we	will	have	our	electro-mechanical	friends.	In	the	past	century	we
conquered	electricity,	flight,	space	travel,	chemistry,	nuclear	energy,	etc.	So	why
not	the	brain	and/or	mind?	The	research,	however,	is	still	at	the	stage	where
every	time	one	new	answer	is	found,	it	creates	more	than	one	more	new
question.

So	it	appears	that	whichever	way	we	look	at	it,	neither	the	brain	nor	the	mind
work	on	the	same	principles	as	computers	as	we	know	them.	I	say	'as	we	know
them'	because	some	other	type	of	computer	may	be	invented	in	the	future.	But
all	of	the	computers	we	have	today	come	under	the	definition	of	'Stored	Program
Digital	Computers,'	and	all	of	the	principles	on	which	they	operate	have	been
presented	in	this	book.

Still,	none	of	this	'proves'	that	a	synthetic	human	could	never	be	built,	it	only
means	that	the	computer	principles	as	presented	in	this	book	are	not	sufficient
for	the	job.	Some	completely	different	type	of	device	that	operates	on	some
completely	different	set	of	principles	might	be	able	to	do	it.	But	we	can't
comment	on	such	a	device	until	someone	invents	one.

Going	back	to	a	simpler	question,	do	you	remember	Joe	and	the	Thermos	bottle?
He	thought	that	the	Thermos	had	some	kind	of	a	temperature	sensor,	and	a	heater
and	cooler	inside.	But	even	if	it	had	had	all	of	that	machinery	in	it,	it	still
wouldn't	"know"	what	to	do,	it	would	just	be	a	mechanical	device	that	turned	on
the	heater	or	cooler	depending	on	the	temperature	of	the	beverage	placed	in	it.

A	pair	of	scissors	is	a	device	that	performs	a	function	when	made	to	do	so.	You
put	a	finger	and	thumb	in	the	holes	and	squeeze.	The	blades	at	the	other	end	of
the	scissors	move	together	and	cut	some	paper	or	cloth	or	whatever	it	is	that	you



have	placed	in	their	way.	Do	the	scissors	"know"	how	to	cut	shapes	out	of	paper
or	how	to	make	a	dress	out	of	cloth?	Of	course	not,	they	just	do	what	they're
told.

Similarly,	NAND	gates	don't	"know"	what	they	are	doing,	they	just	react	to	the
electricity	or	lack	of	it	placed	on	their	inputs.	If	one	gate	doesn't	know	anything,
then	it	doesn't	matter	how	many	of	them	you	connect	together,	if	one	of	them
knows	absolutely	zero,	a	million	of	them	will	also	know	zero.

We	use	a	lot	of	words	that	give	human	characteristics	to	our	computers.	We	say
that	it	"knows"	things.	We	say	it	"remembers"	things.	We	say	that	it	"sees,"	and
"understands."	Even	something	as	simple	as	a	device	adapter	"listens"	for	its
address	to	appear	on	the	I/O	bus,	or	a	jump	instruction	"decides"	what	to	do.
There	is	nothing	wrong	with	this	as	long	as	we	know	the	truth	of	the	matter.

Now	that	we	know	what	is	in	a	computer,	and	how	it	works,	I	think	it	is	fairly
obvious	that	the	answer	to	the	question	"But	How	do	it	Know?"	is	simply	"It
doesn't	know	anything!"
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